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ABSTRACT In this paper, moderate resolution imaging spectroradiometer (MODIS) derived normalized
difference vegetation index (NDVI) was used to retrieve the onset date of spring phenology in grasslands of
Inner Mongolia from 2002 to 2017. To validate the application of MODIS derived data, long-term retrieval
and investigation on its reliability was performed. The correlation between MODIS derived green-up onset
date and ground observations from 2002 to 2012 were given medium to high strength (R2: 0.58–0.81).
Besides, the relationship between seasonal climate variables, including winter and spring precipitation and
temperature, and MODIS derived green-up onset date from 2002 to 2017 were established. Overall, linear
regression analysis shows that there are 8–12 days RMSE for climate variables explaining green-up onset
date shifting. This satellite method might have a poor performance in sparse and snow-cover grasslands but
is fitted well in medium to dense vegetation and snow-free grasslands. These suggest that MODIS estimated
spring phenology has the potential to be applied in grass resources utilization in Inner Mongolia.

INDEX TERMS Grassland, moderate resolution imaging spectroradiometer (MODIS), normalized differ-
ence vegetation index (NDVI), spring phenology.

I. INTRODUCTION
The onset date of spring phenology determines the regulation
for livestock grazing and overstocking. The time of spring
phenology has a directly effect on the optimal stock period.
For majority stockman, the habit for grazing time is subjec-
tive and strongly relied on human experiences. Furthermore,
the empirical value given by local government, is generally
broad and arbitrary. However, the high risks of overgrazing
and grassland degradation due to ignoring the location and
interannual variance of spring phenology will have to be
solved in demand.

Satellite methodology provides a way to estimate spatial
distributed spring phenology at a large scale. For field mea-
surements, since the sampling of individual plant species
cannot indicate the complex phenological characteristics of
whole collection of florae in the spatial coverage. Satellite
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application in green-up onset date determination has been
intensively developed in previous decades [1]–[6], with merit
of providing spatial heterogeneous and time-variable data.
Among these studies, the well-developed normalized differ-
ence vegetation index (NDVI) has been proved the effective
for investigating seasonal vegetation cycle [7]–[10], since it
is related to green leaf area index (LAI) and photosyntheti-
cally active biomass [11]–[13]. There is solid foundation of
using NDVI derived from remote sensors to detect vegetation
phenology [9], [14]–[17]. Compared to other remote sensing
data (AVHRR, Landsat, SPOT), moderate resolution imaging
spectroradiometer (MODIS) sensor has a relatively finer spa-
tial resolution, higher frequency of revisit period, and avoids
error from discontinuous satellites.

Savitzky–Golay (SG) smoothing filter has been widely
applied for the NDVI curve fitting. This is first raised
by Savitzky and Golay as an asymmetric Gaussian func-
tion [16], and has been proved for reliable performance and
spatially consistent on the estimation of start of the growing
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season compared to other filters (e.g. asymmetric Gaussian,
spline smoothing, double logistic fitting) [17], [19]–[21].
Besides, smoothing series crossing from moving average
can well capture the vegetation phenology, with flexibility
of time lag for selecting the sensitive and significant trend
changes [22], [23]. Comparing with other methods, largest
NDVI increase have limitations in determining the onset
of green-up when NDVI signal has abrupt change beyond
the natural variability of the data [24], while fitting logistic
functions require substantial parameters estimation without
ecological or biological meanings [25], the moving aver-
age method has advantage that is stable and applicable for
estimating substantial areas of vegetation phenology.

Grasslands of Inner Mongolia is one of the world’s largest
temperate grassland that support the biggest population of
sheep and goats. Primary grassland types, including meadow
steppe, typical steppe, and desert steppe, related to a climate
gradient are spread in the Inner Mongolia from northeast
to southwest [26]. There is variance of phenological pat-
terns in temperature vegetation [27]. Regional phenology
is often fluctuated and sensitive to climate and meteorology.
The temperate grasslands in northern China are sensitive to
climate change, and the effects have been varied with vegeta-
tion characteristics and water budget limitation [28]–[30].
Temperature and precipitation are the main factors
controlling the vegetation seasonal variation and phenol-
ogy dynamic in temperature grassland ecosystems [27],
[31], [32].

In this paper, a long-term determination of onset date of
green-up based on satellite remote sensing was performed
in grasslands of Inner Mongolia. This is followed by a val-
idation via using a ground measurement database of spring
phenology in different sites. The study also includes building
relationship between temperature and precipitation in prior
winter and spring seasons and time-shift of green-up onset
date.

