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ABSTRACT A method for calculating the optimal size of an energy storage system (ESS) under wind
uncertainties is presented based on Benders decomposition for stochastic programming in this paper. The
ESSs are becoming essential components in microgrids due to significantly higher penetration of renewable
energy sources. Integrating renewable energy sources coupled with ESSs in a power system enhances
the power system reliability by increasing its availability and reducing its total cost of operation and
maintenance. In addition, the ESS connected to amicrogrid should be optimally sized to be able to provide the
necessary power and minimize the total cost of investment and operation. In order to optimally size a storage
system, a constrained optimization problem is solved using a probabilistic optimization method because the
forecast of their output power cannot be determined accurately. In this paper, a probabilistic optimization
problem is solved using the Benders decomposition for stochastic programming method to optimally size
an ESS. This ESS will be integrated and connected to a grid-connected microgrid that has wind power
generation. The simulation results prove the effectiveness of the proposed optimal sizing methodology.

INDEX TERMS Energy storage system, wind uncertainty, renewable energy, Benders decomposition,
stochastic optimization.

NOMENCLATURE

ρs Probability of scenario s
Ci Number of interrupted customers for event i
CMGex Cost of microgrid related to exchanged power
CMGunits Cost of microgrid related to its units
Dt Demand at hour t
EESSt Energy stored in ESS at hour t
ERESS Rated energy of ESS
ECESS Energy cost of ESS per MWh
Ft Fixed cost of unit i
I Set of units
i Unit index
ICESS Investment cost of ESS
MDTi Minimum down time of unit i
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MUTi Minimum up time of unit i
NI Number of units
NS Number of scenarios
NT Number of hours
Pmaxi Maximum power of unit i
Pmini Minimum power of unit i
PmaxM Maximum exchanged power
PmaxW Rated wind power
PESSt Power produced by ESS at hour t
PRESS Rated Power of ESS
Pi,t Power generated by unit i at hour t
PMt Power exchanged with the main grid
PWt,s Wind power at hour t in scenario s
PCESS Power cost of ESS per MW
RDi Ramp down rate of unit i
RUi Ramp up rate of unit i
S Set of scenarios
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s Scenario index
SDi Shut down cost of unit i
SUi Start up cost of unit i
T Set of hours
t Hour index
TOFFi,t OFF time of unit i at hour t
TONi,t ON time of unit i at hour t
ui,t Commitment state of unit i at hour t
Vi Variable cost of unit i
vR Rated wind speed
vCI Cut-in wind speed
vCO Cut-out wind speed
vt,s Wind speed at hour t in scenario s
yi,t Start up indicator of unit i at hour t
zi,t Shut down indicator of unit i at hour t

I. INTRODUCTION
Microgrids are power systems of a small size. Microgrids
are designed and built to supply customers connected to
them with electrical energy. Microgrids might be islanded or
grid-connected [1]. If it is connected to the main grid,
the microgrid is able to exchange power through import-
ing and exporting to the main grid. There are several fea-
tures in microgrids such as distributed generators, renewable
energy sources, storage systems, and controllable loads [2].
Those features make microgrids more flexible, reliable, and
efficient [3].

The differences between centralized systems and
microgrids are shown in Figure 1. There are other reasons
to establish microgrids; and they are reducing production,
maintenance and operation cost, enhancing reliability, lim-
iting emissions, and improving power quality [5]. Uncen-
tralism means the reliability and availability of a microgrid
improved due to distributed generators. Usually, microgrids
are integrated and connected to renewable energy sources.
Those sources have the ability to make the system more
economical than centralized systems which are dependent
on conventional generators. When renewable energy sources
are integrated with a microgrid, the operation cost reduces
extremely. This is because the operation cost of the renewable
energy sources is negligible in comparison with conven-
tional generators which their operation cost is dependent on
fuel costs. Renewable energy is available freely but sources
required to convert the renewable energy to electrical energy
need investment cost. The authors in [6] review the techniques
and methods of integration of renewable distributed genera-
tion units into a distribution system. One of the other impor-
tant components that could be connected to a microgrid is a
storage system. There are many storage technologies that are
rapidly improving and there are many applications of them
in microgrids [7]. For instance, their contribution to support
an emergency load is one of the important applications. Also,
an ESS can deliver peaks with electrical energy [8]. The ESSs
make power operation more economic and they decrease
costs like sources of renewable energy. Moreover, they are
able to charge and store electrical energy during low-price

periods. In addition, they are able to discharge and supply the
stored energy in during high-price periods [1]. Therefore, this
process leads to a more economic system that its operation
cost is less. Incorporating and integrating renewable energy
sources and ESSs improve and increase the performance,
reliability and availability [9]. Furthermore, smart Energy
Management System (SEMS) is a system used to coordinate
different components and devices in a microgrid. Those
components include renewable energy sources and ESSs. The
SEMS has some objectives and the primary objective of it
is to generate and create appropriate set points for different
sources and ESSs to minimize costs and optimize power
dispatch, or distribution of powers, economically. Figure 4
illustrates a typical SEMS [10].

