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ABSTRACT Cooperative overtaking is believed to have the capability of improving road safety and traffic
efficiency by means of the real-time information exchange between traffic participants, including road
infrastructures, nearby vehicles, and others. In this paper, we focused on the critical issues of modeling,
computation, and analysis of cooperative overtaking and made it playing a key role in the road overtaking
area. In detail, for the purpose of extending the awareness of the surrounding environment, the lane markings
in front of ego vehicle were detected and modeled with a Bezier curve using an onboard camera. While the
nearby vehicle positions were obtained through the vehicle-to-vehicle communication schememaking assure
of the accuracy of localization. Then, conflict potential field was proposed to guarantee overtaking safety.
To support the proposed method, many experiments were conducted on the human-in-the-loop simulation
platform. The results demonstrated that our proposed method achieves better performance, especially in
some unpredictable nature road circumstances.

INDEX TERMS Collision probability, cooperative overtaking, intelligent vehicle, lane detection, vehicle
safety.

I. INTRODUCTION
Driving on the road, the safety issues are always the most
major concerns [1], while a huge number of injuries and
deaths reveal the story of the global crisis on this topic [2].
Around the world, approximately 1.35 million people die as a
result of road traffic crashes [3] and 50 million are injured per
year. While, vehicle overtaking is one of the important causes
of casualties [4]. Among them, most of the accidents were
caused by the incomprehensive understanding of the nearby
environment [5] and the impulsive lane changing behaviors
in the traffic stream [6].

Overtaking is generally affected by environment under-
standing and vehicular interactions. Hence, in some frame-
work of intelligent vehicles, sophisticated environment
perception module and vehicle-to-vehicle (V2V) wireless

The associate editor coordinating the review of this manuscript and
approving it for publication was Haluk Eren.

communication approach are used, aiming to enable auto-
mated cooperation among different vehicles on the road.With
the extended capability of situational awareness, cooperative
overtaking can enable drivers and virtual-drivers a longer
perception range even beyond the field of view. This aspect
enables better driving decisions for overtaking. Despite these
application advantages, however, there has been compara-
tively fewer application on this cooperative driving field.
Right now, most of the works focused on the communication
scheme named VANETs (Vehicular Ad-hoc Networks) [7]
discussing the fundamental problem of the communication
network via wireless links. It has just solved low-level aspects
of ad-hoc networks and standards. But, in the high application
level, the practical use of V2V systems in the Advanced
Driverless Associate System (ADAS) and Intelligent Vehi-
cle (IV) is rarely noticed. How to promise a high safety
benefit for overtaking procedure is still a critical issue and
challenging task for intelligent vehicles.
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In this paper, we exploit the cooperative overtaking prob-
lem by integrating collision probability model into driving
decision procedure.We show that, with the fusion of informa-
tion from vision sensors and V2V sensors, the risk estimation
of overtaking procedure could become more robustness and
efficiency.

The remainder of this paper is organized as follows: the
related works were given in Section 2, and the system archi-
tecture of the proposed approach was presented in Section 3.
Then, the Bezier based lane detection and modeling method
were given in Section 4. The collision probability prediction
method was discussed in Section 5. At last, the proposed
method is validated in Sections 6, and the conclusions are
given in Section 7.

II. RELATED WORKS
Overtaking is one of the most complex maneuvers for intel-
ligent vehicles both in manual driving mode and automation
driving mode [8]. In general, overtaking compose of some
consecutivemaneuvers. The lane changing behavior followed
by traveling a planned path in the adjacent lane parallelled to
the overtaken vehicle, and then, a change to the original lane.
During the process, different kinds of sensor-based environ-
ment perception modules and the longitudinal-lateral motion
control modules are comprehensively been undertaken. The
two modules are not only associated but also interactive:
the environment understanding is the prerequisite, and the
following control is the purpose [9], while both of them are
discussed in this paper.

