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ABSTRACT By analyzing the recovery and reconstruction process of various power quality single
disturbances and composite disturbance signals, we proposed a set of acquisition methods suitable for
power quality disturbance (PQD) signals. The proposed acquisition method is applied to the compression
sensing (CS) technology for data compression, the demand for the acquisition device memory is reduced,
and the transmission rate is increased. An end-to-end intelligent classification framework is designed, which
can directly classify the collected data without any time-consuming data pre-processing operations. The
model is designed with noise adaptation module, which can cope with the error of compressed sensing
recovery and has also showed good classification performance in noise data. Simultaneously, the model
applies a lot of easy-to-implement techniques, which makes the trained model have better generalization
ability and classification effect. The proposed method is verified by both simulation and measured data. The
method showed superior performance compared to the existing disturbance identification methods based on
the classification results.

INDEX TERMS Power quality, classification, compressed sensing, deep convolutional neural network, batch
normalization.

I. INTRODUCTION
With the large number of distributed components, elec-
tric vehicles and other non-linear components connected to
the grid, various power quality disturbances (PQD) have
emerged [1]. More and more power quality data are col-
lected due to the application of smart meters and various
intelligent acquisition devices. Concurrently, the generation
of massive power information imposes a large burden on
the data transmission and storage of the current power grid.
In order to reduce the pressure on communication and the
problem of storage at the collection end, the application of
lighter physical quantity is the development trend of smart
grid. The introduction of compressed sensing (CS) technol-
ogy has an important impact on the development of smart
grid. Compressed sampling technology has been widely used
in medicine and other fields, and the application research
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in smart grid is increasing. Aiming at handing the difficulty
in recovering data collected by compressed sensing technol-
ogy, the large amount of data in smart grid and the long-
time of recovery, this paper proposes a method for direct
classification of power quality data collected by compression
technology.

Compressed sensing technology [2] breaks through the
limitations of the sampling theorem, and can recover the
original signal completely by collecting data much smaller
than the sampling theorem. Research on data recovery and
reconstruction algorithms in compressed sensing technology
has always been challenging. At present, the recovery and
reconstruction algorithm of compressed sensing technology
is computationally intensive and slow in operation, and it is
difficult to apply to a large number of data reconstruction
problems. In addition, the power quality disturbance data
volume is large, the recovery reconstruction algorithm of
the compressed sensing technology runs slowly, and is not
suitable for recovery and reconstruction of a large number
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of signals. Therefore, the deep learning algorithm is used to
directly classify the compressed signals, and according to the
classification results, the specific types of disturbance signals
are analyzed. The reconstruction and processing of signals for
a particular class of disturbance signals can save a significant
amount of process for recovering signals.

The design of the classifier is a critical part for the
classification of power quality disturbances. At present, the
classifiers commonly used in power quality disturbance clas-
sification are: Probabilistic Neural Network (PNN) algo-
rithm [3], [4], Decision Tree [5]–[7], Support VectorMachine
(SVM) [8]–[10], Artificial Neural Network [11], [12] and
so on. These traditional artificial intelligence methods have
achieved certain results in practical applications, but their
ability to extract features and process large amounts of
data is still poor. A feature extraction process is required
which affects their classification speed. In recent years, with
the development of machine learning algorithms and the
improvement of hardware computing power, more intelligent
algorithms have been applied to the field of power quality
disturbance classification. The rapid development of deep
learning has made rapid classification possible. Although the
training process of the deep learning algorithm is slow and
time-consuming, the algorithm trained by a large amount of
data has high recognition accuracy and fast classification.
Therefore, training an efficient classifier in the power system
can quickly analyze the power quality disturbance.

In this paper, a power quality disturbance recognition
method based on compressed sensing and deep convolutional
neural network is proposed. The contributions of work are
listed as follows:

1) By analyzing single power quality disturbance and
composite power quality disturbance, a compressed
sensing method suitable for power quality disturbance
data acquisition is proposed.

2) Aiming at the disturbance data extracted by com-
pressed sensing, a deep learning framework is
designed, which can reduce the influence of noise on
recognition accuracy, high recognition accuracy and
fast classification.

