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ABSTRACT We propose an efficient mixture classification technique, which uses electroencephalogra-
phy (EEG) signals for establishing a communication channel for the physically challenged or immobilized
people, by the usage of the brain signals. In order to identify the emotion expressions by an immobilized
person, we introduce a novel approach for emotion recognition based on the generalized mixture distribution
model. The main benefit of utilizing this model is that it is an asymmetric distribution, which helps to extract
the EEG signals, which are either in symmetric or asymmetric form. The skew Gaussian distribution helps to
identify the small duration EEG signal sample and helps toward better recognition of emotions in both clean
and noisy EEG signals. The proposed method is particularly well suited for the high variability of the EEG
signal allowing the emotions to be identified appropriately. The features of the brain signals are extracted
by using cepstral coefficients. The extracted features are classified into different emotions using mixture
classification techniques. In order to validate the model, six mentally impaired subjects are considered in the
age group of 60–68, and an 8-channel EEG signal is utilized to collect the EEG signals under audio-visual
stimuli. The basic emotions considered in this study include happy, sad, neutral, and boredom and an average
emotion recognition accuracy of 89% is achieved.

INDEX TERMS Brain–computer interaction (BCI), emotion recognition, affective computing, electroen-
cephalography (EEG), Gaussian mixture, cepstral analysis.

I. INTRODUCTION
Emotion recognition plays a significant role in understanding
the psychological behavior of the humans. A lot of research
was done in this area to extract the emotions using the audio
signals [1], [2] and categorize these signals into different
emotions, thereby paving the way to identify the individual’s
feelings and behaviour.

Emotions arise as a response to specific conditions or prob-
lems, and reflect the current stage of progress toward a
target [3]. For example, happiness indicates satisfaction of
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reaching a goal, anger represents reaction to a failed goal,
sadness reflects lost hope of reaching a goal, while boredom
indicates the lack of a goal [4]. Although, emotions cannot
be quantitatively measured, they still can be evaluated by
identifying the facial expressions, and some psychophysi-
ological values like skin conductance and heart beat rate
changes abruptly while a person enters into a particular
emotional state. The emotions induce physiological changes
in the brain that can be measured and assessed from the
central nervous system via acquisition and analysis of elec-
troencephalography (EEG) signals. Affect is a strong and
sufficiently short emotional reaction. This concept describes
emotion, mood and attitude. Emotion or emotional response
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is a direct reaction of a subject to an event (stimulus) impor-
tant to the subject [5]. Mood is formed by several emotional
states created by different events. The attitude is shaped by
the change of emotional state and mood associated with a
particular object. Human emotional state is defined as the
limited number of individual states associated to one of the
main emotions, such as anger, disgust, fear, happiness, sur-
prise, and sadness, or a combination thereof [6]. Emotional
states can be caused by visual and acoustic stimuli, thoughts,
life events or biological rhythms of nature.

Imaging an emotional state on a certain scale is based on
two well-established patterns:

1. Displaying the main emotional states on the nominal
scale of measurements. This method is based on the
principle that there are a certain number of emotional
states (e.g., angry, happy, sad, frightened, disgusted,
surprised) in which a person may be present.

2. A two- or three-dimensional model that allows
any emotional state to be represented by a three-
dimensional interval scale [7]. Relevant dimensions
express levels of attractiveness, excitement and dom-
inance. For example, anger and frustration have a neg-
ative appeal and a high level of excitement, but the
dominance of anger is strong and frightening is weak.

The Emotional State Imaging Model [7] is based on the
approach to emotion as a degree of excitement and attrac-
tiveness. In this way, any emotional state can be represented
in two-dimensional space in terms of excitement and attrac-
tiveness, where excitement is treated as the amount of energy
mobilized by the subject in response to the stimulus, and
attractiveness means the excitement of the subject to the sub-
ject.We can treat the impact recognition as the transformation
of physiological parameters into classes that describe the
human emotional state or the size of emotional dimensions
defined in the interval scale.