How to use the environment information to make the over-
taking procedure safely and smoothly is a key problem [10].
In this end, camera-based driver assistance systems have
been equipped in some intelligent vehicles in order to make
the front lanes observed by ego vehicle automatically [11].
However, because of the regular damage, fracture, and pollu-
tion, road marking lines sometimes not clear, the promising
detection result cannot be effectively guaranteed, no mention
of the noise, light unevenness, water and stains in the real
road. Parabola [12], spline curve [13], and hyperbola [14]
were chosen by researchers to model the road. And then,
the lane model parameters are estimated by means of max-
imum posterior probability estimation [15]. However, due to
the time-varying, complexity, nonlinearity, and uncertainty,
it is normally hard to obtain accurate mathematical lane
models [16]. For the purpose of increasing the calculation
speed, RANSAC (RANdom SAmple Consensus) algorithm
was used in many types of research to eject most of the
outliers in the feature matching step [17].

Meanwhile, in order to estimate the relative positions
of nearby vehicles, radar, Lidar, camera, and wireless
V2V communication schemes have been explored by some
researchers [18]. As the positive kinds of sensors, thanks
of their inherent activeness characteristics, radar and Lidar
can get the relative distance and velocity directly, however,
their performance would drop dramatically in the fog, haze
and rain days [19]. For the passive sensors, such as camera,

they can only be used in the daytime and lost their capa-
bility in the night [20]. Meanwhile, V2V sensors were also
comprehensively used in this area, including DSRC (Ded-
icated Short Range Communications) and IEEE 802.11p
protocol [21]. As a wireless short-to-medium-range commu-
nications method, DSRC has the capability of permitting
high data transmission. While, the IEEE 802.11p/Wireless
Access has promulgated a suite of physical and medium
access control layer specifications to enable communications
in vehicular networks, which enables automated cooperation
between different vehicles and road infrastructures [22]. In a
unified on-road vehicular network, each connected vehicle
periodically transmit and receive position, perception, and
safety-related messages with switching on a CCH (common
control channel). Use this information, the vehicle can tune
into one of the available service channels (SCHs) to exchange
all the driving-related information [23]. Compared to radars,
Lidar, and camera, the V2V communication scheme can give
out a super long range to the vehicle position information.

In order to plan an overtaking manoeuvre safely, the ego
vehicle uses environment perception data and subject vehicle
state data to check feasibility of the manoeuvre and design a
collision free and safe local reference trajectory for an over-
taking manoeuvre [24]. The local trajectory planning can be
defined as real time planning of the vehicle’s transition from
one feasible state to the next, while satisfying the vehicle’s
kinematic limits based on vehicle dynamics and constrained
by occupant comfort, lane boundaries and traffic rules, while,
at the same time, avoiding obstacles [25]. Meanwhile, there
are four well known techniques, including: potential fields,
cell de-composition, interdisciplinary methods and optimal
control, which were normally employed to construct the local
trajectory planning method [26].

Although various land marking detection algorithms and
plentiful localization strategies as mentioned before have
been proposed and applied in the intelligent vehicle area,
a combination of the two or the associated application into
overtaking risk estimation are really few [27]. Among the pre-
vious studies, the overtaking assistant modules usually based
on the assumption that the vehicles are going straight with
constant speed, which would restrict the performance [28].
Besides, some researchers predefined a safety cell around
each vehicle, and warning would be aroused by the distur-
bance of nearby vehicles [29]. By adopting the safety cell
method, the traffic flow rate would reduce seriously. From
the works, we can found that, right now, the collision risk in
complex traffic is still tough to estimate, which need to be
further discussed.

III. ASSUMPTION, COORDINATES, AND
COLLABORATION FRAMEWORK
Considering a sensor system including a forward facing
monocular camera and an onboard V2V sensor, we assume
that the ego-motion estimation model is a rigid body motion
model and the monocular camera can be modeled by the
pinhole cameramodel and vehicles travel on structured roads,
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FIGURE 1. Coordinates of rigid body motion model with the forward facing monocular camera
and the onboard V2V sensor.

including highways and city roads. Then, using the Zhang
method [30], the intrinsic and extrinsic parameters can be eas-
ily calibrated in advance. With the calibration matrix, the rel-
ative pose transformation matrix between two sensors can
be obtained. Hence, we can use a single coordinate system
for both the V2V sensor and the forward facing monocular
camera. The coordinate systems are defined in the following
(see Figure 1 for illustration).