Smart grids are a smart type of microgrids and they are
bi-directional power and communication networks improving
the reliability of an electric system. They have all stages
found in a power system and those stages are generation,
transmission and distribution. In addition, they have ESSs
which increase the reliability of a power system significantly.
Also, an ESS decreases the total operating cost in a smart grid
and saves a large portion in the fuel and maintenance costs
(see, e.g., [11] and references therein). Smart grids could
be small-scale or large-scale systems. Furthermore, smart
grids are green and they produce much fewer emissions than
transitional power systems as well as microgrids.

Electric vehicles are considered as ESSs. They charge and
discharge as well as other ESSs. ESSs should be optimally
sized before integrating them to a microgrid [8]. There are
many techniques to find the optimal size of an ESS. The ESS
has its optimal size when this size minimizes the total cost
of investment and operation. In addition, in grid-connected
microgrids, the costs and revenues of exchanged power are
included in the total cost [3]. There is amathematical relation-
ship between the size of an ESS and its investment cost as well
as its microgrid operation cost. The investment cost increases
linearly as the size increases. However, the operation cost
decreases exponentially as the size increases [1]. The sum of
those two costs is the total cost. The objective is to calculate
the size at theminimum total cost [12]. Figure 5 illustrates this
relationship. The ESS should be at its optimal size because
an oversized ESS leads to a high investment cost while an
undersized ESS might not the ability to provide economic
and operational benefits [1]. The authors in [13] propose a
methodology to optimally size an ESS for future autonomous
systems.

The optimal size of an ESS is calculated using one
of the optimization techniques. Some of those techniques
are mixed-integer linear programming (MILP) [8], mixed-
integer non-linear programming (MINLP) [14], dynamic
programming (DP) [15], [16], particle swarm optimization
(PSO) [17], two-stage stochastic programming [18], distri-
butionally robust optimization [19], model predictive control
(MPC) [20]. The parameters of optimization problems could
be either certain or uncertain. Deterministic optimization
methods are used to solve optimization problems with certain
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FIGURE 1. Schematic of centralized and distributed systems [4].

parameters whereas probabilistic methods are used to solve
problems having uncertain parameters. Moreover, there are
several algorithms in addition to optimization techniques
to find the optimal size of an ESS. The authors in [21]
have proposed a technique to optimally size a hybrid ESS
(HESS). This HESS consists of rechargeable batteries and
ultracapacitors. Moreover, the authors in [22] have presented
a methodology to optimize the joint capacity of renewable
energy and a HESS.

Stochastic optimization or robust optimization are used to
solve optimization problems that have uncertainty in their
parameters [18]. In addition, the heuristic algorithm is used
as well to solve probabilistic optimization problems. The
authors in [23] explained this algorithm and one of its applica-
tions in power system optimization. They used the algorithm
to find the optimal operation of distributed generators in a
microgrid. Moreover, the authors in [8] proposed an algo-
rithm to optimally size a battery ESS (BESS) in an islanded
microgrid. The objective of this algorithm is to find the size
of the BESS that minimizes the total cost. This algorithm
is explained in details in [8]. Figure 2 shows this technique
and algorithm briefly and how they are used to optimally size
the BESS.

One of the very attractive options to enhance and improve
the flexibility of microgrid planning and operation is the ESS.
Also, as discussed, an ESS can absorb energy when prices
are low or there is excessive generation. After that, it returns
this energy when prices are high or generation is low [24].
ESSs have many technologies. Some of those technolo-
gies are superconducting magnetic energy storage system
(SMES) [25], compressed air energy storage (CAES) [26],

FIGURE 2. The flowchart of the proposed algorithm.

super-capacitor energy storage [27], pumped hydro stor-
age [28], battery energy storage (BESS) [29], flywheel energy
storage system [30], and power to gas storage method [31].

