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ABSTRACT The ubiquity of smartphones and their rich set of on-board sensors has created many exciting
new opportunities, where smartphones are used as powerful computing platforms to sense and analyze
pervasive data. One important application of mobile sensing is activity recognition based on smartphone
inertial sensors, which is a fundamental building block for a variety of scenarios, such as indoor pedestrian
tracking, mobile health care, and smart cities. Although many approaches have been proposed to address
the human activity recognition problem, several challenges are still present: 1) people’s motion modes are
very different for different individuals; 2) there is only a very limited amount of training data; 3) human
activities can be arbitrary and complex, thus handcrafted feature engineering often fails to work; and
4) the recognition accuracy tends to be limited due to confusing activities. To tackle those challenges, in this
paper, we propose a human activity recognition framework based on convolutional neural networks (CNNs)
with two convolutional layers using the smartphone-based accelerometer, gyroscope, and magnetometer.
To solve the confusion between highly similar activities like going upstairs and walking, this paper presents
a novel ensemble model of CNN to further improve the identification accuracy. The extensive experiments
have been conducted using 235 977 sensory samples from a total of 100 subjects. The results have shown
that the classification accuracy of the proposed model can be up to 96.11%, which proves the effectiveness

of the proposed model.

INDEX TERMS Convolutional neural network, human activity recognition, sensor data, smartphone.

I. INTRODUCTION

Human activity recognition (HAR) aiming to identify the
actions carried out by a person given a set of observations
of subject, has attracted much attention from both academia
and industry with widely application requirements appearing
in the indoor pedestrian tracking [1], [2], healthcare [3], and
smart cities [4]. Currently, HAR methods can be mainly sum-
marized as two categories: vision-based and sensor-based.
Vision-based mainly relies on various high-frame-rate video
devices [5], [6]. External factors such as lighting condi-
tion, clothing color, and image background have a great
impact on recognition accuracy. The sensor-based approach,
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by contrast, is more robust in complex environments, which
makes the system convenient and portable. Also, it can iden-
tify confusing human activities with the mathematical model
by directly measuring the motion from human activities with-
out infringement of personal privacy [7].

With the advent of miniaturized sensors and powerful
computing resources in smartphones, the concept of efficient
and ubiquitous HAR on smartphones is ready to fulfill soon.
Among recent studies focusing on smartphone-based HAR,
most researchers chose waist as the position to carry smart-
phones [8], [9]. However, the requirement for rigid attach-
ment and specified placement is incompatible with the way
in which people use mobile devices. For example, over a
period of a few minutes, a smartphone could be carried in
the backpack and then shifted to a pocket, before being taken
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out and being used to send a text message [10]. This may be
one of the main reasons why it is so hard to conduct HAR
using smartphone sensors.

Existing studies of sensor-based activity recognition often
rely on supervised machine learning approaches such as
Hidden Markov Model (HMM) [11], K-Nearest-Neighbors
(KNN) [12], eXtreme Gradient Boosting (XGBoost) [13],
Random Forest (RF) [14] and Support Vector Machine
(SVM) [15], [16] using motion data collected from various
types and quantities of motion sensors placed in different
parts of body. However, these approaches are limited to three
aspects: Firstly, due to the diversity and complexity of human
activities, handcrafted feature extraction requires experience
and expertise of the field. For the same reason, some extracted
features show excellent performance in recognizing some
activities, but rather bad at others [17]. Secondly, even for
the same activity, the waveforms of motion sensors are quite
different in different smartphone placements. This makes it
difficult to recognize various different activities with high
precision. Thirdly, because of the differences in behavioral
habits, gender, and age, the movement patterns of different
people vary greatly, which enhances the difficulty of dividing
the boundaries of different activities. The recognition accu-
racy tends to be limited due to confusing activities which
generate similar motion signals.

Recent years have witnessed fast development and unparal-
leled performance in many areas (i.e. image recognition [18],
natural language processing [19]) of deep learning. There is
a growing trend of discovering meaningful representations
of raw data by Convolutional Neural Network (CNN). It has
shown great performance in different domains for avoiding
handcrafted features. Therefore, we present the ensemble
framework based on CNN to recognize human activities.
Without tiring data preprocessing and feature extraction and
selection, we put raw data that is partitioned by the sliding
window into our network. By fully mining the information
carried by the signal, it can achieve more accurate recogni-
tion on the combination of arbitrary activities and devices
placement.

