
Received May 14, 2019, accepted May 30, 2019, date of publication June 10, 2019, date of current version December 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2922162

A Novel Streaming Data Clustering
Algorithm Based on Fitness
Proportionate Sharing
XUYANG YAN1, MOHAMMAD RAZEGHI-JAHROMI2,
ABDOLLAH HOMAIFAR 1, (Member, IEEE),
BERAT A. EROL1, ABENEZER GIRMA1, AND
EDWARD TUNSTEL 3, (Fellow, IEEE)
1North Carolina Agricultural and Technical State University, Greensboro, NC 27401, USA
2Energy and Automation Department, ABB Corporate Research United States (USCRC), Raleigh, NC 27606, USA
3The Systems Department, United Technologies Research Center, East Hartford, CT 06118, USA

Corresponding author: Abdollah Homaifar (homaifar@ncat.edu)

This work was supported in part by the Air Force Research Laboratory and the Office of the Secretary of Defense (OSD) under Agreement
FA8750-15-2-0116, and in part by the National Institute of Aerospace’s Langley Distinguished Professor Program under
Grant C16-2B00-NCAT.

ABSTRACT As an unsupervised learning technique, clustering can effectively capture the patterns in
a data stream based on similarities among the data. Traditional data stream clustering algorithms either
heavily depend on some prior knowledge or predefined parameters while the characteristics of real-time
data are considered unknown. Besides, the user-specified threshold is used to overcome the effect of outliers
and noises, which significantly affects the clustering performance. The overlap among clusters is another
major challenge for the existing stream clustering methods. These constraints strongly limit their real-time
applications. In this paper, a two-phase stream clustering algorithm based on fitness proportionate sharing is
proposed. It handles streaming data when prior knowledge is not available and maps the clustering problem
into a multimodal optimization problem. It introduces a density-based objective function and adopts the
fitness proportionate sharing strategy to perform a more effective search for the cluster centers. To capture
the dynamic characteristics of streaming data, a recursive formula for the lower bound of the density function
is derived, and a summary of historical data is established for the proposed algorithm. The proposed algorithm
is applied to different data sets, and a comprehensive comparison between the proposed algorithm and five
well-known data stream clustering algorithms in the literature is provided. Results show comparable or better
performance relative to five popular data stream clustering algorithms. A scalability analysis of the proposed
streaming clustering method is presented in this paper as well.

INDEX TERMS Data streams, clustering, unsupervised learning, data mining.

I. INTRODUCTION
In recent years, data streams have attracted the interests of
many researchers in different fields, such as cyber secu-
rity [1], sensor network management [2], data mining [3],
and other data science related studies. Unlike the tradi-
tional static data set, a data stream is defined as a large
volume of data in a continuous flow that provides input to
a system; and thus, the number of data samples from this

The associate editor coordinating the review of this manuscript and

approving it for publication was Pascual Martinez-Gomez .

flow is infinite. The characteristics of data are not fixed
and different patterns will appear as time passes. Based on
the characteristic types, there are a wide diversity of appli-
cations developed for streaming data, the most applicable
ones are online shopping recommendation systems [4], traf-
fic network monitoring [5], network intrusion detection [6],
stock market prediction [7], and many real-time autonomous
systems.

Streaming data is highly advocated and utilized in many
real-time applications due to its capability of tracking the
information of real-time processes continuously. However, it

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 184985

https://orcid.org/0000-0003-1179-3221
https://orcid.org/0000-0001-7023-9170
https://orcid.org/0000-0002-0098-0534

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

still presents several major challenges [8]–[10]. At first,
the data is only accessed once and it is irretrievable in the
future, which requires an accurate interpretation of the data.
Secondly, due to the high transferring speed of streaming
data, an efficient processing technique is preferred to reduce
the processing time. At the same time, a large memory space
needs to be considered because of the infinite amount of data
in the stream, whichmay not be feasible for real-time applica-
tions. The high dimensionality and randomness of streaming
data also increase the difficulty of extracting information
from streaming data. Hence, systematic approaches should be
developed to conduct a comprehensive analysis of streaming
data.

Clustering is one of the most widely used techniques to
partition data spaces based on data similarity and to discover
patterns from data streams. It is an effective tool to capture the
nature of the data by separating the data based on similarities,
which can greatly help users to understand the concept behind
the information. However, traditional clustering algorithms
are usually run offline, and thus, lack the capability to capture
the characteristics of the data stream over time. For example,
the number of clusters varies as new data samples arrive,
and the centers of clusters evolve by time. In addition to
this, the structure of the data stream is unknown while the
majority of existing clustering algorithms depend on prior
information. For instance, the k-means based streaming clus-
tering algorithm in [11] needs a predefined value of k , and
a proper initialization of those k centers significantly affect
the clustering performance. The presence of outliers poses
another challenge on the cluster analysis of the streaming
data [9].