In power system optimization, different objective functions
related to an ESS are used [24]. Some of them are com-
pensate grid voltage fluctuations [25], overcome the desta-
bilizing effect of instantaneous constant power loads in DC
microgrids [27], prevention of transient under-frequency load
shedding [32], reliability enhancement [33], wind uncer-
tainty management [34], fault ride through the support of
grid-connected VSC HVDC-based offshore wind farms [30],
phase balancing [35], wind curtailment reduction and con-
gestion management [36], and active power loss payment
minimization [37]. In addition, ESSs could be optimized with
other distributed generators in a distribution system [38].
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FIGURE 3. Electricity storage technologies [41].

Different types of ESSs have been designed and developed.
Some of them are already available commercially. The rest
of them are still under research to be improved. Different
ESS technologies have different charging and discharging
characteristics. Also, the charging and discharging rates are
different among those different technologies. Figure 3 illus-
trates the power and discharge rate of different ESS tech-
nologies. Several criteria are used to compare the different
ESS technologies. The authors in [39] have compared differ-
ent characteristics as well as advantages and disadvantages
of ESS technologies. Reliability is an extremely important
factor used to evaluate a certain power system. Reliability
assessment of a power system is important for both sides;
suppliers and customers. Reliability of a power systemmeans
the system should be available to supply electrical energy
when it is needed at an economic and reasonable cost. Many
technologies and devices have been developed to enhance
and increase the reliability of power systems. ESSs enhance
the microgrid reliability when they are integrated with it [40]
in addition to the other benefits that an ESS provides for a
microgrid. ESSs increase the availability in many ways. One
of them is that they support in shaving the demand, especially
at peak periods.Moreover, when an ESS is established, it does
not cost in terms of production or operation. There are other
reliability indices and they enhance as well after integrating
the ESS [3].

When renewable energy sources are integrated to a power
system, the uncertainty matters because the output power
from those sources cannot be determined accurately. Also,
this depends mainly on forecasting which cannot be abso-
lutely true. In addition, reliability gets more importance
nowadays and many technologies are being developed to
enhance the reliability. The missing gap in the literature
is that there is no method to optimally size an ESS for
a microgrid under wind uncertainties. In order to find the
optimal size of an ESS for a microgrid connected to renew-
able energy sources, the uncertainties must be taken into
account. The problem in this case is called a probabilistic
optimization problem which is different from deterministic

FIGURE 4. Inputs and outputs of SEMS.

optimization problems. Stochastic optimization and robust
optimization are two methods used to optimize such prob-
lems. Stochastic programs are complicated and more diffi-
cult to formulate [42]. There are many solution approaches
to solve stochastic optimization problems. Some of those
approaches are decomposition, statistically based methods,
stochastic decomposition, methods for multi-stage problems
and computational illustration [42]. Another method to opti-
mally size an ESS connected to a system having renew-
able energy sources is generic sizing methodology using
pinch analysis and design space [43]. One of the decompo-
sition techniques used to solve very large stochastic opti-
mization problems is Benders decomposition [44]. Benders
decomposition is a technique used to solve stochastic pro-
gramming problems where uncertainties are represented with
scenarios.

This paper discusses a technique to optimally size an ESS
to be integrated into a microgrid connected to a main grid
under wind uncertainties using the Benders decomposition
in very large systems. A new model has been proposed for
optimal sizing of an ESS considering wind uncertainties in
system modeling, which is critically important in power sys-
tems containing intermittent renewable energy sources such
as wind. Benders decomposition is a great technique when
there are many scenarios because it simplifies the problem
and its algorithm is easy to follow in coding. So, this tech-
nique can be used in sizing an ESS usingwind data frommany
years efficiently.

The remainder of the paper is organized as follows.
Section II explains the equations used to calculate the optimal
size of and ESS. Section III shows a simple case study used
to test the proposed technique of optimal sizing of an ESS.
Section IV shows and illustrates the simulation results after
solving the optimization problem of the case study. Section V
is the conclusion of the paper.

II. PROBLEM FORMULATION
The problem formulation is subdivided into the following
subsections.

A. BENDERS DECOMPOSITION
Stochastic optimization problems are solved as explained in
this paragraph generally. Wind uncertainty is modeled to be
included in the optimization problem. Multiple wind speed
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scenarios are generated for the optimization problem. Distri-
bution probabilities are assigned to each scenario. Of course,
the sum of all probabilities must be 1. Each scenario will
be multiplied by its probability and the production will be
summed. The total is a new scenario that will be included in
a deterministic optimization problem.