This paper presents a framework and performance anal-
ysis of smartphone-sensor based HAR. Sensor data from
accelerometer, gyroscope and magnetometer were collected
when participants performed some typical and daily human
activities: going upstairs, going downstairs, running, walking,
standing, bicycling and swinging. We then used the ensemble
of CNN to recognize human activities, especially those easily
confused. The experiments have demonstrated the improve-
ment on recognition accuracy with the approach proposed in
this paper. In summary, the key contributions of this paper are:

« A novel approach based on the ensemble of CNN has

been proposed to solve the confusion between highly
similar activities such as going upstairs and walking,
which outperforms the single CNN model and achieves
96.11% accuracy.

« Based on the collected data, we compare our model

with the commonly used classifiers. The fact proves that
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FIGURE 1. The human activity recognition system models.

the approach proposed in this paper outperforms other
existing models in feasibility and efficiency.

o A huge amount of motion data including 235 977 data
samples from various types of motion sensors and sports
scenes with different participants and postures are col-
lected to validate the effectiveness of the proposed
method.

The remainder of this paper is organized as follows:
Section II introduces the background and related works.
Section III provides details of the data acquisition and pre-
processing procedure. Section IV describes the CNN-based
framework of the ensemble model and some traditional clas-
sification algorithms. Section V presents our experimental
results and improvements. Section VI concludes the paper
and discusses ideas about future work.

Il. BACKGROUND AND RELATED WORKS

HAR can be seen as a classification problem to discover
human physical activity patterns by analyzing motion data.
The input data is the motion signals collected from smart-
phone’s motion sensors and the output is the activity class
label. Fig. 1 shows two typical activity recognition models,
both traditional methods and deep learning model.

A. TRADITIONAL METHODS FOR HAR

The most generally used traditional algorithms are KNN,
HMM, SVM, RF, XGBoost, etc. These algorithms take three
steps including raw data preprocessing, feature extraction
and feature selection before recognition. In most related
works [20], filtering techniques, like mean filter, low-pass
filter, Gaussian filter and Kalman filter, are used to mitigate
the effect of noise in obtained data. This is due to the fact
that raw sensor data are always noise-corrupted, which makes
it hard to measure and reflect the true motion change of
smartphones accurately. After preprocessing the raw data,
traditional methods extract a large amount of features and
select some principal features [21] representing the essen-
tial difference between different activities. Features extracted
from the time domain, frequency domain, wavelet energy
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and interquartile range are extensively used. PCA or LDA
is widely implemented to select the dominating features.
In addition, normalization of the feature vector can control
the number of features within a certain range.

Many HAR researches [22], [23] place sensors in vari-
ous parts of body ignoring the practicability of the solution.
Smartphones which has become daily supplies for most peo-
ple have drawn researchers for their plenty of computing
power and multiple sensors. Lee and Cho [24] utilized the
tri-axial accelerometer from a handheld smartphone to iden-
tify five activities with hierarchical hidden Markov models.
Motion data from four participants were collected. The result
showed difficulty in distinguishing upstairs and downstairs
movements. Kwapisz et al. [25] collected the acceleration
data of 29 users from smartphones placed in the subjects’
front trousers pocket. They extracted six features and built up
to four classifiers to achieve an accuracy of over 90% for most
activities. Sun et al. [26] proposed an activity recognition
approach using an accelerometer to recognize seven physi-
cal activities based on six pocket positions. They extracted
features from the collected data of seven subjects, including
time domain and frequency domain features. With the prior
knowledge of known pocket position, the overall F-score can
reach 94.8% of the trained SVM classifier.