There are two coordinates used in our system, the global
V2V based original global coordinate {CV } and the forward
facing monocular camera coordinates system {CC }, which
is defined as follows: (1) we paralleled XV -OV -YV plane of
{CV } to the horizontal plane. The ZV -axis points opposite
to gravity. The YV -axis points forward of the vehicle plat-
form, and the XV -axis is determined by the right-hand rule.
(2) forward camera coordinate system{CC } is set originated at
the optical center of the camera system. The XC -axis points to
the left, the YC -axis points downward, and the ZC -axis points
forward coinciding with the camera principal axis.

IV. BEZIER BASED LANE DETECTION AND MODELING
Lane detection and modeling is the key component of belief
module, which can give us the representation of the nearby
environment. However, there are lots of interference in the
lane detection task, such as light unevenness, shadows of
vehicles and buildings, water and stains, wears and tears, and
belts on the roads. These obstructions yield great difficulties
in the task of understanding lane markings [9]. Here, for
the purpose of detecting and modeling the front lanes, both
the Bezier curve and hybrid Gaussian anisotropic filter were
adopted to increase the accurateness and robustness of the
proposed method. With the Bezier curve, the different grades
of roads can be flexibly modeled with corresponding degree
of control points. Meanwhile, considering the anisotropy
needs of road image preprocessing, along the road direction,

we need a smoothing filter to eliminate image defects such
as breakage, contamination, etc. and in the vertical direction,
we need edge enhancement filters to enhance the characteris-
tics of the road for subsequent road detection modules.

A. IMAGE PREPROCESSING AND FILTERING
In order to improve the robustness, two layers of ROI (region
of interests) was set to avoid the noise interference in non-
road areas and to improve the algorithm’s real-time perfor-
mance, which was shown in Figure 2. In the high-level layer,
static ROI was set in the original image

R = (k × ImW, l × ImH, vpx +1x, vpy+1y) (1)

where, ImgW and ImgH are the width and height of the
image, and k , l are proportional adjustment coefficients,
(vpx + 1x, vpy + 1y) is the coordinates of the center of
the area of interest, 1x, 1y Is the deviation adjustment
coefficient.

When it comes to the low level, dynamic ROI was set on
the bird’s-eye view image according to the current vehicle
status and driving intention, as shown in Figure 2. As soon as
the lane changing behavior is detected from steering signal,
the width of dynamic ROI W will be increased and the
deviation coefficient a will be decreased, for the purpose of
extending the search area of nearby lanes. On the other hand,
the height of dynamic ROI H is determined by the current
vehicle speed. When the speed is high, the speed coefficient
b and the regional height H will be increased dynamically to
enlarge the perception area in front of ego vehicle.

When it comes to the low level, dynamic ROIwas set on the
bird’s-eye view image according to the current vehicle status
and driving intention. For the purpose of extending the search
area of nearby lanes, as soon as the lane changing behavior
is detected from steering signal, the width of dynamic ROI
W will be increased and the deviation coefficient a will
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FIGURE 2. Image preprocessing and the setting of two layer ROI.

be decreased. Meanwhile, the height of dynamic ROI H is
determined by the current vehicle speed. When the speed is
high, the speed coefficient b and the regional height H will be
increased dynamically to enlarge the perception area in front
of ego vehicle.

In the above image transformation step, according to the
assumption of the pinhole camera model, the transformation
matrix from vehicle to the camera can be calculated by the
following equation.

T =
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(2)

where, T is the transformationmatrix from vehicle coordinate
to camera coordinate, the f lx and f ly are the horizontal and
vertical shift of camera focus; ocx and ocy are the horizontal
and vertical position deviation of camera optical center; and
c1 = cos(θpitch) c2 = cos(θyaw) s1 = sin(θpitch) s2 =
sin(θyaw). θpitch and θyaw are defined in Figure 1. Using trans-
formation matrix T , the inverse perspective transformation
image can be easily obtained.