II. MATERIAL AND METHODOLOGY
A. STUDY AREA
The grassland in the Inner Mongolian of China is situated in
northern hemisphere mid-latitude temperate area. Temporal
character of climate as one of the most notable features in
this area, has cold, dry winter and spring, warm, wet sum-
mer and autumn, with seasonal drought in spring and early
summer, frosts at early autumn, and frequently windy in long
winter [26]. The area has a pronounced east-west precipita-
tion gradient, with annual precipitation varying from 500 mm
in the east to less than 100 mm in the west. Precipitation is
time asymmetry at east of Inner Mongolia, where 70-80%
rain falls between June and August. Due to higher elevation
and farther distance from the Pacific Ocean, the west region
is colder in winter and drier throughout the year [33], [34].

Types of the temperate grasslands express similar gradient
with the climate in this area, especially precipitation gradient.
From east to west, the grassland types are meadow steppe,
typical steppe and desert steppe [26]. Grassland distribution

FIGURE 1. Study area of the Inner Mongolia, China with three grassland
types (typical steppe, meadow steppe, desert steppe), location of major
grasslands (text with underline) and six ground observation sites (blue
stars).

in the Inner Mongolia was masked by MODIS land cover
type data product (MCD12Q1) [33]. Based on this, grass-
land classifications derived from 1:1,000,000 grassland-type
vector figure [34] was used to divide three grassland types.
In the main part of Inner Mongolia, grasslands vary gradually
from meadow steppe in the northeast and typical steppe in
the middle to desert steppe in the southwest (Fig. 1). Plants
become sparse in the western desert steppe, due to the sharp
decrease of precipitation. Dominated species in most of the
grasslands are perennial grass of Chinese leymus (Leymus
chinensis [Trin.] Tzvel.) [35].

B. REMOTE SENSING DATE
1) MOD13_Q1 PRODUCT
The product MOD13_Q1 of Terra MODIS from year 2001 to
2017 is used in this study, providing consistent and spatio-
temporal NDVI values as result of dividing differences in
infrared and red reflectance measurements, with a 250-m
spatial resolution in a 16-d interval [38].

NDVI = (NIR− R)
/
(NIR+ R) (1)

where NIR is the band of near-infrared, and R is red.
Spectral data have been improved by applying atmospheric

correction for water, clouds, heavy aerosols and cloud shadow
calibration [39]. The daily basis data have been integrated
into 16-day composite products via a series of algorithms
for selecting nadir pixels [40]. A set of locations and time
periods via ground-reference data have been verified to
ensure data quality [41]. In this study, snow mask included
in MOD13_Q1 product is used to exclude the NDVIs,
by only reserving pixels with no possible snow/ice before
smoothing [42].

2) SPRING PHENOLOGY ESTIMATION
The SG filter is used for reconstruction to remove the
random noise and smooth the NDVI time series (Fig. 2).
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FIGURE 2. Illustration of green-up onset date derived from MODIS-NDVI
at the site of Argun in year 2017 using the SG filter and moving average
method (short dash line is the origin NDVI curve, solid line is smoothed
NDVI curve after SG filter, long dash line is the moving average curve, and
the first crossing between SG curve and moving average is spot of
green-up onset date and NDVI).

Polynomial fit (N) was 3 and window length (F) was 4.
After that, autoregressive moving average equation has been
employed to fit the phenological model [22].

NDVI t =
∑t

t−(w−1)
NDVI i/w (2)

where NDVIt is the moving average value of NDVI for time t,
NDVIi is the smoothed value of NDVI for time i, w is the
moving average time interval.

A moving average NDVI time-series is produced by
equation (2) with a time lag compared to the smoothed series
(Fig. 2). The selection of moving average time interval is
adjusted to identify the green-up onset event, when large
time-interval lead to less sensitive trend and small time-
interval acquired insignificant trend changes. In this study,
w = 18 is the best identified value of spring phenology
based on our preliminary analysis with w values ranging
from 6 to 20.

C. GROUND DATE
Phenological data from six sites have been chosen for rep-
resenting grassland ecological zones in the Inner Mongolia,
which are scattered from meadow steppe, typical steppe to
desert steppe (Fig. 1, Table 1). These pasture observation
stations have been founded by Chinese Weather Bureau to
serve livestock production since 1982. The phenological sur-
vey provides the date of several grasses’ phenological events
including green-up as well as tassel, anthesis, mature, and
brown-up. The observed species among those stations are
different of each station, while Chinese leymus is recorded
on all the stations as the primary grass of the Inner Mongolia.
The dataset for verification in this study are from year 2002 to
2012, while some sites have incomplete records in this period
(Table 2).