3) By combining the compressed sensing technology with
the deep learning algorithm, the rapid classification
of power quality disturbance can be realistic and it
provides novel route for disturbance recognition.

The rest of the paper is organized in the following
sequence. Section II develops a power quality compression
sampling model. Section III describes the principle of con-
volutional neural networks (CNN). Section IV proposes an
algorithm for identifying PQD compressed data. Section V
simulation experiment verifies the feasibility of the algo-
rithm. Section VI concludes the paper.

II. COMPRESSED SENSING THEORY OF PQD DATA
ACQUISITION
In this section, we develop a data acquisition model based on
compressed sensing.

A. COMPRESSED SENSING THEORY
Compressed sensing theory [13]–[17] shows that when the
original signal x itself is sparse, or the signal is sparse on
an orthogonal base 9, We can use the stochastic stationary
observation matrix 8 for compression sampling based on
spatial transformation. Obtaining a measured value y that
maintains the original signal structure and is much smaller
than the signal length, then the original signal x is accurately
reconstructed by solving the numerical optimization problem.

The CS theory directly obtains the data compressed
expression, omitting the intermediate steps of acquiring the
N-dimensional signal, and its linear observation model is as
shown in (1).

y = 8x = 8ψx = 2S (1)

where: x is the N × 1 dimension original signal;8 is
the M × N dimension (M � N ) observation matrix; there
are only K (K � N ) non-zero elements in S, which is an
N-dimensional K-sparse vector; 2 = 8ψ called the sensing
matrix. CS recovers the sparse vector S from the observation
vector y, thereby accurately reconstructing the original signal
∧

X = ψ
∧

S.
For the above problem, the sparse solution can be obtained

by l0-norm optimization as shown in (2):

∧

S = argmin ||S||0 (s.t.Y = 89x) (2)

where: ||S||0 is the zero norm of S, but as a nonlinear pro-
gramming problem, it is difficult to solve it, as a result of
the sparse domain9 and8 non-coherent observation matrix,
can be used to solve l1- norm to get the same result as shown
in (3):

∧

S = argmin ||S||1 (s.t.Y = 89x) (3)

However, to properly restore the sparse vector
∧

S, must satisfy:
1) The dimension M of the observation vector y has M =
O
[
K log (N )

]
, where O is the operator of computational

complexity; 2) The observation matrix 8 needs to satisfy
the restricted equidistance characteristic criterion (RIP), that
is, there is a constrained equidistance constant δK ∈ (0, 1),
therefore, for any K sparse signal, equation (4) holds.

(1− δK ) ||X ||22 ≤ ||8X ||
2
2 ≤ (1+ δK ) ||X ||

2
2 (4)

This can be transformed into a convex optimization prob-
lem so that the convex relaxation algorithm can be used to
solve this problem. In this paper, the reconstruction of PQD
signals is reconstructed using the Sparsity adaptive matching
pursuit algorithm [18].

B. DETERMINATION OF PQD DATA ACQUISITION
COMPRESSION BASE AND OBSERVATION MATRIX
The collection of power quality disturbances needs to follow
two principles: 1) On the one hand, in order to reduce the
amount of data collected, assume (M � N );2) On the other
hand, in order to ensure data quality, it is desirable that the
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compressed PQD data is sufficient to represent the actual

power quality disturbance, that is, the recovery matrix
∧

X is
as close as possible to X. X is the PQD data that satisfies the
Nyquist sampling theorem

The satisfaction of the two principles requires a detailed
analysis of the PQD. Since the PQD signal itself is not a
sparse signal, it is necessary to determine a sparse basis such
that the PQD signal is sparse on the sparse basis. Analysis
of 9 common single perturbation findings, PQD signals are
mostly low-frequency signals, and PQD is different in the
measured signals. In order to simplify the simplicity of the
device, reference [13] uses DCT as the sparse basis.