Various methods are used to identify and evaluate the
impact, using sensory systems, data discovery, knowl-
edge imaging methods, and other principles of artificial
intelligence that allow to read, analyse and interpret human
physiological parameters. Most of methods used to transform
physiological parameters into impact-related emotional states
are attributed to the field of machine training and pattern
recognition. Effect recognition is usually based on human
biological feedback, which allows the system to assess the
human physiological state and to recognize human response
to environmental effects. Feedback can optionally capture
one or more indicators that reflect the processes in the
body. According to the available human conditionmonitoring
methods, human physiological signals (skin galvanic reac-
tion (GSR), electrocardiogram (ECG), EEG, electromyogram
(EMG), temperature, heart rate, pulse rate, etc.) can be used
to identify the emotional states. For example, the GSR sen-
sitively reacts to emotional excitement and thus conveys a
human reaction to environmental change in a sufficiently
informative way. Cardiac activity reflects many essential

FIGURE 1. Different emotional states of mind.

psychological and physiological states, as it is strongly linked
to the sympathetic and parasympathetic nervous system.

Emotion recognition has been applied in Brain Com-
puter Interfaces (BCI), where individual emotion features are
extracted using either the temporal or spectral features of
EEG signal [8], which refers to the measures of brain electric
activity. Activation refers to the intensity of the emotion and
evaluation is a measure of emotion [9]. The measurement of
the brain electrical activity can be obtained by the placing
the EEG electrode on the brain scalp. Most of the techniques
used for emotion recognition are based on the extraction of
brainwave signals, where the signals are generated by subject
reacting to artificial or generated stimuli. Every extracted
emotion can be broadly classified using two groups, cat-
egorical (discrete) descriptor and dimensional (continuous)
descriptor. Emotions that are identified using the categorical
descriptors include, the basic emotions such as happy, sad,
neutral, boredom and angry (Figure 1).

The main disadvantages of the signal acquired from cate-
gorical descriptor include: the need of large training data for
analysis, it is limited to the identification of a single emotion
from the signal, and the emotion extracted from the signal
usually comprises a mixture of the several emotions.

Related works on this topic used physiological signals
such as ECG, skin conductivity, EMG and heart rate vari-
ability (HRV) for emotion recognition [10], [11]. EEG is
a practical modality with which the affective states can be
evaluated, especially the emotional primitives of valence and
arousal [12]. The main advantage of EEG signals is that the
electrical activity of the human brain can be captured very
quickly. However, the EEGmethod can onlymeasure the total
activity expressions of many neurons rather than the activity
of individual neurons. Therefore, the analysis of EEG signals
due to their complexity is a very relevant issue.

Various features of EEG such as the alpha and beta bands
are useful for identifying positive self-evaluation emotions
(awe, gratitude, hope, inspiration, and pride), the theta and
gamma bands – for enjoyment emotions (amusement, inter-
est, and joy) [13], while steady state visually evoked poten-
tial (SSVEP) is used to register positive motivation [14].
In order to effectively apply machine learning techniques,
it is necessary to distinguish the characteristic features of
human physiological signals (bio-markers) that reflect the
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main physiological processes. For example, elevated body
temperature is a biological sign of infection. In spite of huge
progress recently made in the identification of biomarkers,
there are still no reliable features that could be used to recog-
nize emotions and their disorders.

Typically, with EEG-based systems, time-frequency
domain features (e.g., [15]) andWavelet Transform [16] have
been widely used, while more rarely used are motif series
and graph-based features [12]. EEG signals are very sensitive
to noise and external irritants such as eye blinking and
muscular activity. To overcome such issues, artefact removal
algorithms can be used [17]. Since EEG measurements may
have a very large number of features that causes the curse
of dimensionality problem, the dimensionality reduction
approaches such as Principal Components Analysis (PCA),
and optimization methods such as those based on genetic
algorithms have been proposed [18]. Among methods used
for emotion recognition of EEG signals are common spa-
tial pattern (CSP), linear discriminant analysis (LDA) [19],
artificial neural networks (ANNs) [20], convolutional neural
networks (CNN) [21]. A more complex approach includes
Empirical Mode Decomposition (EMD), whence EEG chan-
nels are decomposed into intrinsic mode functions (IMFs)
and features extracted from the IMFs are forwarded for
classification [22], [23].