The formulation of Benders decomposition is explained
in [45]. The two-stage stochastic linear programming prob-
lem can be formulated as shown in the following equation.

min
x

cT x + EωQ(x, ω)

Ax = b

x ≥ 0

 (1)

specifically

Q(x, ω) = min
y

dTω y

Tωx +Wωy = hω
y ≥ 0

 (2)

whereEω is the expectation, andω is the scenario with respect
to the probability space (�, P). Discrete distributions P only
are considered in the following equation.

EωQ(x, ω) =
∑
ω∈�

p(ω)Q(x, ω) (3)

So, the deterministic equivalent can be formulated as:

min
x

cT x +
∑
ω

p(ω)dTω yω

Ax = b

Tωx +Wωyω = hω
x ≥ 0, yω ≥ 0


(4)

The structure Tωx+Wωyω = hω is called L-shaped, and it
can be expanded as shown in the following equation.

T1x +W1y1 = h1
T2x +W2y2 = h2

.

.

.

Tkx +Wkyk = hk


(5)

Moreover, the algorithm of Benders decomposition is
explained in Algorithm 1.

If the subproblems are infeasible, slightly different formu-
lated cuts are needed to be included. The subproblems here
are assumed to be solved to an optimal feasible solution.

B. ESS OPTIMAL SIZING
Stochastic programming based on Benders decomposition
is used to optimally size an ESS. In order to calculate the
optimal size, the model of one of the famous power system

Algorithm 1 Benders Algorithm
1: Step 1: Initialization
2: v := 1 F Iteration number
3: UB := ∞ F Upper bound
4: LB := −∞ F Lower bound
5: Solve initial master problem:

min
x

cT x

Ax = b

x ≥ 0

 (6)

6: xv := x∗ F Optimal values
7: Step 2: Sub problems
8:

9: for ω ∈ � do
10: Solve the sub problem:

min
y

dTω yω

Wωyω = hω − Tωxv

yω ≥ 0

 (7)

11: yvω := y∗ω F Optimal values
12: πvω := π

∗
ω F Optimal dual values

13:

14: end for
15: UB := minx UB, cT xv +

∑
ω∈�

pωdTω y
v
ω

16: Step 3: Convergence test
17: if (UB− LB)/(1+ LB) ≤ TOL then
18: Stop: required accuracy achieved
19: Return xv

20: end if
21: Step 4: Master problem
22: Solve the master problem
23:

min
x

cT x + θ

Ax = b

θ ≥
∑
ω∈�

pω(−π lω[Tωx +Wωylω − hω]),

l = 1, . . . , v− 1

x ≥ 0


(8)

24: xv := x∗ F Optimal values
25: θ

v
:= θ∗

26: LB := cT xv + θ
v

27: Go to Step 2

optimization problems is used. This problem is the unit com-
mitment problem. ESS constraints are added to the unit com-
mitment problem and the solution will include the solution of
the unit commitment and optimal size. The unit commitment
problem is explained in [46] and [12]. In addition, ESS con-
straints that should be added to the model of unit commitment
are explained in [12]. The proposed optimization problem
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FIGURE 5. Cost vs ESS size.

has been modeled and a GAMS (General Algebraic Model-
ing System) code has been developed to solve the problem.
Developing GAMS codes is explained in [47] and [24].

1) OBJECTIVE FUNCTION
The objective function of the optimization problem is the
cost function. The objective is to minimize the total cost.
Therefore, the total cost includes the costs os ESS investment,
operation and exchanged power. The objective function of the
optimal sizing problem for a given horizon is formulated in
the following equation.

min CMGunits + CMGex + ICESS (9)

where CMGunits is the operation cost of microgrid distributed
generators, CMGex is the cost or revenue of the exchanged
power imported from the main grid or exported to it, and
ICESS is the investment cost needed to establish the ESS.