B. DEEP LEARNING FOR HAR

The works described above heavily rely on heuristic hand-
crafted feature extraction, which is usually limited by empir-
ical knowledge of the researchers. Furthermore, approaches
using handcrafted features make it very difficult to compare
between different algorithms due to different experimental
grounds and encounter difficulty in discriminating very simi-
lar activities. As a result of those limitations, the performance
of traditional pattern recognition algorithms is very restricted
in terms of classification accuracy and model generalization.
Different from traditional methods, deep learning can greatly
relieve the effort on designing features and easily learns more
meaningful high-level features by training the end-to-end
neural network. Therefore, we reckon that deep learning has
the capacity to do HAR which has been widely proved in the
existing work [27]-[31].

CNN, a deep learning method, has established itself as a
powerful technique because representations learned by CNN's
can efficiently capture local dependency and scale invariance
of a signal. The authors in [29] built an end-to-end CNN
model to predict three arm movements performed in the
daily activity. Motion data was collected from four different
subjects using a wrist-worn tri-axial accelerometer sensor.
The results achieved an average recognition rate up to 99.8%.
Ming Et al. [30] proposed an approach based on CNN to rec-
ognize activities in various application domains. A modified
weight sharing technique, called partial weight sharing, was
proposed and applied to acceleration signals to achieve fur-
ther improvements. The experimental results on three public
datasets: Skoda, Opportunity, Actitracker, indicated that their
novel CNN-based approach can achieve higher accuracy than
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existing state-of-the-art methods. Chen and Xue [31]
collected acceleration data from eight typical activities
of 100 subjects to achieve better performance (an accuracy
of 93.8%) than SVM and Deep Belief Network (DBN).

In this paper, we propose a novel ensemble model based on
CNN which effectively solves the confusion of highly similar
activities such as going upstairs and walking. To evaluate
the performance of the ensemble model, extensive compar-
ative experiments are conducted using traditional methods
including XGBoost and RF. The experiment results show
our approach outperforms traditional methods and achieved
higher accuracy up to 96.11%.

IIl. DATA ACQUISITION AND PREPROCESSING

Generally speaking, for a multi-class classification problem,
a large amount of training data are required especially with
the presence of a high dimension of the feature vector. In addi-
tion, rich features from a large amount of training data can
effectively prevent overfitting and make the model robust.
The data of this paper come from various sports scenes with
different participants and device placements. The data were
collected in a way to ensure the data amount of each activity is
nearly the same. In this section, we will describe considerable
details regarding data collection and preprocessing.

A. DATA COLLECTION

Many open source databases focusing on sensor-based
activity recognition mainly provide a single accelerometer
data collected from the smartphone in participants’ trouser
pocket or on the waist at a low sampling rate. To make
things worse, these data have poor quantity and unbalanced
distribution in various activities, which makes it difficult to
construct a highly accurate classification model. To improve
this situation, it is more than necessary to have a large number
of participants contributing to the activity data set.

The experiment data of this paper are collected from
accelerometer, gyroscope and magnetometer in ordinary
smartphones at a sampling rate of 50Hz. A group of 100 par-
ticipants ageing from 12 to 51 years was invited to finish
the whole experiment. Each participant was asked to com-
plete seven human activities including Going Upstairs (GU),
Going Downstairs (GD), Standing (SD), Running (RU),
Walking (WK), Bicycling (BY) and Swinging (SW) (the
smartphone is possibly periodically shaken or tapped while
not moving), as shown in Fig 2. SW is implemented to detect
true pace accurately while disregarding motion signals such
as shaking or tapping which could be mistaken for walking.
We selected these activities because they are performed regu-
larly by many people in their daily routines. This study takes
into account four smartphones placement settings:

o Texting: The smartphone is held in front of the user
while the carrier is performing a certain everyday
activity;

« Handheld: The smartphone is held in a swinging hand
while the carrier is performing a certain everyday
activity;