DCT is a simple and practical sparse base. Its advantage is
its strong applicability. It can be applied to the acquisition of
all PQD signals, and its structure is simple and easy to imple-
ment in hardware. The transformation matrix representation
of DCT is as shown in equation (5):

DCT (N × N ) =
[
ψi,j = C cos

(
i (1+ 2j)

5

2N

)]
(5)

where i ∈ {0, . . . ,N − 1} and j ∈ {0, . . . ,N − 1} represent
the row number and column number of the matrix, and C is
defined by equation (6):

C =


√
1/
N for i = 0√

2/
N for i 6= 0

(6)

Since the DCT matrix is orthogonal, its inverse matrix
can be obtained simply by performing a matrix transposition
operation as shown in (7).

IDCT = DCT−1 (7)

The DCT sparse the signal is by concentrating most of
the information in some low frequency components. The
remaining high frequency components tend to have lower
values and they can be discarded without significant loss.

Figure 1 shows the compression reconstruction of sag
signal, the sparse representation on the IDCT basis and the
error of compression reconstruction. It can be seen from the
compression reconstruction results that the PQD can be com-
pletely reconstructed, and the reconstruction error is within
the allowable range.

To directly classify PQD using compressed data, first
determine the magnitude of the M value in the observation
matrix. In order to determine the magnitude of the M value,
this paper analyzes the relationship between the compression
reconstruction of a variety of single PQDs and the com-
pression and reconstruction M values of multiple composite
perturbations and the reconstituted power. There is an error
in the reconstruction. Setting the average reconstruction error
per point is less than 0.0007, which means that the signal is
completely reconstructed successfully. Show in Figure 2 is
the relationship between the magnitude of the M values of
the eight disturbance signals and the reconstructed power.

It can be found from Figure. 2 that when the disturbance
type is a single sag and other disturbances, the signal of

FIGURE 1. (a) Sag compression reconstruction. (b) IDCT sparse
representation. (c) compression reconstruction error.

FIGURE 2. Eight kinds of disturbance recombination power and M value
relationship.

M = 170 can be completely reconstructed successfully.
When the disturbance is transient oscillation and compound
disturbance, M = 200 cannot guarantee 100% reconstruction
success. In order to comprehensively consider the power
quality disturbance type, the reconstruction can be success-
fully performed, and the composite disturbance and transient
oscillation disturbance are further analyzed.

Further analysis shows that when the reconstruction error
of each point is 0.0007, the composite perturbation can be
completely reconstructed successfully when M = 250, while
the transient oscillation perturbation recombination power is
still zero. In order to ensure that the M value is in a small
range, the reconstruction error of the transient oscillation
at each point is 0.002, which is the signal reconstruction
success. The reconstruction result is shown in Figure 3. I As
described by Figure 3, when the M value is 290, the transient
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FIGURE 3. Three kinds of disturbance recombination power and M value
relationship.

oscillation signal can achieve complete reconstruction suc-
cess. Analysis of PQD found that the characteristics of power
quality disturbances are complex, even if the same type of
interference is very different. Therefore, the M value needs
to reserve a certain margin to ensure that the signal can be
completely reconstructed successfully. In this paper, using
M = 300 as the dimension of the compressed data ensures
that the reconstruction error is as small as possible, within the
thousandth. The compression ratio is 1:4, and the dimension
of the collected data is reduced by 4 times.

For the same signal, we collect less data. When delivering
the same information, we pass less data than the existing
sampling method, and the data transfer rate will be better than
the existing method.

III. CONVOLUTIONAL NEURAL NETWORK
In this section, we introduce the basic structure of a convolu-
tional neural network.

A. TRADITIONAL CONVOLUTIONAL NEURAL NETWORK
FRAMEWORK
At the heart of CNN is the convolutional layer, which contains
many different convolution kernels to extract various features.
At the same time, the convolution layer combined with the
collection layer can reduce the number of parameters and
speed up the calculation. The feature quantities extracted
by the last convolution kernel are passed to the fully con-
nected layer to combine the previously extracted features
to achieve the final prediction. In this way, we can obtain
implicit information about the data to achieve faster, more
stable predictions.

The structure of the traditional convolutional neural net-
work is shown in Figure 4. It consists of a convolutional layer,
a pooled layer, a fully connected layer and a Softmax layer,
each of which has different functions.