Hybrid Gaussian anisotropic filter was also used for
improving the robustness of the proposed method in the
image preprocessing step. Taking Gaussian function as scale
function, a hybrid Gaussian anisotropic filter was constructed
by using low-pass smooth Gaussian filter and second-
order Mexican hat wavelet high-pass filter, as the following
equation:

Gθ=G0◦
x cos θ + G90◦

y sin θ (3)

where,

G90◦
v = exp(−

1
2σ 2

v
v2) (4)

G0◦
u =

1
σ 2
u
(1−

u2

σ 2
u
) exp(−

1
2σ 2

u
u2) (5)

In the above equations, equation 4 is a Gaussian Lowpass
Filter and equation 5 is a second order Mexican hat wavelet
high pass filter. θ is the angle input of filter direction, σ 2

u
depends on the width of the front lane, σ 2

v depends on the
length of road on the dynamic ROI.

B. BEZIER BASED UNCERTAIN DEFORMATION TEMPLATE
Commonly, driving roads can be modeled by different curve
types, such as straight line model, quadratic curve model and
higher order curve model [31]. While, simple line model was
widely used in the highway area, but it is hard to fit com-
plex road. The quadratic curve has a unidirectional boundary
curvature resulting in poor model adaptability. Higher order
curve model can be used to successfully describe the complex
road, but it has an unbearable computational complexity.
Therefore, in this paper, the Bezier spline curve was adopted
to construct the Uncertain Deformation Template (UDT) for
complex lane detection, which can automatically choose the
complexity of model types.

The Bezier curve is constructed by Bernstein basis func-
tion, and the characteristics of the curve can only be deter-
mined by the position of its control points [32]. The definition
of the Bezier curve is shown in the following equation:

P(t) =
n∑
i=0

Pi
n!

i! (n− i)!
(1− t)n−it i (0 ≤ t ≤ 1) (6)

From the definition, we can easily found that the different
degree of Bezier equations can be modeled with different
n values. In detail, commonly, Linear Bezier curve P (t) =
(1− t)P0+ tP1 can be used to raise the straight road type for
highway, and Quadratic Bezier curve P (t) = (1− t)2P0 +
2t (1− t)P1 + t2P2, which is constructed by two control
points can be used to build the curve road. Cubic Bezier curve
P (t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2 (1− t)P2 + t3P3
can be used to put up S-shape path.

Thereafter, using the different degree of Bezier spline
curve, a UDT can be constructed, which was shown in
equation 7. Then, the land detection question can be trans-
formed to the question of determining the parameters of UDT.

L = [n,Pn, c, s] (2 ≤ n ≤ 4) (7)

where, n is the order of the Bezier curve, Pn is the curve
control points determined by order, c is the color of lane
marking, s is the credibility evaluation coefficient of the
current template, and is normalized to the interval of [0 1].

C. PARAMETERS SOLVING OF UDT UNDER HYPOTHESIS
AND TESTING PROBLEM
In order to solve the hypothesis and testing problem, some
of the previous works consider that every point in the image
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FIGURE 3. Data space setting of possible pixel belonging to lane marking.

has the opportunity of belonging to the lane marking, so they
make all the image points involved in the calculation of pos-
terior probability density function, which consumes a lot of
computing resources. [33]. In order to reduce the calculation,
the data set of possible lane marking pixels was built, which
was shown in Figure 3 with three steps. First, the dynamic
ROI area was segmented from the original image for the fur-
ther process, including hybrid Gaussian anisotropic filtering.
Then, we compressed the 2D pixels in the processed image
ROI into the image top and sum up the intensity of pixels in
each image columns. Further, in the 1D intensity image, a rea-
sonable threshold was set to predetermine the possible pixels
belonging to the lane marking. In this way, the data space of
possible lane marking pixels can be obtained, as shown in the
following equation.

� = {P1,P2, · · ·PM } (8)

where, � is the sample space, M is the number of samples,
Pi is the possible lane marking pixel. The possible pixel
picking method can effectively avoid the negative impact of
many road noises, such as light unevenness, road wears, and
tears, etc.