D. CLIMATE DATE
Data of monthly air temperature in 2-m and total precipitation
are extracted over the Inner Mongolia study region from a

TABLE 1. Main characteristics of ground study sites in the inner
mongolia, china.

dataset – the European Center for Medium-Range Weather
Forecasts ERA-Interim. This reanalysis dataset assimilates
observations and has been averaged in the longitudinal direc-
tion [43], [44]. Seasonal climate values are calculated for
winter season (December to February) and spring season
(March to May) from monthly ones. The spatial resolution
of climate data is 0.125◦ × 0.125◦ grid.

E. STATISTICAL ANALYSIS
We calculate the mean value and standard deviation for
satellite derived green-up onset date and corresponding
NDVIs among 16 years (Table IV). Besides, verification of
green-up onset date between satellite-derived and ground
measurement data are evaluated through square of the corre-
lation coefficient (R2), probability p-value, root-mean-square
error (RMSE) and bias between the ground data and satellite
values (Fig. 6; Table 2) by the equations (3)-(4).

RMSE =

√∑n

n=1

(
ds − dg

)2
/n (3)

bias = ds − dg (4)

where n is sampling number, ds is satellite-derived date, and
dg is ground measurement date.
The linear regression is implemented for evaluating

the effect of individual seasonal climate factor on spring
phenology onset. In the meantime, the RMSE is calculated
(Fig. 7; Table 3) by equation (5), and 25%, 50%, 75% quar-
tiles of RMSE have been calculated based on pixels in three
grassland types.

RMSE =

√∑N

N=1
(dp − ds)2/N (5)

where N is 16 (year from 2002 to 2017), dp is predicted spring
phenology date based on individual climate variable, and ds
is satellite-derived date.

III. RESULTS
The onset green-up date in grassland of Inner Mongolia
has interannual and spatial variation. As shown by previous
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FIGURE 3. Spatial distribution of the onset date of green-up during
2002-2017 over grasslands in the Inner Mongolia.

study [45], the annual green-up date is from DOY 100 to
150 at year 1982 to 2008. Besides, the onset of green-up
delayed from 2004 to 2006 among these years [45]. Results
from our estimation are fitted well with the range of onset
date, and has the extreme spring phenology in the same
years (Fig. 3). For years 2002-2017, onset date of green-up
varies from early April to early June (DOY 100 and 160,
Fig. 3). By comparison with three grassland types, meadow
steppe has advanced green-up onset date than that is in typical
steppe and desert steppe (DOY 120 < 123 < 131, Table IV).
Biweekly AVHRR NDVI studies show meadow steppe in the
Inner Mongolia greens up mostly in late April, while typical
steppe greens up by late May and desert steppe in the west
green-up occurs later [30], [46]. For comparison, MODIS
NDVI in this study has similar result of meadow steppe (late
April), but has earlier onset date of typical steppe and desert
steppe than that of AVHRR (early to mid-May).

It is obviously that the green-up is delayed overall in 2004.
It is even late over typical and desert steppe, whereas the
green-up in the meadow steppe is less delayed. A delay
of 5-17 days existed in all grassland types in 2004 (Fig. 3;
Table S.1). In contrary, green-up onset date in 2010 is esti-
mated to advance approximately 5-9 days contrasted with the
mean of 16 years, while the advancement is most apparent
in Xilin Gol and Hulunbuir grasslands (Fig. 3). Moreover,
the onset of green-up in 2017 has delayed date in the desert
steppe, e.g. Ordos grassland and west of Xilin Gol grassland,
and advanced date in the meadow and typical steppes, e.g.
Hulunbuir grassland and Wulagai grassland (Fig. 3), which
the change of spring phenology is differed by regions in this
year. The mean green-up onset date of study areas during the
16 years is the earliest in the meadow steppe, which is 3 days
advanced than typical steppe and 11 days than desert steppe
(Table IV).

The spatial distribution of green-up onset date presents
distinct differences over grasslands of the study area (Fig. 3).
However, green-up onset date in some locations of meadow

FIGURE 4. Positive to negative trend of correlation (a) and p-value
(b) between onset date of green-up and year 2002-2017.

steppe and typical steppe can arrive before DOY 100; in some
locations of typical steppe and desert steppe can arrive after
DOY 160 (Fig. 3). Green-up onset date displays regional
variations with location and grassland types. In general, there
is a delay of green-up from northeast to southwest, and a
remarkable delay is occurred at certain years in middle-
north and southwest of the Inner Mongolia (Fig. 3). As for
grassland types, onset date of green-up in the meadow steppe
is overall advanced compared to others. In the typical steppe,
green-up onset has significant spatial variation, with advance
in Hulunbuir grassland, followed by Xilin Gol grassland and
Horqin grassland. Desert steppe has the most delayed date of
green-up onset, while east of Ordos grassland has relatively
advanced date than grasslands in west region (Fig. 3).