B. CONVOLUTION OPERATION
Convolutional layer [19]: The convolutional layer convolves
the input local area with the convolution kernel and then

FIGURE 4. Traditional deep learning frame composition.

generates an output feature through the activation unit.
Because of the same kernel extraction feature, it has the
property of weight sharing. The calculation process is as
shown in equation (8):

yl(i,j) = k li ∗ x
l
(
xj
)
=

w−1∑
j′=0

k
l
(
j
′
)

i x
l
(
j+j
′
)

(8)

where k
l
(
j
′
)

i represents the j’ weight of the I convolution
kernel of layer 1, x l

(
xj
)
denotes the local area of convolution

of j in layer 1, and ω is the width of the convolution kernel.

C. POOLING OPERATION
Pooling layer [19]: A pooling layer usually added after the
convolution layer, is mainly used for down sampling. The
pooling layer is used to scale and map data after the con-
volution layer feature extraction, to reduce the dimension of
the data and extract important information. It can reduce the
impact of data fluctuations. The common collection layer
is the largest pool layer, and the function is as shown in
equation (9):

Pl(i,t) = max
(j−1)W+1≤t

{
al(i,t)

}
(9)

where al(i,t) represents the activation function value of the
t-neuron in one layer and Pl(i,t) represents the width of the
merged region.

D. ACTIVATION FUNCTION
Two types of activation functions [20] are used in this work:
(1) Rectifying linear activation units (Relu) and (2) soft-
max. Rectified linear activation unit: After each convolutional
layer, an activation function is employed. The activation
function is an operation that maps the output to a set of
inputs. The Relu function has attributes that add non-linearity
and sparsity to the network structure. Therefore, it provides
robustness for small changes such as noise in the input. Its
expression is as shown in Equation (10).

f (x) =

{
x if x > 0
0.01x others

(10)
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FIGURE 5. Comparison of this method with the framework of traditional methods.

Softmax: This function calculates the probability distri-
bution of k output classes. Therefore, the Softmax func-
tion is used to predict the category to which the input
PQD belongs.

pj =
exj∑k
1 e

xk
for j = 1, · · · k (11)

where x is the net input. The output value of p is between
0 and 1, and the sum is equal to 1.

E. FULLY CONNECTED LAYER
Fully connected layer (FC) [20]: Each node of the fully
connected layer is connected to all nodes of the upper layer
to integrate the features extracted from the front. Due to its
fully connected nature, the parameters of the fully connected
layer are also the most. The l-th dense layer has its learnable
parameters D. The output value can be expressed as shown in
Equation (12).

X lo = f
(
X l−1i × Dlio + B

l
)

(12)

IV. INTELLIGENT IDENTIFICATION METHOD FOR PQD
A. PQD RECOGNITION FEAMEWORK BASED ON CS AND
DCNN
As shown in Figure 5, this paper introduces a recognition
framework for power quality disturbance based on CS and
Deep convolutional neural network (DCNN). Compared with
the existing methods, the application of this method has the
following advantages:

(1) Compressed sensing data: Using compressed sensing
technology to collect power quality disturbance data, it can
reduce the amount of data collected and reduce storage mem-
ory and transmission energy consumption.

(2) Automatic feature extraction [21]–[23]: The biggest
feature of deep learning is the function of automatically

extracting features, which can automatically find, combine
and extract features from data for classification of power
quality disturbances. Overcoming the traditional signal anal-
ysis and feature extraction process, and reducing the process
of feature selection.

(3) A closed-loop feedback [19]: During the supervi-
sory training process, the weight of each layer is automat-
ically updated by feedback on classification performance.
This is a fully closed loop feedback without any manual
operation.

B. DEEP LEARNING ALGORITHM
In order to directly classify the compressed data with
power quality disturbance, a deep learning network struc-
ture is designed according to the characteristics of the com-
pressed data. The designed network structure is illustrated
in Figure. 6.

Because PQD is a one-dimensional signal, the original
two-dimensional convolution operation is no longer used,
and one-dimensional convolution is more suitable for PQD
classification, which can extract power quality data features
more accurately.