In the hypothesis step, the Random Sample Consensus
(RANSAC) algorithm was adopted to obtain the parameter
hypothesis of current UDT. Thinking of the driving environ-
ment, most of roads are straight types, followed by curves,
and the complicated road types are few. So, the template
parameters are estimated by increasing the template order
parameter n from 2 to 4, which means that the parameter
estimation process follows the logic from simple to com-
plex. In details, first, N samples are randomly selected from
the sample space to form a sample group, and this oper-
ation needs to be repeated Q times to obtain Q sample
groups. By fitting the sample points in each sample set,
Q fitting curves can be obtained. Then, the reliability of
the Q fitting results are verified separately. If anyone of
the Q fitting curves passes the consistency test, the search
stops, and the curves with the highest credibility would be

considered as the road fitting curve. Otherwise, N takes
N + 1 to repeat the above operation, where the value of
N directly determines the number of deformation template
levels. It should be pointed out that when N is 2, the sample
is fitted with a line;When N is 3, the parabola is used to fit the
sample; The least squares fitting sample is used when N is 4.

During the process, the mathematical expression of the
Bezier curve can be written in the matrix form as shown
below:Q1
· · ·

Qn


(n+1)×1

=

tn1 · · · 1
· · ·

tnn · · · 1


(n+1)×(n+1)

×M(n+1)×(n+1)

P1· · ·
Pn


(n+1)×1

(9)

It can be abbreviate represented as:

Qn = TMPn (10)

The solution to this equation is

Pn = (TM )−1Qn (11)

In the credibility testing step, pixel consistency and curve
likelihood were used to determine whether the current fitting
parameters of UDT can pass the consistency test. Firstly,
the pixel consistency examining module was used to verify
the grayscale weight of pixel points within the hypothesized
curve. If the pixel consistency coefficient L(S) in the fol-
lowing equation was below the set threshold, the current
parameters of UDT would lose the verification process.

L(S) = c ∗
i=s∑
i=0

val (12)

where c is the color compensation factor. When the road
marking is white, c = 1, and if it is yellow, c = 1.5.
S is the number of positive pixels passing through the fitting
curve, val is the grayscale weight of pixel points. Meanwhile,
the curve likelihood coefficient would evaluate the length and
bending degree of the fitting curve for the current UDT, which
should not deviate from the normal range. The curve likeli-
hood coefficient Q(S) can be calculated using the following
equation:

Q(S) = k1
l
v
+

k2
N − 2

i=N−2∑
i=1

cos(π − θi) (13)

where, k1 is the length coefficient, l is the distance between
the furthest two sample points on the curve, v is the image
height, k2 is the angle coefficient, N is the number of sample
points, θi is the angle between adjacent sample points.
Then, use both of the pixel consistency and curve likeli-

hood coefficients, we can construct a reliability evaluation
index s of UDT, which is shown in the following equation:

s = kL × L(S)+ kQ × Q(S) (14)
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Here, kL and kQ are the weight proportionality coefficient
of pixel consistency coefficient L(S) and Q(S) . In this way,
we can reckon the parameters of UDT in real time using the
RANSAC based hypothesis and testing method.

V. GAUSSIAN-BASED CONFLICT
PROBABILITY ESTIMATION
With the models of the ahead lanes and the relative positions
and velocities of nearby vehicles received from V2V sensors,
the local dynamic environment can be built successfully.
Using the time to collision (TTC) method, we can determine
the proper time for the behavior decision of the overtaking.
It should be noticed that the procedure should never be started
if the front overtaking lane has been occupied by other slower
vehicle or there is no enough space for the ego vehicle. Based
on constant speed hypothesis, the TTC can be calculated by
the following equation.

TTC =
Sab − La/2− Lb/2

va − vb
(va > vb) (15)

where, Sab is the starting distance between ego vehicle A and
nearby vehicle B. La is the length of vehicle A and Lb is the
length of vehicle B. va is the current speed of vehicle A and
vb is the current speed of vehicle B.

During the process of overtaking, Gaussian-based conflict
potential field was proposed to guarantee overtaking safety,
which can be used to quantitatively estimate the oncoming
collision danger.

A. CONFLICT POTENTIAL FIELD
During the process of overtaking, the uncertainty of collision
risk can be represented using the probability density function,
as shown in Figure 4. Conflict potential fields can be estab-
lished respectively, while, the distributions of potential fields
are assumed to satisfy multivariate Gaussian distribution
with the direction pointing from the reference center to the
opposite.