The spatial and inter-annual variations occur in the Inner
Mongolia. Overall, the northeast to middle of study area has
decreasing date of spring phenology from year 2002 to 2017,
while west of study area has the increasing trend (Fig. 4a).

The significance correlation (p-value < 0.05) happened in
the east of Hulunbuir grassland, Wulagai grassland and Xilin
Gol grassland (Fig. 4b).

Different satellite methods for estimating phenology is a
concern for resulting discrepancy from other studies [17],
[47]–[49]. For example, at one site over typical steppe in the
middle of Inner Mongolia, applying the HANTS-maximum
method leads to an early estimation date, while Gaussian-
midpoint method produces late estimate at the same site [17].
Nonetheless, the interannual trend of vegetation green-up is
relatively consistent from different methods [47], [48].

IV. VALIDATION
Six study sites over different grassland types have been
chosen for validation, which can be distinguished by their
patterns of NDVI (Fig. 5). Argun and Bayar Tohushou over
meadow steppe, has the highest NDVI peak (0.66-0.72) on
July, while Xianghuang Banner, Chahar Right Back Banner
and Wushenzhao over typical steppe has the medium NDVI
peak (0.30-0.36) on late July and early August, and Xilin-
gaole over desert steppe has the least distinguished NDVI
elevation and the peak (0.20) is on August (Fig. 5). The
amplitude of NDVIs between summer and winter in different
grassland types changes from 0.1 in desert steppe, to 0.2 in
typical steppe and 0.7 in meadow steppe.

There is significant positive relationship between onset
date of green-up from remote sensing approach and ground
observations from year 2002 to 2012 (p-value < 0.1).
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FIGURE 5. Smoothed time series of MODIS-NDVI 16-day composite data
from year 2002 to 2017 for six study sites in the Inner Mongolia.

FIGURE 6. Regression of green-up onset date from satellite estimation
and ground observation from year 2002 to 2012 at six study sites in the
Inner Mongolia (lines show the linear regression, curves show the limits
of 95% confidence interval).

The correlations for all sites are medium to high (R2 > 0.58).
It is worth pointing out that gradient of linear regres-
sion between ground- and MODIS-NDVI derived dates
are differed from sites (0.31-2.04), except that Xianghuang
Banner and Chahar Right Back Banner have similar lin-
ear equations, might due to their nearby location (Fig. 1;
Fig. 6). Besides, most of the remote sensing derived dates are
larger than the ground values, except for Argun. There is a
negative bias of 24-day at Argun between satellite-estimated

TABLE 2. Statistics of linear regression between satellite-estimated
green-up onset date and ground data from 2002 to 2012 at six study sites
in the inner mongolia.

green-up onset date and ground observations, while small
positive biases of 5-10 days are at Xianghuang Banner,
Chahar Right Back Banner and Bayar Tohushou, and large
positive biases of 28-48 days are at Wushenzhao and
Xilingaole. However, RMSE is small at study sites from
4-6 days, and a minimal RMSE of 1.8 days is occurred at
Argun (Table 2).

Evidence derived fromMODIS-NDVI estimation indicates
the trend on green-up onset date from this approach is in
accordance with ground observation, though advanced esti-
mation may occur in snow-cover site. The unsolved problem
is what developmental stage of grass can be corresponded
to the onset date of green-up derived from satellite method-
ology. It has been noticed green-up onsets detected with
satellite signal reflect the start of active vegetation growth,
which is close to the point when gross primary produc-
tivity (GPP) rapidly rises up from zero, but later than the
first leaf unfolding or budburst – the signal of the start of
spring in the ground [32]. The GPP also can be modeled
from satellite images and CO2 flux data [49]. It is worth to
notice that ground observation is specie level while satellite-
derived phenology is biome-level. The biological meaning of
them is not identical. Nonetheless, the green-up onset dates
obtained from remote sensing in multi-years are positive
correlated with ground observations at the six study sites (R2:
0.58 – 0.81, Fig. 5). The stability of this method was reli-
able, and RMSEs at all sites are less than 7 days (Table 2).
However, bias between dates derived from remote sensing
and observations is highly depended on site locations. Neg-
ative bias can exist due to snow-cover, and large bias may
happen at sites with sparse vegetation.