Little work has been done on using EEG data to study the
emotional state of immobilized, mentally impaired, incapac-
itated or locked-in persons [24]–[26]. Emotion recognition
using EEG for people with severe disabilities such as the ones
with an advanced stage of Parkinson‘s or Huntington‘s dis-
ease, patients with severe brain injury, patients in coma, or in
persistent vegetative state, or locked-in subjects presents an
considerable challenge. Evaluating emotion recognition can
allow to better evaluate other cognitive functions (e.g., such
as working memory) in patients, which may be essential
in establishing a correct medical diagnosis. For example,
Pan et al. [8] used P300 and emotion recognition to improve
the ability to capture signs of consciousness in eight severely
brain-damaged patients. For an in-depth review on the topic,
the readers can consult a survey presented in [27].

Many models have been proposed in the literature for
computational modelling and analysis of EEG signals such
as based on Hidden Markov Models (HMM) [28], Bayesian
Network (BN) [29], Gaussian Mixture Models (GMM) [30],
PCA and Vector Quantization (VQ) [31]. However these
methodologies have their own disadvantages. VQ and PCA
are dimensionality reduction techniques, which are aimed
towards the reduction of feature vectors, however, the emo-
tions play a vital role and compression of these emotional
signals may result into falsifying the emotions. Therefore to
model the emotions more accurately, the generative models
are mostly preferred, among these model based on GMM
is mostly utilized for emotion EEG signal recognition. The
GMM has its own disadvantage of considering infinite range
and symmetric nature. However in the reality the range of
EEG signal signals extracted from the EEG signal samples

TABLE 1. Units for EEG Properties- different rhythms of brain.

will be finite in range and, therefore, it is required to truncate
the EEG signal samples so as to convert the data into finite
size.

In this article, we focus on emotion recognition in brain
diseased persons. Our novelty is the use of the estimates of
themodel parameters of theGeneralizedMixtureDistribution
Model are updated using the ExpectationMaximization (EM)
algorithm, proposed by McLachlan and Krishnan [32].

The research article is organized as follows. Section II
presents an outline of the methodology. In Section III,
the Generalized Mixture Distribution Model is presented.
Section IV presents the experimental results, and Section V
concludes the paper.

II. OUTLINE OF METHODOLOGY
The brain signals from the subjects are extracted using EEG
acquisition device, and the signals are preprocessed to mini-
mize noise, and the amplitude signals are extracted which are
normalized into different ranges basing on the rhythm, for the
dimensionality reduction, data feature extraction and classifi-
cation for emotion recognition. The brain signals in the EEG
data can be analyzed in terms of 5 different rhythms: delta
(δ), theta (θ ), alpha (α), mu (µ), beta (β), and gamma (γ ).
Each rhythm has different frequency ranges and each reflects
a specific element of brain activity. The range and effect of
each rhythm is shown in Table 1.

For effective recognition of the emotions, feature
vectors based on Mel-frequency Cepstrum Coefficients
(MFCC), MFCC-LPC (Linear Prediction Coefficients) and

VOLUME 7, 2019 77907



N. Murali Krishna et al.: Efficient Mixture Model Approach in Brain–Machine Interface Systems

FIGURE 2. Block diagram for emotion recognition using EEG signals.

MFCC-LPC-SDC (Shifted Delta Coefficients) are
utilized.

The developed model is evaluated using the classification
performance measures of Precision and Recall. The method-
ology is summarized in Figure 2.

III. GENERALIZED MIXTURE MODEL DISTRIBUTION
To have accurate feature extraction from the EEG signals
extracted from the brain, maximumposterior estimationmod-
els are to be considered [30]. Hence in this paper, a General-
izedMixtureDistributionModel (GMDM) is utilizedwith the
combination of truncation and Skew GMM for classifying
the brain signals into different emotions. GMDM represents
the truncation can be applied towards the right side, or left
side, or to both ends of a distribution, and for asymmetric
distributions.