1-D Convolutional (conv) Layer [24]: The convolu-
tional layer is a key step in the extraction of deep learn-
ing self-learning features. The important features in the
power quality disturbance compression data can be extracted
through the convolutional layer. The number of filters in the
first layer is Fl, and Xi is the input 1-D matrix (n × 1).
The filter kernel is denoted as K (k × 1). The convolutional
layer output of the Fl filter can be expressed as shown in
Equation (13):

X lo,fl = f

(∑
i∈m

XL−1I × K l
io,fl + B

L

)
(13)
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FIGURE 6. Proposed 1D-DCNN structure.

wherem = nk+1 and f (x) are activation functions. It imple-
ments the activation of neurons from input to output.

Power quality compression data acquisition and transmis-
sion process will produce noise interference. In order to
suppress the influence of noise interference on classification
accuracy, the network first layer adopts wide kernel design,
and the convolution kernel is 64*1 to filter out noise. Because
the wide kernel does not extract local features, the convolu-
tion in subsequent networks uses a 3*1 kernel design.

Since the acquisition of the existing power quality distur-
bance is completed in several cycles, the time is within 0.2 s,
and the data dimension collected is small, so the level of
the network structure cannot be too deep, and the network
designed in the text is a 3-layer convolution layer, full connec-
tion layer and softmax layer. The shallow network structure is
simpler, and its model is smaller and the parameter quantity
is lesser. Therefore, the training and classification speed is
fast, and the performance requirements of the device are
low.

C. EASY TO IMPLEMENT TECHNIQUES FOE WEB
TRAINING APPLICATIONS
Using deep learning classification training, a small trick can
be applied to improve the performance of the network and
prevent over-fitting of the network.

Batch normalization [19]: The processing not only
improves the training speed, but also prevents over-fitting
of the network. The BN layer is typically added after the
convolutional layer or fully connected layer and before the
activation unit. The conversion of the BN layer is described

as shown in Equation (14-15):

∧
y
l(i,j)
=

yl(i,j) − µ℘√(
σ 2
℘ + ε

) (14)

zl(i,j) = ϒ l(i) ∧y l (i, j)+ β l(i) (15)

where zl(i,j) is the output of a neuron response, µ℘ =
E
[
yl(i,j)

]
σ 2
℘ = Var

[
yl(i,j)

]
, ∈ is a small constant that

increases the numerical stability, γ l(i) and β l(i) are the ratios
and shifting parameters to be learned.
Advanced optimizer [20]: During training, the weight of

each layer is updated by a function called ‘‘optimizer’’, such
as stochastic gradient descent (SGD), Adam and AdaGrad.
The different optimizer models require different optimizers.
Determine the optimizer used by the network by analyzing
the impact of different optimizers on the network.
Small and small batch training: Since the characteristics

of PQD are complex, even the same type of interference is
very different, and the network to be trained has good gen-
eralization performance. It was found that in practice, when
an approximation of the gradient is calculated using a smaller
batch and then the parameters are updated, the generalization
ability of the model is better.

V. SIMULATION ANALYSIS
A. PQD DATA PREPARATION AND NETWORK
PARAMETERS
In order to obtain compressed data, the parametric equations
of fifteen PQD signals including pure sine waves have been
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TABLE 1. Mathematical models of power quality disturbances.

used to evaluate the classification performance of the pro-
posed algorithm. PQD consists of 10 single types, namely
pure sine wave, sag, swell, interrupt, harmonics, pulse tran-
sients, Oscillatory transient, flicker, notches and spikes. Five
different types of PQD include harmonic and sag, harmonic
and swell, harmonic with interruption, sag with flicker and
swell with flicker. The parameter changes conform to the
parameter equation of the IEEE-1159 standard [25]. The per-
turbation data is then converted to a sparse signal according to
a compressed sampling process, with sparse signals as sparse
data. Generate 180000 sets of data for training the network.

All the data is generated according to Table 1, and the
original data is compressed and converted into the data

TABLE 2. Datasets used in the paper.

required for verification. The noise situation of the data and
the required data samples are provided in Table 2.

The data set uses compressed data. For more intuitive rep-
resentation of the data, two kinds of disturbance compression
data are given, as shown in Figure. 7.
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FIGURE 7. (a) Sag. (b) Sag compressed data. (c) Interruption.
(d) Interruption compressed data.