V. APPLICATION TO INNER MONGOLIA GRASSLAND
Direct evidence is needed for determiningwhat time is ‘‘safe’’
to start grazing, given that the local policy of seasonal grazing
is purely relied on the empirical mode [51]. For example,
Wulagai grassland in the east of Inner Mongolia has an open
season for grazing since May 20th (DOY 140). However,
compared to this fixed date, our result demonstrates there is
a time range from early April to early June of green-up onset
date at Wulagai grassland (Fig. 3).
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TABLE 3. RMSE of linear regression between green-up onset date and
meteorological factors.

FIGURE 7. Values of the RMSE between the green-up onset date and
precipitation (a–b) or temperature (c-d) from 2002 to 2017 over
grasslands in the Inner Mongolia: (a) winter precipitation
(December-February); (b) spring precipitation (March-May); (c) winter
temperature (December-February); and (d) spring temperature
(March–May).

Satellite retrieval of spring phenology is intended for use as
an objective evidence for grassland management in the Inner
Mongolia. In this part, we will use a long-term green-up onset
date based on satellite method to demonstrate the interannual
and spatial variation and also examine how climate variables
affected the spring phenology during the 2002 to 2017 period.
The winter and spring precipitation and temperature as inde-
pendent climate controls for explaining the temporal change
in green-up onset date have been evaluated by RMSE value.
Spatial distribution of RMSEs have similar patterns within
the climate factor in this study (Fig. 7). We also notice
that grassland types respond different to climate controls on
green-up onset date shift. The linear regressions are fitted best
in meadow steppe, with the least RMSE around 7 to 12 days
(1st to 3rd quarters), typical steppe has relatively large RMSE
around 9-17 days, and desert steppe has extremely large
RMSE in the most study areas especially for precipitation as
regression variable (Table 3).

TABLE 4. Green-up onset date and corresponding NDVI values from year
2002 to 2017 over three grassland types in the inner mongolia.

We realize there is not a universal approach can be
suitable for the entire study area. Satellite-derived data are
determined by selection of platform, sensors and phenol-
ogy retrieval methods. The SG technique performs best
for different satellite sensors to reconstruct long-time series
datasets [49]. However, it has the limitation for reducing
cloud and aerosols’ noise, when identifying the maxima and
minima of NDVI with small amplitudes [52]. In our study,
the low NDVI amplitude is found in the desert steppe due to
small amount of vegetation (Fig. 5). Besides, the beginning of
the greatest increase phase of NDVI acquiring from moving
average method is probably time of snowmelt, instead of
green-up onset event [20]. For example, the NDVI curve
of Argun has two obviously increase processes (Fig. 5),
and its estimates of green-up onset date are much advanced
than ground data (Fig. 6; Table 2). Besides, it is hard to
have consistent trends in spring phenology based on the
different NDVI datasets and retrieving methods for spring
phenology [53]. The improvement of satellite-derived spring
phenology need eliminating the snow effects on NDVI signal.
Another approach is using enhanced vegetation index (EVI),
with a reduction of noise contamination, for detecting vegeta-
tion phenology [54]. Consequently, the SG filter with moving
averagemethod in this study is probably best fitted inmedium
to dense vegetation and snow-free grasslands, but has a poor
performance in sparse and snow-cover grasslands.

VI. CONCLUSION
One of purposes of this study was to apply a robust satellite
method on the identification of spring phenology onset based
on MODIS NDVI dataset. It appears that results are satisfied
in general, which had medium to high positive correlation
with ground observations, and clear presented the trend of
interannual and spatial changes. But this approach may have
limitation of absolute accuracy of the spring phenology onset
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date, especially at sparse vegetation and snow-cover study
areas. Except for those areas, the bias for ground site observa-
tions are 5-10 days. More pre-processing for avoiding snow
effect will need to perform before this method are accurate
for snow-cover grassland areas.

There are significances for application of this method.
Importantly, in vast grasslands, detailed information of green-
up is hardly available. The consideration of seasonal grazing
for present has to sacrifice the spatial variation. This research
provided effective information of spring phenology with the
time and spatial variation. The deviation of interannual and
spatial change of green-up onset had been documented from
2002 to 2017 over grasslands in the Inner Mongolia. More-
over, research tested the impact of climate factors on spring
phenology shifting. In short, this study is an initial process
presenting the satellite detectable spring phenology in the vast
grasslands of the Inner Mongolia, and providing independent
verification between green-up and climate variables.
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