The operation cost of microgrid distributed generators is
calculated using the equation formulated in (10). The decision
variables u, y, and z are binary variables. This means that
they have only two values which are either 1 or 0. If ui,t
is 1, this means that the generator i at hour t is ON, and if
it is 0, the generator is OFF. Also, if yi,t is 1, this means
the generator i starts up at hour t . In addition, if zi,t is 1,
the generator i at hour t shuts down. So, the yi,t and zi,t are 1
during the first hour the generator starts up and shuts down,
respectively. The values of yi,t and zi,t are 0 during the rest
of the hours. Since the values of ui,t , yi,t and zi,t are integers,
MILP should be used to solve the optimization problem. The
fixed cost of unit i, F , is fixed if the unit i is ON. This cost
is calculated during all hours the unit is committed at. The
output power of the unit does not matter in calculating the
fixed cost. However, the variable cost of unit i, V , is variable
and it is dependent on the output power of the unit i.

CMGunits =
NT∑
t=1

NI∑
i=1

[Fiui,t + ViPi,t + SUiyi,t + SDizi,t ]

(10)

where i is the unit index, NI is the number of units, t is
the hour index, NT is the number of hours, Fi is the fixed

cost or no-load cost of unit i, Vi is the variable cost of unit i
and it is related to the output power of unit i, Pi,t is the output
power of unit i at hour t , SUi is the start up cost of unit i and
SDi is the shut down cost of unit i. ui,t , yi,t , and zi,t are binary
variables represent the commitment state of unit i at hour t ,
start up indicator of unit i at hour t and shut down indicator
of unit i at hour t , respectively.

The cost function used to calculate the cost of a generator
is a nonlinear function. It is quadratic. However, in (10), it has
been linearized tomake the optimization problem simpler and
faster to model and solve. The quadratic function could be
used in the objective function for more accurate results.

The following equation shows how to calculate the cost of
imported power from the main grid or revenue of exported
power to the main grid. This cost is positive when power is
imported because the objective function calculated the cost.
Thus, when power is exported to the main grid, the cost is
negative because of the value of the objective function will
be less.

CMGex =
NT∑
t=1

γPMt (11)

where γ is electricity price per onemegawatt of power bought
from or sold to the main grid and PMt is the exchanged power
between the microgrid and main grid at hour t . The sign
convention in PMt is that it is positive when the power flows
from the main grid to the microgrid and it is negative when
the power flows from the microgrid to the main grid.

The ESS investment cost is formulated in the following
equation. The parameters in this equation are the unit prices
of ESS power and energy. Furthermore, the decision variables
are the rated power and energy of the ESS. These two vari-
ables represent the required optimal size of the ESS.

ICESS = PCESS PRESS + ECESS E
R
ESS (12)

where PCESS is the power cost of the ESS per one megawatt,
PRESS is the rated power of the ESS,ECESS is the energy cost of
the ESS per one megawatt hour and ERESS is the rated energy
of the ESS.

2) SYSTEM CONSTRAINTS
System constraints include generator constraints and balance
equations. The balance equation is an important constraint
because the generated power must be equal to the load at
the same time. If generated power is greater than the load,
the system frequency increases. In addition, if the generated
power is less than the load, the system frequency decreases.
This variation is system frequency could collapse the sys-
tem or results in a blackout. This is why the output power from
generators, wind power and ESS discharging power must be
equal to the load and ESS charging power. [48] proposes a
coordinated frequency regulation framework for optimiza-
tion. Sometimes, reserve is added to the constraint so that
the generated power must be equal to the load and reserve.
The reserve is added to the balance equation to overcome the
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FIGURE 6. Wind power vs Wind speed [50].

continuous load variations, so that the output power must be
equal to the summation of demand and reserve at every hour.
In addition, the emissions constraint [49] could be added as
well in some optimization problems. In multi-objective unit
commitment problems, the objectives might be minimizing
the cost and emissions at the same time [24]. In this paper,
the balance constraint is formulated as:
NI∑
i=1

[Pi,t + PESSt + PMt −

NS∑
s=1

ρsPWt,s ] = Dt

∀t ∈ T , ∀s ∈ S (13)

where s is the scenario index, NS is the number of scenarios,
ρs is the probability of scenario s, S is the set of scenarios,
PESSt is the power stored to or produced by the ESS at
hour t , PWt ,s is the wind power at hour t in scenario s, Dt is
the demand at hour t and T is the set of hours. The sign
convention in PESSt is that it is positive when it is produced
and negative when it is stored.

Wind power is calculated from wind speed and it is calcu-
lated as formulated below [7].

PWt,s =


0 vt,s < vCI or vt,s ≥ vCO

PmaxW
vt,s − vCI
vR − vCI

vCI ≤ vt,s < vR

PmaxW vR ≤ vt,s < vCO

(14)

where PmaxW is the rated wind power, vt,s is the wind speed
at hour t in scenario s, vCI is the cut-in wind speed,
vCO is the cut-out wind speed and vR is the rated wind speed.
Figure 6 shows how the output wind power changeswithwind
speed [50].