A. PROBABILITY DENSITY FUNCTION OF GMM
The probability density function (PDF) of GMM is given by:

f (z) =
1

√
2πσ

e
−1
2 ( z−µ

σ
)
2

; −∞ < z <∞ (1)

here, −∞ < z <∞, 0 < σ

In Eq. (1), the Z value ranges are above some upper trun-
cation points ZM as well as below some lower truncation
points ZL. With that reason the distribution is truncated either
left of right or both sides, and the PDF is defined as:

g(z) =
z(z)∫ ZL

ZM
f (z)dz

, −∞ ≤ z <∞ (2)

A =
∫ ZL

−∞

e
−1
2 ( z−µ

σ
)
2

√
2πσ

dz (3)

B =
∫ ZM

−∞

e
−1
2 ( z−µ

σ
)
2

√
2πσ

dz (4)

g(z) =
1
√
2π

e
−1
2 ( Z−µ

σ
)
2

∫ ZM
−∞

e
−1
2 ( z−µσ )

2

√
2πσ

dz−
∫ ZL
−∞

e
−1
2 ( z−µσ )

2

√
2πσ

dz

(5)

here ZL is lower truncation points, ZM is upper truncation
points.

B. EXPECTATION-MAXIMIZATION ALGORITHM FOR
ESTIMATION OF MODEL PARAMETERS
Z1, Z2,. . . , Zn are sample likelihood function observations

L (θ) = πNs=1

[∑k

i=1
αi

1
√
2πσ (B− A)

e
−1
2

(
z−µ
σ

)2]
(6)

=

∑N

s=1
log

(∑k

i=1
αigi (zs, θ)

)
(7)

θ l =
∑N

s=1
logh(ZS; θ ) = logL (θ)

=

∑N

s=1
log(

∑k

i=1
αigi(Zs; θ )) (8)

Zs = = πNs−1
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i=1
αi

−1
2

(
Z−Mi
σi

)2
√
2πσ (B− A)

 (9)

For segment K:

tk
(
Zs; θ l

)
=
αlkgi

(
Zs, θ l

)
h
(
Zs; θ l

) = αlkgk
(
Zs, θ l

)∑k
i=1 α

l
kgi
(
Zs, θ l

) (10)

Since here the distribution is truncated.
where

fi (z, θ) =
1

√
2πσ

e
−1
2

(
z−µ
σ

)2
(11)

Therefore,

Q
(
θ, θ (l)

)
=

∑k

i=1

∑N

s=1
E (l)

×

{
ti
(
z, θ l

)
(log gi (z; θ)+ logαi)

}
(12)

Substitute the value of log gi (z; θ) in equation 12, we have∑s

t=1

∑N

s=1
E (l)

×

{
ti
(
z, θ l

)
(log f (z; θ)− log(B− A))+ logαi

}
(13)

Maximum likelihood estimation for segment weight αk

L =E (l)
[
logL(θ l)+ λ(1−

∑k

i=1
αli

]
(14)∑N
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E l(tk

(
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E l
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(17)
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)
(18)
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∂
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This implies that ∂
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Finally, we have
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For asymmetric distribution, which helps to extract the
EEG signals, which are either in symmetric or asymmetric
form, and to identify the small duration of EEG sample region
follow a skew normal distribution. The PDF of EEG signal
is defined as follows, here λ is the skewness parameter and
k is the number of regions, αi > 0 are weights such that∑k

i=1 αi = 1 and
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C. ESTIMATION OF MODEL PARAMETERS
Let us have
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here
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D. CALCULATE MAXIMUM LIKELIHOOD VALUE
Basic condition

∑k
i=1 αi = 1, Lagrange type function L and

weights αk derivative of L with respect to a particular αk as
follows
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By multiplying and dividing the above equation is with αk ,
we get
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s=1

[
tk
(
ys, θ (l)

)]
= β.αk

Finally

α
(l+1)
k =

1
N

∑N

s=1

α
(l)
k gi

(
ys, θ (l)

)
h
(
ys, θ (l)

) (42)

E. UPDATING THE µ VALUE
For updating the parameter µk, k= 1, 2 . . ., K, we consider
the derivative of Q

(
θ; θ (l)

)
with respect to µk equated to

ZERO, we have Q
(
θ; θ (l)

)
= E

[
∂ logL(θ;θ (l)

∂µ

]
therefore

∂Q
(
θ;θ (l)

)
∂µk

= 0, finally, (43), as shown at the top of the next
page.