VOLUME 7, 2019
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Going upstairs Going downstairs Standing Running Walking Bicycling Swinging
FIGURE 2. Typical daily human activities.
TABLE 1. Motion sensor features representation.
Attribute Description Feature Identifier
Mean Mean of sample(ay, ay, @z, gz, Gy, 9=, Ma, My, M, |a|, |g], [m]) 1~2
Std Standard deviation of sample(a,, ay, a=, gz, Gy, gz, Mz, My, M2, |al, |g], m]) 13~24
Max The maximal value of sample (az, ay, @z, gz, Gy, 9z, Ma, My, M2, |al, |g|, |m|) 25~36
Min The minimal value of sample (a., ay, a=, gz, Gy, gz, Mz, My, M2, |al, |g], |m]) 37~48
Max—Min The difference between the maximal value and minimal value of sample 49~60
Median The median value of sample (a, ay, @z, gz, Gy, Gz, Ma, My, M2, |al, |g], |m]) 61~72
RMS Root mean square of sample (a., ay, Gz, gz, Gys Gz, May My, M2, |al, |g], |m]) 73~84
TQ tri-quartileof sample (az, ay, az, gz, gy, 9z, Ma, My, M2, |al, |g|, |m|) 85~96
IQR Interquartile range of sample (az, ay, @z, g, Gy, 9z> Ma, My, M, |al, |g|, |m|) 97~108
Corr Correlation of (az, ay), (az,az), (ay, az), (gz, 9y): (Gzs 92)s (9y» 92), (M my), (Mg, M), (My, M) 109~117
FFT First 15¢ ~ 55" amplitude of FFT of sample (a,, ay, az, gz, 9y, 9z, M, My, M, |al, g/, |m|) 118~178
o Trouser Pocket: The smartphone is put in a trouser TABLE 2. Class distribution of data.
pocket(front) while the carrier is performing a certain _ __
Activity Distribution

everyday activity;

o Backpack: The smartphone is put in a backpack
while the carrier is performing a certain everyday
activity.

In our experiments, the sensor data of each participant
was collected three times for each activity and smartphone
placement setting within the duration of one minute. For
going upstairs and downstairs, a 6-floor building with stairs
was used. Bicycling dataset only contains two smartphone
placements including backpack or trouser pocket. The swing-
ing dataset is collected while the smartphone is handheld.
As a result, the size of these activities is smaller than other
five activities. Table 2 describes the detailed class distribution
of the experiment data.

B. DATA PREPROCESSING

1) DATA PREPROCESSING OF TRADITIONAL CLASSIFIER
Based on the collected data, we compare the performance
of some traditional methods with the proposed model in this
paper. For each sample data, time domain features including
mean, variance, root mean square, the maximum and mini-
mum values of the axis, range, interquartile distance, correla-
tion coefficients and frequency domain feature of amplitude
of FFT are extracted to form a 178-dimensional feature vector
as shown in Table 1.
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Going Upstairs (GU) | 41371 (17.53%)
Going Downstairs (GD) | 38497 (16.31%)

Standing (SD) 39467 (16.73%)
Running (RU) 438699 (18.59%)
Walking (WK) 43660 (18.50%)
Bicycling (BY) 20337 (8.62%)
Swinging (SW) 8778 (3.72%)

2) DATA PREPROCESSING OF DEEP CLASSIFIER

In the end-to-end deep architecture proposed in this paper,
there is no need to perform additional processing on the
data and the raw signal is directly used. To meet the format
requirement of the proposed CNN model, a sliding window
segmentation approach with fixed step size of fifty seconds is
applied to each sensor data. In our work, the raw sensor data
stream is cropped into the same size with an overlap of 25%.
Every sample is a matrix with the size of 200 (data of four
seconds) x 3 (three motion sensors) x 3 (X, Y, and Z axis data).
After simple processing, we have 235 977 labeled samples.

IV. SYSTEM MODEL

In this section, we firstly introduce our ensemble model based
on CNN. Fig. 3 shows a structure of CNN. Then, we give
some traditional classifiers a brief illustration.
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FIGURE 3. Structure of CNN-based human activity recognition model. The numbers of the first and second convolution kernels are 64 and 32 respectively.

Pooling layer

Convolutional layer

Input layer

FIGURE 4. Key part of CNN.

A. DEEP ARCHITECTURE

The proposed CNN-based model has five kinds of layers:
1) an input layer, as described in Section III; 2) convolutional
layers extract features from input data; 3) max-pooling layers
reduce the size of extracted features and enhance the robust-
ness of some detected features; 4) fully connected layers
integrate all features extracted; 5) an output layer of the
softmax function represents a categorical distribution over
seven different activities.