The exchanged power between the main grid and micro-
grid is limited because of the limit of the transmission line
connecting the two systems. A constraint is needed to limit
this power and it is dependent on the capacity of the trans-
mission line. The exchanged power is negative when power
is exported and it is positive when it imported from the main
grid. This constraint is formulated as:

−PmaxM ≤ PMt ≤ P
max
M ∀t ∈ T (15)

where PmaxM is the maximum capacity of the transmission line
connecting between the microgrid and main grid.

Different generators have different characteristics. These
characteristics have some limits such as maximum power.
These limits are formulated as constraints to be included in
the optimization problem. Generators have minimum limits
so they with stability. Also, each generator cannot infinite
power because there is a maximum limit. This constraint is
formulated in the following equation. Minimum and maxi-
mum limits must be multiplied by ui,t , the commitment state
of a generator i at hour t . This is because if a generator is OFF,
the output must be zero. The output power will have values all
the time if the limits are notmultiplied by the state because the
output power should be between the minimum and maximum
limits all the time.

Pmini ui,t ≤ Pi,t ≤ Pmaxi ui,t ∀i ∈ I , ∀t ∈ T (16)

where Pmini is the minimum power that can be produced by
unit i, Pmaxi is the maximum power that can be produced by
unit i and I is the set of units.
Ramp up and ramp down limits are two variables limiting

the rate of increasing and decreasing the output power of
a generator. The output power of a certain generator can-
not be increased or decreased freely. A constraint must be
formulated to represent these two limits. This constraint is
formulated in the following equation.

Pi,t − Pi,t−1 ≤ RUi ∀i ∈ I , ∀t ∈ T (17)

where RUi is the ramp up rate of unit i.

Pi,t−1 − Pi,t ≤ RDi ∀i ∈ I , ∀t ∈ T (18)

where RDi is the ramp down rate of unit i.
When a generation unit starts up, it has to be ON for some

time before it shuts down. This time is known as theminimum
up time. Also, when a generation unit shuts down, it has
to be OFF for some time before it starts up. This time is
known as the minimum down time. These two constraints are
formulated below.

TONi,t ≥ MUTi[ui,t − ui,t−1] ∀i ∈ I , ∀t ∈ T (19)

where TONi,t is the ON time of unit i at hour t andMUTi is the
minimum up time of unit i.

TOFFi,t ≥ MDTi[ui,t−1 − ui,t ] ∀i ∈ I , ∀t ∈ T (20)

where TOFFi,t is the OFF time of unit i at hour t and MDTi is
the minimum down time of unit i.
The generation unit cannot start up and shut down at the

same time. This is a logic constraint and it is modeled in the
following equation.

yi,t − zi,t = ui,t − ui,t−1 ∀i ∈ I ,∀t ∈ T (21)
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3) ENERGY STORAGE SYSTEM CONSTRAINTS
ESS constraints limit the ESS charging and discharging pow-
ers of an ESS. The ESS power is limited by its rated power,
which is the optimal size. The ESS cannot charge or discharge
more than its rated power. The ESS acts as a load when it
charges and acts as a generator when it discharges. Also,
the charging power is assumed to be negative whereas the
discharging power is assumed to be positive. This constraint
is formulated as:

−PRESS ≤ PESSt ≤ P
R
ESS ∀t ∈ T (22)

The stored energy in the ESS is limited by its rated energy.
Of course, the stored energy is always positive. This con-
straint is formulated as:

0 ≤ EESSt ≤ E
R
ESS ∀t ∈ T (23)

where EESSt is the energy stored in the ESS at hour t .
The equation to calculate the stored energy at a specific

hour is formulated in (24). The stored energy is called the
state of charge and there are methods developed to optimize
it [51].