It can be seen from Figure. 7 that the waveform of the
compressed data has a large gap, and it can be seen from
the amplitude that the sag signal is higher than the interrupt
signal.

The network is trained according to the collected com-
pressed sampling data. The trained network structure is
shown in Table 3. The network parameters of each layer and
the convolution kernel used are clearly stated.

B. SIMULATION DATA FOR RESULT VERIFICATION
Train and classify the network by using the data in
Section 4.1. The performance of the 1D-DCNN is assessed
by log loss and classification accuracy in the training set and
test set. We further analyze the performance of the proposed
method. In Figure 8, the loss and performance curves dur-
ing model training are shown. The pink and black descent
curves correspond to the loss function values of the training
and validation sets during training. We further analyze the
performance of the proposed method.

The model was trained through 30 iterations. It can be seen
from Figure. 8 that the test accuracy and the training accuracy

TABLE 3. Deep learning network structure design.

FIGURE 8. Classification results and loss.

FIGURE 9. The effect of different learning rates on classification results.

are almost equal after the 25th iteration, and the highest
classification accuracy is 99.5% or more. Moreover, the loss
is less than 0.02. Figure 8 demonstrated that the network
model has good performance and there is no over-fitting
phenomenon.

In order to get a good performance network, we need to
determine the impact of the learning rate on the network.
A variety of learning rates were set up and verified by clas-
sification results. It was found that the model training with
the learning rate of 0.0001 and 0.00001 had the best training
effect, though the training of the model was slow. When
the learning rate was 0.001, the comprehensive performance
of the training was better. Considering the efficiency and
classification accuracy of the instrument, this paper uses a
learning rate of 0.001. The simulation verification process is
shown in Figure 9.

In Figure 10, the convergence of three different optimiz-
ers is illustrated based on the verification losses over the
same period. AdaGrad converges quickly, but it quickly stops
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FIGURE 10. The effect of different optimizers on classification effect.

improving because of the rapid decline in learning rates. The
effect of SGD is also poor. Adam and AdaGrad seem to
behave almost the same, but here we choose Adam, whose
stable behavior is independent of its parameters.

C. COMPARISON OF CS + DCNN WITH EXISTING
METHODS
Although the algorithm in this paper takes a relatively long
time in training, it has a very high speed in classification
prediction. In order to verify the effectiveness of the proposed
algorithm, we also verify the advantages of the proposed
algorithm compared to the traditional method, and com-
pare the gaps of the three algorithms in training time. The
existing algorithms used in this paper are extreme learning
machines (ELM) and hierarchical extreme learning machines
(H-ELM). Since the traditional algorithm has feature extrac-
tion and feature selection process, this paper only compares
the performance of the classifier. The classification time of
the traditional algorithm does not calculate the feature extrac-
tion and selection process. Table 2 shows a comparison of the
existing methods and the method classification time in the
text.

The PNN, ELM and H-ELM in the table are extracted
by EWT feature extraction method, and the extracted fea-
ture data is referenced [4]. Moreover, the calculated time
is the classification time of 4500 data sets. As is shown
in Table 4 the classification time of CS-DCNN is obviously
faster than that of the high-performance classifier of the
extreme learning machine, and the classification of the com-
pressed data is directly used, and the feature selection process
is also reduced. Therefore, in terms of classification speed,
the method in this paper is far superior to the traditional
classification method.

Compressed sensing technology for data collection is faster
than traditional acquisition methods. The classification effi-
ciency of the classifier is verified in the paper, and the classi-
fication speed is faster than the traditional machine learning
algorithm. The method in this paper is aimed at directly
classification of the collected raw data, and does not require
pre-processing. Therefore, online processing is theoretically
feasible.

In order to verify the classification accuracy of the pro-
posedmethod and the comparison with several existing meth-
ods, the same data set is classified and verified.

TABLE 4. Algorithm running time comparison.

TABLE 5. Comparison of classification accuracy of six methods.