1) CONVOLUTIONAL LAYER

CNN is different from other neural networks in terms of
sparse connectivity between units of adjacent layers and
parameter sharing in the same layer. For example, in Fig. 4,
the units in the middle layer are only connected to a local
subset of units in the input layer. CNN uses local filters
in input space for feature extraction, which perform inner
product operation of local filters and use the output result as
the value of the corresponding dimension of the convolutional
output matrix.

Suppose we have a N-units layer as the input followed by
convolutional layer. If we use an m-size filter, the output will
be (N —m+1) units. The detailed calculation of convolutional
layer [ is as follows:

X = fE Wil 4 by, (1)

where x / is the output of jth feature map on the itk unit of the
convolutional layer /. w’ is the convolutional kernel matrix
and b; is the bias of convolutional feature maps. Weights
are convoluted with previous layer output feature map before
summed with the bias. Then the nonlinear mapping is per-
formed through the activation function f. Our model uses the
reluctant function relu(-). Take Fig. 4 as an example, the first

hidden unit of the first local filter is:
)cll’1 = relu(wlx1 + wé 31 + w%xgl + by) 2)
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FIGURE 5. The ensemble of CNN for human activity recognition.

2) MAX-POOLING LAYER

This research uses max-pooling strategy to address the activ-
ity recognition problem. Once features have been detected in
the convolutional layer, max-pooling layers, without breaking
the internal relationship of data, reduce the size of extracted
features and make some features more robust. The activation
function in the max-pooling layer in CNN is given by:

Lj
X" = maxj;_ (x; ), 3)

where xf “ represents a local output after the pooling process,
and r is the size of pooling kernel.

In the max-poling layer, features extracted in the convo-
lutional layer are split into several partitions. The maximum
values are given as the output of each partition. The input data
size of the first max-pooling layer is (200, 3, 64), and the
output data size is (100, 3, 64). After the last max-pooling,
the data size obtained is (50, 3, 32), indicating that both the
data dimension and network parameters have been greatly
reduced.

B. ENSEMBLE MODEL

In this section we propose a novel framework based on the
ensemble of CNN to tackle the confusion in human activity
recognition, which greatly improves the robustness of existed
models. In our training procedure, there are two CNN models
called seven-class network (CNN-7) and two-class network
(CNN-2). In our test procedure, two CNN models perform
weighted voting to recognize human activities. It shows that
the ensemble learning approach is fairly efficient to distin-
guish the confusion between certain highly similar and thus
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confusing activities like going upstairs and walking. The
detailed process is described in Algorithm 1 below.

Algorithm 1 The Framework of Ensemble of CNN

Input:
Testing data:X ,Ai LixSamp le

Output:
Human activity (GU, GD, RU, WK, SD, BY or SW)
1: for i to MaxSample do
2:  CNN-7 network gives the predicted activity
3:  if activity is GU or WK then
4:
5

Normalize the probability of GU and WK P! Pl
The CNN-2 network gives another prediction

PP
1 1 u — Pvlv
6: Defm.e.wellghts.a = prp B = PLAPT
if activity is GU then

P,=BxP.+(1—p)xP?
P,=BxPL+(1-pB)xP

9: else
10: P,=ax P+ —a)xP?
Py=axPl +(1—a)x P}
11: end if
12: return The predicted activity from max(P,,, P,,)
13:  else
14: return The predicted activity from CNN-7
15 endif
16: end for

In our ensemble learning framework, CNN-7 is used to
identify seven activities and CNN-2 is designed to distinguish
two confusing human activities which generate highly similar
signal patterns: going upstairs and walking. If the output
of CNN-7 is neither going upstairs nor walking, this output
would serve as the final decision. But if the output of CNN-7
is going upstairs or walking, we will combine the prediction
of CNN-2 to improve the recognition accuracy of these two
confusing activities.

C. TRADITIONAL CLASSIFICATION ALGORITHM

1) XGBOOST

XGBoost [32] is one of the boosting algorithms, which can
promote weak learners to evolve into strong learners. It adds
a regularization term to the loss function to control the
complexity of the tree compared to the traditional model.
XGBoost that comprises multiple classifications and regres-
sion trees selects the best classification point according to
certain strategies. Disposing the sparse data and adding par-
allel processing as an optimization method makes XGBoost
efficient and robust.