Since µi appears only in one region i= 1, 2, 3, . . ., k
(regions) we have (44), as shown at the top of the next page.

Hence, the updated equation for µ is

µ(l+1) = y+ σ 2(l)
+

1

∫ α(l)( y−µ(l)

σ (l)

)
−∞ e

−
1
2

(
t−µ(l)

σ (l)

)2
dt

+

∫ α(l)
(
y−µ(l)

σ (l)

)
−∞

(
t − µ(l)

)
e
−

1
2

(
t−µ(l)

σ (l)

)2

dt

− σ (l)α(l)e

[
(α(l)+σ(l))µ(l)−α(l)y

]2
2σ4(

l) (45)

F. UPDATING σ2
For updating σ 2, we consider the derivative ofQ

(
θ; θ (l)

)
with

respect to σ 2 and equate it to zero. i.e., (46), as shown at the
top of the next page, the updated equation for σ is

σ (l+1) = 1
/(

y− µ(1)
)2

σ 3(1)
+

1∫ α(1)
−∞

(
y−µ(1)

σ (1)

)
e
−

1
2

(
t−µ(1)

σ (1)

)2
+

∫ α

−∞

(
y− µ(1)

σ (1)

) (
t− µ(1)

)2
σ 3(I)

e
−
1
2

(
t−µ1

σ (1)

)2

dt

+α(1)
(
µ(1)
− y

σ 2(1)

)
e

[
(α(1)+σ (1))µ(1)−α(1)y

]2
2σ4

(47)

G. UPDATING α

To update α, we equate Q
(
θ; θ (l)

)
with respect to α to zero.

i.e.:∫ α
(
y−µ
σ

)
−∞

e
−

1
2

[
t−µ
σ

]2
√
2π

dt

·

e
−

1
2

[
α
((

y−µ
σ

)
−µ

)
σ

]2
√
2π

(
y− µ
σ

) .ti
(
ys, θ (l)

)
= 0 (48)

Now, for finding the updated equation for α

∂

∂α

[
log f (y)

]
=

0− 0+ 0+
1∫ α( y−µσ )

−∞ e
−

1
2

(
t−µ
σ

)2
dt

+

∫ α
(
y−µ
σ

)
−∞

0+ e
−
1
2

[
α
(
y−µ
σ

)
−µ

]2
σ2

·
d
dα

[
α

(
y− µ
σ

)]
− 0

 .ti (ys, θ (l)) (49)
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∑N

s=1


∑k

i=1

∑N

s=1
ti
(
ys, θ (l)

)


( y−µk
σ 2
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+

1∫ α( y−µσ )
−∞
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−
1
2

[
t−µ
σ

]2
√
2π

dt

 .

∫ α( y−µσ )
−∞

e
−
1
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√
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√
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1
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= 0 (43)
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√
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σ
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N∑
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1
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2
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This implies

N∑
s=1

ti
(
ys, θ (l)

)[
log

(
y− µ
σ

)
+

[(α + σ)µ− αy]2

2σ 4
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ti
(
ys, θ (l)

)− log
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1
2

(
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(50)

the updated equation for α

α(l+1) =

√
2σ 2(l)

µ(l) − y

log
∫ α(l)

(
y−µ(l)

σ (l)

)
−∞

e
−

1
2

(
t−µ(l)

σ (l)

)2

dt


− log

(
y− µ(l)

σ (l)

)] 1
2

−
σ (l)µ(l)

µ(l) − y
(51)

IV. EXPERIMENTAL RESULTS
In this paper, we have considered 4 different emotions
from 16 subjects with an advanced stage of Parkinson’s.
Ethical procedures were adhered to following the Helsinki
declaration and an informed consent was obtained. The
EEG electrodes were placed using 64-channel international
10–20 system. However, we used only 8 electrodes configu-
ration as shown in Figure 3.