EESSt = EESSt−1 − PESSt ∀t ∈ T (24)

III. A CASE STUDY
A grid-connected microgrid is considered as a case study for
sizing of an ESS under wind uncertainties. The case study is
presented with data needed to solve the optimization prob-
lem. The results are introduced and discussed in Section IV.
The system that will be studied consists of three thermal
generators which are distributed generators in the microgrid.
The unit commitment problem is solved using stochastic
programming for a scheduling horizon of two years. The load
data has been taken from the IEEE Reliability Test System
(RTS-96) for the first year [52]. For the second year, the same
load profile has been repeated with an increase of 5%. The
reserve and emission constraints are not considered in this
case study. Weibull distribution is used to generate wind
speed scenarios using Weibull distribution parameters of
Dhahran city. Those parameters have been calculated from
historical data. Since there is uncertainty and wind speed
cannot be forecasted accurately, many scenarios should be
considered to handle the uncertainty and randomness. In this
paper, instead of taking scenarios from historical data, new
scenarios have been generated using the parameters. Con-
sidering different scenarios is one of the methods used to
handle the randomness in stochastic optimization. Ten sce-
narios of wind speed have been created randomly using the
Weibull distribution parameters formonthlywind distribution
calculated in Dhahran for 19 years [53]. Those parameters
are shown in Table 1. In this table, K represents the shape
parameter and c represents the scale parameter. The probabil-
ity density function of Weibull distribution used to calculate
the wind speed at each hour is illustrated in (25). Those ten
scenarios are assumed to be actual data taken from ten dif-
ferent years. The annual numerical values of k and c are 2.35

FIGURE 7. Wind frequency histogram and Weibull distribution for all
wind speeds in Dhahran.

TABLE 1. Weibull parameters for monthly wind speed distribution in
Dhahran.

and 4.98, respectively. Figure 7 shows the Weibull distribu-
tion for annual wind speeds and wind frequency histogram
for Dhahran [53] and Table 2 illustrates the average annual
wind speeds in Dhahran for all scenarios. The probabilities
of all scenarios are equal, which means that ρs is equal to 0.1
for all scenarios. The ten scenarios have been repeated twice
to cover the horizon of two years.

f (t, c, k) =

{
k
c (

t
c )
k−1e−(

t
c )
k

t ≥ 0
0 t < 0

(25)

Table 3 illustrates the generator characteristics. The char-
acteristics are from [46], except the minimum up and down
times. Table 4 shows the values of the parameters. Figure 8
illustrates the load curve. Also, the load duration curve is
shown in this figure. The horizon will be two years. Ten
scenarios of wind speeds have been created and they are
shown in Figure 9. The scenarios are shown for only one year
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TABLE 2. Average annual wind speeds in Dhahran for all scenarios.

TABLE 3. Characteristics of generation units.

in this figure. They are represented in average daily speeds.
The same scenarios have been repeated for the second year.
Figure 10 shows the hourly speed for the ten scenarios during
the first twenty-four hours.

The unit commitment problem to find the output power
of each generator, imported and exported power, and the
ESS discharging and charging powers. A comparison will
be made and the unit commitment problem will be solved
in two cases. The first case represents the microgrid without
an ESS whereas the second case will represent the microgrid
after integrating it with an optimally sized ESS. The differ-
ences in total costs and reliability will be investigated. The
optimization problem of this system has been modeled in
GAMS (General Algebraic Modeling System) [54] and has
been solved in the NEOS Server [55] which is a free online
service for solving numerical optimization problems.

TABLE 4. Values of other model parameters.

FIGURE 8. Load curve and load duration curve.

FIGURE 9. Average daily wind speeds of the ten scenarios.

IV. RESULTS AND DISCUSSIONS
The optimization problem has been solved using stochastic
programming based on the technique of Benders decom-
position. The total cost which includes the operation of
generators, exchanging power with the main grid and ESS
investment has been minimized. Also, the optimal size of
the ESS has been calculated. The rated power is 16.59 MW
and the rated energy is 128.84 MWh. The output power of
each generator at each hour has been calculated as well as the
exchanged power with the main grid at each hour. This is the
solution to the unit commitment problem. Figures 11 and 12
illustrate the distribution of powers before integrating the ESS
and after integrating it, respectively. As shown in those two
figures, the ESS works instead of the most expensive unit,
Unit 1, and decreases costs. In those two figures, the positive
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FIGURE 10. Hourly wind speeds during the first twenty-four hours of the
ten scenarios.

FIGURE 11. Economic dispatch without ESS.

FIGURE 12. Economic dispatch with ESS.

values of powers are only shown. This means that they show
the ESS power in the discharging case and the exchanged
power in the importing case. The negative values of power,
which are the ESS charging power and the exported power
to the main grid, are shown in Figure 13. The ESS acts as a

FIGURE 13. ESS power and exchanged power with negative values.