2) RANDOM FOREST

Random Forest [33] adopts the idea of the ensemble learning
and integrates decisions from multiple trees. Running effi-
ciency on large databases and ability to handle thousands
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RF 89.97%

XGBoost 91.36%

CNN-7 95.06%
Ensemble 96.11%
75.00% 80.00% 85.00% 90.00% 95.00% 100.00%
F-score

FIGURE 6. Classification results on various classifiers.

of input variables without variable deletion are the two prin-
cipal superiority of random forest, compared with other tra-
ditional methods. A random forest consisting of N decision
trees will produce N classification results for an input sam-
ple, because each of the N decision trees in the random
forest is a separate classifier. Using the simple Bagging
idea, random forest specifies the category with the most
votes from all the classification voting results as the final
output.

V. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we will evaluate the recognition performance
of the proposed method through extensive real-world exper-
iments. We first introduce the allocation of training and
test dataset before we compare and analyze the recognition
accuracy of different classifiers. The impacts of smartphone
placements and activity types on recognition accuracy are
then evaluated. In the last part, we verify the performance of
the novel approach we proposed to improve CNN with the
ensemble model.

A. TRAINING AND TESTING PROCEDURE

To evaluate the recognition performance, we divide all col-
lected data samples into training dataset and testing dataset.
To make a widely applicable model, we use an individual-
based 10-fold evaluation approach where all data samples
from 10 random participants out of the 100 participants are
selected as the test data and the rest training data. This method
takes into account the applicability of the recognition frame-
work for testing data from individuals totally different from
the training data and thus examine whether the generalized
model can be applied to real world scenarios.

B. CLASSIFICATION ACCURACY

We compared our method with three frequently used meth-
ods. Extensive experiments have been conducted and the
results show that the classification accuracy of the ensemble
model outperforms other models up to 96.11%, which proves
the feasibility and effectiveness of the proposed approach in
this paper. To analyze the results in more details, we compare
the performance of each classifier in different smartphone
placement settings of different subjects. To reduce the impact
of data imbalance, we calculate the F-score of each activity
and finally use average F-score as the criterion. The perfor-
mance of each classifier is shown in Fig 6.
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—4—BP

-+HX —HH -<TP

CNN-7

FIGURE 7. F-score of different classifiers for various placement settings.
Legend represents the placement settings: “TX"- texting mode,
“HH"- handheld mode, “TP”- trouser pocket mode, “BP”- backpack mode.

Ensemble XGBoost RF

TABLE 3. Ensemble model (%).

TABLE 4. Convolutional neural network-7 (%).

TX HS TP BP M
Testl 96.14 9885 9853 9283  96.69
Test2 88.06 9740 9898 97.00 94.41
Test3 98.99 9525 9973 90.60 9747
Test4 98.29 7327 9989 9790 9259
Test5 99.85 100 99.85 99.79 98.10
Test6 98.80 7835 9959 9931 94.64
Test7 95.87 89.67 99.75 93.41  94.80
Test8 89.90 8993 9578 98.58 9544
Test9 97.02 91.03 98.65 92.67 91.87
Testl0  96.10 9156 98.76  82.71 94.89

TX HS TP BP M
Testl 96.14 9838 99.18 94.07 97.03
Test2 86.34 9428 9946 9479  94.27
Test3 98.00 96.04 9898 9596 97.21
Test4 98.16  83.07 100 99.71 95.26
Test5 99.23 100 99.23 98.10 97.64
Test6 99.70 7795 99.59  99.09  94.70
Test7 96.58 9454  96.09 91.00 94.63
Test8 9796 9536 9750 9848 9741
Test9 97.02 89.86 99.28  95.61 95.26
Testl0 9558  97.47 9895 90.21  95.39

1) ACTIVITY RECOGNITION UNDER VARIOUS PLACEMENTS
The motion patterns of the mobile phone are very different
for different smartphone placements [34], [35]. As a result,
the sensor signals can be very different accordingly. For
example, smartphones in the backpack are usually looser and
deeper than those in trouser pockets. This usually leads to a
higher vibration magnitude while walking or running. More-
over, different parts of the body show different patterns. For
example, a smartphone placed in the trouser pocket records
how the thigh moves while a handheld smartphone records
how the arm swings. To investigate the effects of varying
sensor placements on activity recognition, we calculate the
F-score of each classifier under four different placement
settings: (i) texting mode; (ii) handheld mode; (iii) trouser
pocket mode; and (iv) backpack mode, as shown in in Fig. 7.
Table 3-6 provides the detailed classification results of each
individual. “M” means no position information and a mix of
four positions data together.