FIGURE 4. Potential fields at overtaking stage.

Taking overtaking vehicle (OV) A as an instance,
the potential field along the major principal axis and minor
principal axis are independent. The probability density func-
tion of the potential field of OV A can be denoted by a
multivariate Gaussian distribution. As given by the following
formula:

XA |µA,3A ) =
1

(2π )D/2|3A|
1/2 exp(−

1
2
12
A) (16)

where, N (XA |µA,3A ) is the probability density distribu-
tion of the conflict potential field, XA is the input of two-
dimensional variable, 3A is covariance matrix, |3A| is the
determinant of 3A, D is the dimension value of input vari-
ables, in this paper D = 2, µA is the mean-variance of
two-dimensional Gaussian distribution, 1A is the Maha-
lanobis distance from µA to XA and the calculation is
given by:

1A
2
= (XA − µA)T3A

−1(XA − µA) (17)

The distribution of potential fields in the major principal
axis and minor principal axis are independent of each other.
Then, the covariance matrix of the potential field can be
obtained as:

3A =

[
σ 2
Ax 0
0 σ 2

Ay

]
(18)

Taking into account the impact of the relative speed, obvi-
ously, it would affect the collision risk and make the potential
fields more deformable. So, the standard deviation of the
covariance matrix σAx is constructed by two parts: basic value
σx and compensate value which is constructed by the relative
longitudinal velocity δv. The standard deviation is given by:

σAx = σx ± ra ∗ δv (19)

where, ra is the gain coefficient of forwarding direction vari-
ance. Considering the impact of σAx on the standard deviation
of the lateral covariance matrix σAy, the lateral covariance
matrix σAy can be reckoned by equation (13), while assuming
the linear relationship between σAx and σAy .

σAy = min(rc ∗ σAx , σ̄y) (20)

where, rc is the gain coefficient of lateral direction variance.
σ̄y is the saturation value for limiting σAy in a reasonable
range. Formula (18) and formula (19) obviously implies that
the relatively high velocity will not only increase the possibil-
ity of the collision before exceeding the overtaken vehicle but
also decrease the possibility of collision after the exceeding.
Similarly, the conflict potential field of overtaken vehicles
can also be constructed in accordance with the method men-
tioned above.

VI. EXPERIMENT EVALUATION
Driver on-loop tests were adopted for the experiment eval-
uation. The testing platform contains 4 main components:
the host machine (DELL Precision T5600 workstation), the
target machine (Ubuntu OS based real-time PC), driving sim-
ulation interface and the information collection-control inter-
face, which contains the driving control module, hydraulic
braking module, road feeling module and warning module
and collection control interface. With the responsibility of
building multiple kinds of simulation environments and algo-
rithms, the host machine uses a 3.9G Hz CPU, 32G RAM and
a 2T ROM to guarantee the efficiency.

In the test, we assumed that the vehicle dimension is
of 1.8*4.2m (dwitdth *dlenth) and the maximum acceleration
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is of±2.7m/s2, and the maximum speed (vmax) is of 35m/s.
The V2V sensors are installed to evaluate the relative position
and distance between nearby vehicles. The effective informa-
tion transmission distance is about 200 m with the typical
interval frequency of 10 Hz. The lane width is set to 3.5m.
The communication mechanism conforms to the standard of
SAE J2735 protocol.

A. BEZIER BASED LANE DETECTION AND MODELING
In this testing part, 5932 frames of typical road pictures
were tested for the proposed lane detection module and the
results were statistically analyzed. The results show that the
average recognition error rate of the algorithm is less than 6%,
the average detection time of each frame lane line is 50ms
meeting the real-time requirements.

FIGURE 5. The recognition process of the road images.

Figure 5 graphically demonstrated the recognition process
of the road images, where, figure 5(a) is the raw RGB image
taking from onboard forward facing camera, and the time is
in the evening with a good light condition. Figure 5(b) is
the result of the image inverse perspective transformation.
Figure.5 (c) is the RANSAC based parameters solving proce-
dure of UDT under hypothesis and testing problem. where the
red line is the curve fitted by the currently randomly selected
deformation template. At this time, N = 2, the current tem-
plate matching credibility is 0.16, and the blue line is the
best historical matching result in this search process, and the
template matching degree is 1.14. Figure 5(d) is the final lane
fitting model, and it has been transformed from the inverse
perspective image to the original image.