FIGURE 3. Top head view with the electrode positions.

For data acquisition, we have used Emotiv EPOC,
14-channel wireless device for EEG signal scanning. Data
processing and visualization was performed using MATLAB
(Mathworks Inc.).
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FIGURE 4. Example of emotion-inducing visual stimuli: Sadness and
happiness.

The obtained EEG signals are processed using Generalized
Mixture Distribution Model. The mean and variance of the
signals is found and the probability density function of distri-
bution is found for each input signal. This process facilitates
in removal of noise and identifying to which emotion the
input signals exactly belongs to.

The experiment was carried to recognize four emotions
(happy, calm, angry, sad) of 16 subjects with Parkinson’s dis-
ease of advanced stages (4-5 stage according to Hoehn-Yahr
scale). During the experiment, the subject were comfortably
lying in a noise-insulated room. Audio-visual stimuli were
presented to the subjects using an overhead-mounted tablet
in the form of 30 sec long movie clips with an accompanying
music. An example of screenshots from presentedmovie clips
are shown in Figure 4.

As there is an inevitable noise present in the obtained brain
signal due to various reasons like movement of eyes, and
muscular tremor of the subjects, the signals get distorted.
To remove any movement-induced noise during recording
of EEG signals we have applied the modified BEADS filter
described in [17].

Pre-processed signal data is further applied to generalized
distribution method as described in Section III. The example
of the signals extracted can be seen in Figure 5, showing the
recorded EEG signals and corresponding emotion.

In order to classify the emotions, we have considered the
alpha band features of EEG signal and used the results of
the self-assessment as labels for classification of emotions
(happy, sad, angry and calm). We have achieved the emotion
classification accuracy of 89.1% as demonstrated by the con-
fusion matrix in Figure 6. The best accuracy of recognition

FIGURE 5. Examples of emotions (happy, angry, calm, sad) wave forms as
per the standard range of frequency.

FIGURE 6. Confusion matrix of emotion classification results.

was achieved for the happiness emotion (99.3%), while bore-
dom was recognized with an accuracy of only 78.9%. Happi-
ness was most often confused with neutral emotion, sadness
– with neutral, boredom – with neutral and neutral – with
boredom. Summarizing, recognizing the neutral emotion was
most difficult, since its emotional arousal was low.

V. CONCLUSION
Emotion recognition is crucial when aiming to advance
human-computer interaction. Emotion recognition has vital
role in supporting physically challenged people, timely dis-
ease diagnosis of neurodegenerative diseases such as Parkin-
son’s, and feedback of the usage of drug administered.

In this paper, we have introduced a novel approach
for emotion recognition based on Generalized Mixture
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Model (GMM) using the electroencephalogram (EEG) signal
dataset. The main benefit of utilizing this model is that, it is
an asymmetric distribution which helps to extract the EEG
signal, which are either in symmetric or asymmetric form,
another advantage of skewGaussian distribution is that GMM
is its particular case. The Skew Gaussian Distribution helps
to identify the small duration EEG signal sample and help
towards better recognition of the emotional recognition in
both clean and noisy EEG signals. The proposed method is
particularly well suited for high variability of the EEG signal
allowing to record the emotions exactly the feature vectors
are to be identified appropriately. The main benefit of using
Doubly Truncated Gaussian Distribution Model is that the
infinite range of the EEG signal samples can be truncated
between a certain limits and the recognition of the emotions
can be carried out using the finite range. Another advantage
of this proposed distribution is, it will be very useful to
recognize the small duration EEG sample signals and useful
towards best identification of human emotions.

The results reported in this article demonstrate the applica-
bility of our approach to enable accurate emotion recognition
based on the EEG signal analysis for immobilized persons.
The limitations of the current study include a small number
of subjects. The selection of audio-visual stimuli dataset also
may have influenced the results.
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