It can be observed that the recognition performances of
different smartphone placements can vary significantly. For
instance, the placement of trouser pocket can be easily rec-
ognized and therefore achieves the best recognition accuracy
and robustness for each classifier. In comparison, handheld
placement is hard to deal with and has the lowest recognition
accuracy. The underlying reason lies in the fact that the move-
ments of thighs are quite restricted and thus easy to be iden-
tified while the movements of hands can be quite complex
and difficult to be identified. Experiment results have shown
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TABLE 5. eXtreme gradient boosting (%).

TX HS TP BP M
Testl 87.58 87.53 96.10 9590 91.70
Test2 56.85 8693 7836 9448  84.62
Test3 90.63 94.01 9798 8734 9270
Test4 9248 86.74 9778 91.02 9234
Test5 89.08 86.87 93.65 88.18  90.63
Test6 9332 9244 9691 96.83  95.34
Test7 90.67 82.89  98.27 92.01 91.22
Test8 95.55 87.83 89.74 80.82 91.72
Test9 8588 7845 81.10 91.26  84.53
Testl0  95.68 95.16 97.39 89.88 95.71

TABLE 6. Random forests (%).

TX HS TP BP M
Testl 82.67 8244 9528 9271 87.93
Test2 62.88 8434 7945 8830  83.39
Test3 90.51 9386 9572 90.83 93.23
Test4 9124 8893 9450 9228 91.86
Test5 89.75 90.71 9332 87.08 90.54
Test6 9228 8340 8268 97.09 89.14
Test7 90.65 80.06 9574 8520  88.23
Test8 87.72 8427 9211 91.13  89.07
Test9 81.09 7829 80.85 83.90 81.27
Testl0  85.21 91.54 8537 84.87 86.76

that deep learning based model significantly outperforms the
traditional algorithms in any smartphone placement.

2) ACTIVITY RECOGNITION UNDER VARIOUS ACTIVITIES
There are numerous and complex human activities, which
makes the boundaries of different activities blurry. Even for
the same activity, different individuals have very different
motion modes. Fig. 8 evaluates the performance of different
classifiers for each activity.
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FIGURE 8. F-score of different classifiers for various activities.

TABLE 7. Ensemble model (%).

GU DU SD RU WK BY SwW
Testl 99.28 95.61 98.20 99.08 9294 96.38 100
Test2 82.89 9943 99.77 100 90.24 9929 100
Test3 9642 98.56 97.24 100 97.58 95.12 9543
Test4 86.34 9896 9993 100 8523 99.86 99.67
Test5 95.74 98.31 100 100 96.27 99.88 100
Test6  80.18 98.99 100 100 8542 99.40 99.69
Test7 93.05 96.59 96.88 100 92.13 93.01 99.36
Test8  92.06 98.13 99.59 99.71 94.11 99.13 99.68
Test9 90.29 9832 97.76 9949 88.99 9829 99.71
Testl0 9324 97.01 97.11 99.41 9098 90.54 99.68

TABLE 8. Convolutional neural network-7 (%).