In this paper, a dynamic clustering algorithm based on
fitness proportionate sharing is discussed. Instead of rely-
ing on the availability of any prior information about the
data, such as cluster number or cluster radius, the proposed
dynamic fitness proportionate sharing clustering algorithm
utilizes the density value and a novel sharing strategy to
drive the search for an optimal number of the clusters. The
density values of samples measure the attractiveness of each
sample in its neighborhood and provide the priority order of
samples as the potential cluster centers. Samples with the
higher density values are more likely to be selected as the
pseudo centers -rather than randomly searching for cluster
centers, which avoids unnecessary explorations for cluster
centers. The fitness proportionate sharing (FPS) [12] strategy
encourages the exploitation of the potential clusters until a set
of good pseudo clusters are discovered. The cluster expansion
in [13], [14] is used to eliminate repeated clusters and find
an optimal number of clusters. Also, by using our approach,
there is no need for any user-specified parameter that needs to
be finely tuned to achieve a high quality of clustering results.
The Gaussian kernel function has been widely used in many
offline density-based clustering methods and it can effec-
tively address the issues of outliers or noises. Considering the
dynamics of streaming data, we have derived and presented a
novel recursive lower bound of the Gaussian kernel function

that allows the proposed algorithm to track the patterns of data
continuously.

The remainder of this paper is organized as follows:
Section 2 presents the existing streaming data clustering
methods and technical challenges. Also, the motivations and
contributions of this work are summarized in Section 2.
Section 3 briefly reviews the offline FPS-clustering method
and discusses the proposed dynamic FPS-clustering algo-
rithm for data streams. A recursive lower bound of the
Gaussian kernel function, and a related Lemma to handle
outliers in the streaming data cluster analysis are proposed
in Section 3. A detailed mathematical proof associated with
the dynamic FPS-clustering algorithm (DFPS-clustering) is
presented in the Appendix. Simulation results and perfor-
mance evaluation of the proposed algorithm are presented
in Section 4. Finally, Section 5 concludes the paper and future
work is discussed.

II. BACKGROUND
In this section, a literature review on the state-of-the-art
streaming clustering methods is presented and a summary of
the technical challenges is discussed. Also, the motivations
and contributions of this work are summarized in this section.

A. STATE-OF-THE-ART METHODS REVIEW
Recently, there have been various approaches developed for
streaming data clustering as presented in [9], [10], [15]–[22].
As one of the earliest streaming clustering methods,
[11] proposed an offline k-means clustering algorithm by
dividing the data stream into sequential partitions and iden-
tifying clusters with the k-means algorithm within each par-
tition. Then, the clusters in each partition are saved until it
exceeds the memory threshold; so, a reclustering procedure
can be applied to those clusters to obtain a small set of clus-
ters. With its reclustering procedure, the memory limitation
is easily resolved. However, due to its unresponsiveness over
time, this clustering scheme has an obvious limitation of
recognizing the evolving characteristics of the given data.

An alternate solution is proposed in [23] by applying the
concept of ‘‘Moving Window’’ and introducing time-index
parameters to decay the effect of historical data as time
changes. Based on this concept, a ‘‘two-phase scheme’’ is
introduced in the streaming data clustering procedure and
the CluStream algorithm is developed [16]. It consists of the
continuous partitioning of raw data into data chunks, and
the offline clustering for each data chunk from the summary
of historical data. Based on this work, many extensions are
proposed to improve the existing offline clustering algorithms
for the online processing. In [24], Guha and Sudipto applied
the weighted k-means in CluStream. Zhou et al. proposed the
Sliding-window clustering (SWClustering) procedure based
on the Exponential Histogram of Cluster Feature (EHCF)
in [25]. Unlike CluStream, a number of EHCFs are devel-
oped from the evolving data stream and the outdated record
can be effectively eliminated from the EHCF. A bounded
memory space is guaranteed by the predefined maximum

184986 VOLUME 7, 2019

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

number of EHCFs. A k-means clustering procedure is per-
formed whenever the clustering request arrives. Nevertheless,
k-means based streaming clustering algorithms have a strong
dependence on the prior knowledge of data (e.g., cluster num-
ber or radius) and are incapable of recognizing clusters with
arbitrary shapes or sizes, which limits their use in practical
applications.