FIGURE 14. Stored energy in ESS.

generator in the discharging case and it acts as load in the
charging case. This is like the exchanged power when the
main grid is considered as a generator when the power is
imported from it and it is considered as a load when the power
is exported to it. When the ESS power is positive, this means
the stored energy decreases because the discharging power is
greater than the charging power. This leads to reducing the
stored energy in the ESS. In addition, when the ESS power
is negative, this means the charging power is greater than
the discharging power, and this leads to increasing the stored
energy. The stored energy in the ESS is known as the state
of charge. Figure 14 illustrates the state of charge during the
first twenty-four hours.

To prove that the solution of stochastic programming
method is reasonably optimal, the ten scenarios, which are
assumed previously as actual data for ten different years, have
been solved separately using the mixed-integer linear pro-
gramming method. The results are shown in Table 5 and they
are compared to the solution of the stochastic programming
method in Table 6. The solution of the probabilistic optimiza-
tion method is the second optimal solution after the solution
of Scenario 6. So, this shows that the probabilistic technique

77960 VOLUME 7, 2019



M. A. Abdulgalil et al.: Optimizing a Distributed Wind-Storage System Under Critical Uncertainties Using Benders Decomposition

TABLE 5. Results of all scenarios solved separately.

TABLE 6. Comparison of results of all scenarios with SP solution.

gives a reasonable solution compared to the deterministic
technique of the ten scenarios. The stochastic programming
technique is used when there is more than one scenario and
it gives better results as shown in Tables 5 and 6. Although
the investment cost of the storage system in the stochastic
programming solution is higher compared to other scenarios,
the total cost is still lower. The objective is to minimize the
total cost, not the investment cost. The solution of Scenario
6 is lower than the stochastic programming solution but it
reflects only one scenario instead of all scenarios. The results
of deterministic and probabilistic optimization problems are
illustrated also in Figures 15, 16 and 17 to be read and
compared easily.

Benders decomposition is amethod that allows the solution
of very large optimization problems that have special block
structure. In this paper, the block structure occurs in repre-
senting the uncertainty with different scenarios. This method
is used to solve large problems more efficiently in less time.

FIGURE 15. Total cost of all scenarios.

FIGURE 16. ESS rated power of all scenarios.

FIGURE 17. ESS rated energy of all scenarios.

The difference will be more noticeable and valuable in opti-
mizing very large power systems. To evaluate the efficiency
of this method, the case study has been solved using the
well-known two-stage stochastic programming method [18]
for comparison. Benders decomposition is faster in solving
this optimization problem by 77.83%. The time difference
is not significant in this problem because the power system
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TABLE 7. Comparison between the two cases.

is small. The time difference will become more important in
optimizing very large power systems and many hours could
be saved when the optimization problem is solved using
Benders decomposition.

Table 7 shows the net cost in Cases 1 and 2. The net
cost in Case 1 includes only the operation cost of distributed
generators while the net cost in Case 2 includes the operation
cost in addition to the ESS investment cost. Furthermore, it is
shown in the table that the reliability indices enhance after
integrating the ESS in Case 2. Average System Availabil-
ity Index (ASAI) and Average System Unavailability Index
(ASUI) have been calculated with other reliability indices to
investigate the enhancement of microgrid reliability.

Benders decomposition has been used to optimally size an
ESS to be integrated with a microgrid. This technique is very
useful in large power systems where the number of decision
variables and constraints is extremely huge. This technique
simplifies the way of solving the optimization problem as
shown in this simple case study.

V. CONCLUSION
This paper has presented a methodology to calculate the opti-
mal size of an ESS for a grid-connectedmicrogrid under wind
uncertainties using stochastic programming based on Ben-
ders decomposition. Benders decomposition is a mathemati-
cal technique used to solve very large optimization problems.
Benders decomposition has been proved to be used for opti-
mal sizing of an ESS. Benders decomposition is very benefi-
cial in large power systems that their optimization problems
have lots of constraints and variables. It simplifies the way to
solve large optimization problems and saves effort and time.
The needed data to use Benders decomposition is several
scenarios associated with their probabilities. In this paper,
the algorithm of Benders decomposition has been explained
with all equations used in this technique. There are many
purposes of integrating an ESS with a certain microgrid. One
of them is to improve and increase its reliability. It is proved
with numbers that connecting an ESS to a microgrid has
reduced the total cost. The cost has decreased after integrating
the ESS although it includes the ESS investment cost. This
shows the economic feasibility of the power system.
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