GU DU SD RU WK BY SwW
Testl 9731 95.61 9820 99.08 91.71 96.38 100
Test2 80.13 9943 99.77 100 87.80 99.29 100
Test3  95.69 98.56 97.24 100 9693 95.12 9543
Test4 81.39 9896 9993 100 7695 99.86 99.67
Test5 95.04 98.31 100 100 95.65 99.88 100
Test6  79.77 98.99 100 100 8535 99.40 99.69
Test7 88.47 96.59 96.88 100 89.12 93.01 99.36
Test8 86.82 98.13 99.59 99.71 89.89 99.13 99.68
Test9 89.28 9832 97.76 9949 87.79 9829 99.71
Testl0 83.56 97.01 97.11 9941 80.96 90.54 99.68

From Fig. 8, we can infer that all classifiers can achieve
an F-score above 95% in standing, running, bicycling and
swinging. Note that even if there are a very limited number
of examples of bicycling and swinging, we can still identify
these activities quite well. Nevertheless, the performance of
distinguishing between going upstairs and walking is quite
unsatisfactory, especially for the traditional classifier. Deep
learning algorithm achieves the best prediction accuracy
among all models, slightly above 97% excluding the recog-
nition of going upstairs and walking. To tackle the confu-
sion of these two activities, we further propose a CNN with
ensemble model. Table 7-10 shows a further relation between
recognition accuracy and individuals in detail. We can
find that recognition accuracy may be drastically different
between different individuals even under the same activity
and algorithm. Therefore, the increase of data from differ-
ent individuals could improve human activity recognition
accuracy.
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TABLE 9. eXtreme gradient boosting (%).

GU DU SD RU WK BY SwW
Testl 90.84 89.61 98.83 9535 83.03 92.63 §89.13
Test2 6577 91.79 100 89.68 66.76 98.61 9691
Test3 78.83 95.14 96.90 9945 89.54 89.29 99.73
Test4 87.28 86.81 100 96.64 84.92 99.17 98.69
Test5 83.99 6847 99.84 99.61 8238 99.76 99.08
Test6  81.77 9490 99.85 99.50 91.97 99.70 99.69
Test7 6942 9533 9921 9936 78.70 9791 100
Test8  79.87 9232 99.84 96.80 85.02 9730 99.37
Test9 6739 81.76 97.89 97.72 67.90 98.14 98.84
Testl0 87.69 95.68 99.77 98.01 9220 99.00 100

TABLE 10. Random forests (%).

GU DU SD RU WK BY SwW
Testl 81.59 8859 9883 97.03 70.62 86.82 9281
Test2 63.19 85.87 99.92 9435 61.36 99.72 99.66
Test3 8258 9429 9556 99.52 9123 8598 98.61
Test4 8630 87.85 99.86 96.55 83.26 97.44 98.69
Test5 8290 7323 99.69 99.41 81.40 99.52 99.70
Test6  65.68 91.39 99.54 9943 71.88 99.10 99.39
Test7 6833 90.31 98.05 9845 72.68 9443 100
Test8  75.68 84.24 99.59 96.20 83.90 9521 99.37
Test9 62.63 75.69 98.10 98.00 5897 9829 99.71
Testl0 71.61 87.14 99.77 94.13 6827 99.00 99.68
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FIGURE 9. The normalized confusion matrix of CNN-7.

3) PERFORMANCE OF ENSEMBLE MODEL

The task is to distinguish between two confusing activities:
going upstairs and walking which bring the major predic-
tion errors known from confusion matrices. The CNN-7 in
Fig. 9 indicates that going upstairs is usually misclassified to
walking, which leads to a 7.27% decrease in prediction accu-
racy. Similarly, walking is misclassified as going upstairs,
leading to a further 12.84% decrease in prediction accuracy.
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FIGURE 10. The normalized confusion matrix of ensemble of CNN.

To reduce the confusion between these two activities, we pro-
pose an ensemble model based on CNN which can achieve
up to 96.11% accuracy. The confusion matrix of the model
is shown in Fig. 10. We can see that the prediction accuracy
has been improved significantly, even if going upstairs and
walking are still the two most confusing activities.

VI. CONCLUSION

This paper has proposed a CNN-based human activity recog-
nition model using the nine-axis motion signals of accelerom-
eter, gyroscope and magnetometer in common smartphones.
We have compared and analyzed the performance of differ-
ent algorithms with seven daily activities and four different
placements of smartphones. In order to further improve the
recognition accuracy, this paper has developed an ensemble
model based on CNN which extracts the local dependence
and scale invariant characteristics of the sensor time series
and reached an accuracy up to 96.11%. In the future, to verify
the robustness and practicality of the model, we will conduct
further experiments with larger datasets to recognize more
human activities under more placements of smartphones.
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