With the ‘‘two-phase scheme’’ discussed previously, many
density-based stream clustering algorithms are proposed to
overcome the challenges of discovering clusters with arbi-
trary sizes and identifying outliers. As an extension of the
‘‘Density-based spatial clustering of applications with noise’’
(DBSCAN) algorithm, DenStream [26] forms clusters based
on the reachability of the micro-clusters by checking their
distance between each other with a specified threshold. Like
CluStream in [16], there is an online maintenance of the
micro-clusters list and offline reclustering of micro-clusters.
It can effectively handle the noise and outliers in the stream
by expanding the concepts of micro-clusters as core micro-
clusters, potential micro-clusters, and outlier micro-clusters.
A variation of the DenStream clustering algorithm, named
SDStream, is proposed by Ren and Ma in [27]. It applies
the ‘‘sliding window’’ to the DenStream method and stores
micro-clusters in the form of EHCFs. Similar to the SWClus-
tering algorithm, outdated samples are effectively eliminated
and only the most recent records are used in the clus-
ter analysis. Since it does not use the entire data stream,
it suffers the risks of losing important historical informa-
tion. Two recent one-pass density-based streaming clustering
algorithms, namely HCMstream [28] and BEstream [29],
are proposed to apply the discard-after-cluster concept to
record the entire history of the streaming data without caus-
ing the memory overflow. As the first density-based pro-
jected clustering method, HDDstream [30] was proposed
to address the high-dimensionality of data streams. The
dimension preference vector is introduced to overcome the
effect of noises and the concept of micro-clusters is used to
handle the outliers. Hahsler and Bolanos proposed another
density-based clustering algorithm named DBStream in [20]
to capture the density between micro-clusters. It improves the
clustering performance by considering the density between
micro-clusters especially when micro-clusters are overlapped
with each other. An Enhanced Density-based Data Stream
(EDDS) clustering technique is proposed in [31] to improve
the performance of the DBSCAN-based stream clustering
methods with comparable time complexity. To handle mixed
data streams, Chen and He developed a fast density-based
data stream clustering algorithm to cluster data streams with
mixed data types [32]. They proposed a novel distance mea-
sure for the mixed data stream and introduced a micro-cluster
characteristic vector to track the mixed data stream continu-
ously. In [33], Gong et al. extended the ‘‘Density Peak Clus-
tering’’ algorithm from [34], and proposed a novel streaming
clustering algorithm named ‘‘EDMStream’’ by exploring
the evolution of the density mountains in the streaming
data. To enhance the computational efficiency, it adopts the

Dependency Tree (DP-Tree) structure to abstract the density
mountains and some filtering schemes are employed to fur-
ther reduce the computational costs. Nonetheless, the prior
knowledge requirement is still a key factor to influence
the performance of a density-based clustering algorithm for
data streams. Besides, the high computational complexity is
another major concern for most of these techniques.

A number of the Grid-based streaming clustering algo-
rithms such as D-Stream [19], DENGRIS [35], DD-
Stream [36], EXCC [37], and MuDi-Stream [38], have been
proposed recently as well. The D-Stream algorithm partitions
the data space into a number of grid cells and uses them
to compute clusters by merging adjacent dense cells. The
density of the grid cell depends on the number of points
within the cell and a time-dependent decaying factor is intro-
duced in the density computation to capture the dynamic
changes in streaming data. As an extension of the D-Stream,
DENGRIS [35] primarily focuses on the most recent data
by applying the sliding window. DD-Stream adopts the same
clustering procedure from the D-Stream while considering
the sporadic grids in the cluster analysis, which can signif-
icantly enhance the clustering quality. In [37], an exclusive
and complete clustering (ExCC) algorithm based on the grid
synopsis is proposed to cluster data streams with both the
numeric and categorical features. The hold-queue strategy is
used to address the presence of noises in the data stream with
a compromise to more time and memory complexity [39].
MuDi-Stream [38] is designed to enhance the cluster analysis
of data streamswithmulti-density clusters. However, the time
complexity of MuDi-Stream increases dramatically when the
dimensionality of the data stream grows, which makes it
less appropriate to cluster high-dimensional data streams.
In regard to the high computational complexity of a grid-
based clustering algorithm, extensions like MR-Stream [40]
and LeaDen-Stream [41] are developed to provide a finer grid
spacing by applying some effective techniques. On the other
hand, the resolution of the grid space is still an open problem
when very little information about the data is available.