B. CASE EVALUATION AND DISCUSSION
Case 1: Straight Road with vehicles moving at different
relative distances

In this case, a test environment of rural straight roads with
medium concentration of fog was established. The visibility

was only 120 m. The ego vehicle traveled with a slow speed
and the maximum speed was just 35 km/h. Three straight
lanes and four vehicles were set, including vehicle A (ego
vehicle), vehicle B (forward leading vehicle), vehicle D
(oncoming vehicle) and vehicle E (same direction vehicle).
All of them traveled at constant speeds of 25, 18, 28
and 22 km/h respectively. Meanwhile, some slippery ice was
added onto the surface of the road to decrease the adhesion
coefficient of pavement. The visual-driver started up the over-
taking action with different relative distances corresponding
to the leading vehicles, which included 10m, 20m, and 25m.
The aim of this test was to verify the capability of the
proposed method to get correct and stabilized estimation of
collision probability during the overtaking process. The test
result was shown in Figure 6.

In the test, the ego vehicle started up the overtaking action
at t ∼ 2s (before reminding signal), t ∼ 3s (after reminding
signal and before warning signal) and t ∼ 5s (after warning
signal) respectively, and returned back to the original lane
after surpassing the leading vehicle. The simulation result
shows that it would be very safe if the driver started the over-
taking action before reminding signal, while the occupation
time in the rapid lane would increase. On the other hand,
if the driver started the overtaking action after warning signal,
the collision risk would increase rapidly to 0.75, that por-
tended a possible traffic accident would happen. If the driver
complied with the instruction of the proposed method and
start up the overtaking action at the right time, the collision
risk would keep below 0.3 to guarantee the safety of thewhole
overtaking process.
Case 2:Curve Road with other vehicles moving at variable

relative high speed on a sunshine day
In this case, a curved road was established with a mini-

mum curvature radius of 150m. Meantime, the weather was
changed to a good sunshine day and without lateral wind.
In this weather and road condition, the influence of collision
risk under variable relative speeds was tested to demonstrate
the performance of the proposed method. According to the
traffic rules, we set the maximum speed of the vehicles to
100 km/h and the minimum speed of 60 km/h, with the accel-
eration/deceleration of 3.8 m/s2. The aim of this simulation is
to verify the performance of the proposed method under vari-
able conditions of different relative speeds, which includes
7.2 km/h (low relative speed), 14.4 km/h (medium relative
speed) and 21.6 km/h (high relative speed). The testing result
was shown in Figure 7.

In the test, the ego vehicle cyclically detected the motion
states of nearby vehicles in every 100ms, which was the same
as the case 2, except that the communication distance was
extended to 200m for the highway use. As shown in Figure 7,
the ego vehicle started up the overtaking action at t ∼ 5s
with three different relative speeds and it returned back to
the original lane safely. The simulation result shows that,
if the vehicle start the overtaking action with a low relative
speed or a medium relative speed, collision risk would stay
below the safety threshold of 0.3 to make sure the safety
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FIGURE 6. Collision probability estimation with different relative distance.

FIGURE 7. Collision probability estimation with different relative speed.

of the overtaking procedure. However, if the driver start up
the overtaking action with a high relative speed of 21.6km/h,
the collision risk would increase rapidly to 0.45, which is
above the safety threshold. During the whole overtaking pro-
cedure, the proposed method can calculate the estimation of
collision risk timely and correctly.

VII. CONCLUSIONS
A novel methodology of cooperative overtaking was pro-
posed, which uses different kinds of heterogeneous sensors,
to extend the awareness of the surrounding environment.
The lane markings in front of ego vehicle were modeled
with Bezier curves using the onboard cameras, which can
adapt to different road types. While the nearby vehicles’
position and velocity were obtained through the V2V com-
munication scheme. The results demonstrated that our pro-
posed method achieves better performance, especially in
some unpredictable nature road circumstances. In the future,
we will focus on the implementation of the proposed method
into the real vehicle and test its performance in the real road
tests.
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