Table 5 is a comparative analysis of CS-DCNN and exist-
ing algorithms. The comparison between the two is used to
verify the feasibility of the proposed algorithm. Compared
with the existing perturbation classificationmethod, the accu-
racy of disturbance recognition is significantly improved.
The classification results clearly showed that our method has
almost 100% classification accuracy, and the signal-to-noise
ratio has little effect on the classification performance. The
20dB SNR data also has high classification performance,
which is more suitable for practical use. The power quality
disturbance is categorized. Synchronously, it also verified
the role of the first-layer network wide kernel convolution
mentioned in the paper, and its anti-noise performance is
good.

D. MEASURED DATA VERIFICATION AND DATA
ENHANCEMENT OPERATIONS
In order to further verify the feasibility of the proposed
method in the actual signal, in this part, a set of actual
signals is used to test the analysis of the measured signals
by the CS and DCNN classifiers. The data set is provided
by the IEEE PES database [26], [27] for PQD classification.
The data set has been tested for power quality classification
in reference [28] to meet the needs of the experiment. The
sampling rate of the supplied signal is 256 points per cycle.
Each signal has a length of 1536. The measured data is
compressed and reconstructed, and the reconstructed result
is shown in Figure 9. As demonstrated by figure 11, the com-
pressed reconstructed signal can fully represent the origi-
nal waveform features, and the original waveform and the
reconstructed signal have certain errors, but do not affect the
analysis of the power quality disturbance.

Disturbance in the power system is unbalanced. For exam-
ple, the sag disturbance type accounts for more than 80%
of all disturbance types, and the data is unbalanced. Some
disturbance signals are flicker disturbances, and the amount
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FIGURE 11. (a) Sag compression reconstruction. (b) IDCT sparse
representation. (c) compression reconstruction error.

FIGURE 12. Power quality measured signal data enhancement operation.

of disturbance data is small. Directly using data for training
will result in weak generalization ability and large classifica-
tion errors. The amount of data in the power system is large,
but the labeling of the data requires a lot of manpower and
material resources. The training of deep learning networks
requires a large amount of data, and the existing data volume
is not enough to train a better network. In order to solve these
two problems in the measured data, this paper proposes a data
enhancement method for preprocessing data. In computer
vision, data enhancement is commonly used to increase the
number of training samples to enhance the generalization per-
formance of the classifier. In this paper, for the data imbalance
problem, the data enhancement method is adopted, the data
volume is equalized, and the data enhancement operation
is performed on the interference such as flicker with small
data volume. The data enhancement operation mainly adopts

random cropping, moderately increases random noise, inverts
signals, etc., and performs random extraction and verification
on all operation signals to ensure that the data after data
enhancement belongs to interference type data. The data
enhancement operation is shown in Figure 12.

The average accuracy of the measured data is 91%, which
is much lower than the simulation result. The main reason
is that the data set used has less data. If the data is over-
enhanced, over-fitting will occur. Therefore, even with data
enhancement operations, it is not enough to train a well-
performing network. Themeasured data is more complicated,
the same type of disturbance ismore different, and the amount
of data is smaller, therefore, it is difficult to train a network
with better generalization performance. Although the classi-
fication result is poor, it is also within the allowable range of
power quality disturbance recognition. Recognition accuracy
is 1.5% higher than reference 28.

VI. CONCLUSION
Aclassificationmodel based on compressed sensing and deep
convolutional neural networks is proposed for complex power
quality disturbance identification.

1) Analyze the single disturbance and compound distur-
bance of power quality, determine the acquisition method
suitable for power quality disturbance signal, reduce the
amount of data collected and improve the transmission effi-
ciency in data acquisition.

2) Using the deep learning algorithm to directly classify the
compressed data, the proposed end-to-end intelligent algo-
rithm is suitable for compressing data, which can solve the
compression error and eliminate the influence of high noise.

3) Simulation and measured data verify the feasibility,
classification accuracy and robustness of the compression and
deep learning classification power quality disturbances. The
algorithm performs well in noisy environments and works
directly on the original noise signal without any prior restora-
tion methods.

Of course, there are still many shortcomings in the algo-
rithm. In the case of compressed sampling, when the signal
disturbance is more complicated, the recovery and recon-
struction errors of some signals are larger, and further
research on the compression acquisition device is needed.
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