B. CHALLENGES, MOTIVATIONS AND CONTRIBUTIONS
As stated previously, k-means streaming clustering algo-
rithms not only have a strong dependency on the prior knowl-
edge about data, but also are sensitive to outliers and noise.
Also, they are not capable of detecting clusters with arbitrary
shapes and sizes, which strongly limits their applications.
As an alternative of the k-mean based streaming clustering
approaches, the density-based clustering methods utilize the
cluster radius and local sample density distribution to over-
come the dependency on the cluster number. With the density
distribution of the samples, clusters with arbitrary shapes
and sizes can be simply discovered. The density threshold
is used to overcome the effect of outliers and some time-
decaying parameters need to be given in advance to capture
the change of the data stream over time. However, the ini-
tialization of those user-specified parameters needs to be
carefully selected, and some tuning procedures are required to

VOLUME 7, 2019 184987

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

ensure the clustering performance. The high time complexity
of the density-based clustering algorithms makes them less
applicable in real-time data stream analysis. Unlike density-
based stream clustering approaches, the grid-based stream
clusteringmethods are faster because no distance calculations
are required in the clustering stage. However, the partition
of the data space requires a good prior understanding of the
data to achieve a high clustering accuracy and some user-
specified parameters are necessary. Moreover, the time com-
plexity of the grid-based stream clustering methods become
intractable in the cluster analysis of high-dimensional data.
The summary of the existing challenges are outlined as
follows:

1) Majority of the existing streaming clustering methods
either need a predefined cluster number or a clus-
ter radius while very little, or no prior information
about the real-world data streams is available. How to
deal with the unknown streaming data without user-
specified parameters is still a challenging and ongoing
research topic.

2) A poor clustering performance can be caused by the
existence of the highly overlapped clusters and outliers.
To identify outliers, some user-specified parameters
need to be given in advance. The separation of highly
overlapped clusters and the outlier detection without
user-specified thresholds are another two challenging
tasks in clustering streaming data.

3) A huge amount of memory space is required to store
useful information about the data stream. For example,
CluStream encoded the data information into a set of
micro-clusters with different pyramidal time frames,
which takes a relatively large memory space. How to
save the memory space with a more concise summary
of data is the major concern in the real-time streaming
data cluster analysis.

In order to solve these challenges, Angelov proposed a
Recursive Density Estimation (RDE) [42] formula to model
the density distribution of the data stream over time without
any user-specified parameters. Based on RDE, several one-
pass stream clustering approaches are proposed in [42]–[44]
to automatically extract the cluster structure from streaming
data, and it can effectively overcome the above challenges.
However, these methods are developed to handle data streams
where the individual sample is arriving continuously while
most of the real-world data streams arrive as a sequence of
data chunks, which may not be appropriate in the analysis
of real-world data streams. Also, they adopted the simple
density function to approximate the density distribution of the
data, which may not be able to capture the uncertainty in the
data. Since the Gaussian Kernel function is widely used in
many offline clustering algorithms such as DENCLUE [45],
Mean-Shift based clustering [46] and DOE-AND-SCA [47]
algorithms, the efficacy of the Gaussian kernel function has
been proved in handling the large datasets with noise and
outliers when the number of clusters is unknown in advance.
However, there is no recursive formula for the Gaussian

kernel function in the literature and majority of the existing
density-based streaming clustering algorithms utilize the sim-
ple density function. Hence, in this paper, we proposed a
recursive lower bound of the Gaussian kernel function to
approximate the density distribution of the data stream and
developed a novel dynamic clustering algorithm to auto-
matically extract the cluster structure from scratch. The
main contributions of this paper are summarized as
follows:

1) Due to the success of the Gaussian kernel function
in many offline clustering algorithms, we proposed a
recursive lower bound formula for the Gaussian kernel
function to estimate the density value of samples in
the data stream over time. It is the first work that
derives the recursive lower bound of the Gaussian ker-
nel and a related mathematical proof is presented in
the Appendix. It is capable of capturing the density
evolution of the samples in the stream without using
all historical data samples, which reduces the computa-
tional costs significantly. Also, there is no need to store
all historical samples in the density evaluation of newly
arrived data.

2) Based on the proposed recursive lower bound of the
data density, we extended the offline FPS-clustering
algorithm and proposed a two-phase dynamic cluster-
ing procedure to automatically extract data structure
from the very beginning. It does not require the user-
specified radius and cluster numbers in advance. On the
contrary, it evolves the cluster structure from the data
itself. Besides, the fitness proportionate sharing strat-
egy is adopted to guide the search of the potential clus-
ter centers by treating it as a multi-modal optimization
problem. It can effectively enhance the cluster analysis
of the streaming data, especially when there are many
overlapped clusters.

3) With the recursive lower bound of the Gaussian kernel
function, we applied the three-sigma principle in the
outlier detection procedure and developed a related
Lemma to discriminate the outliers from novel clusters.
Unlike most of the state-of-the-art methods, no user-
specified threshold is required to distinguish the
outliers.

III. PROPOSED METHODOLOGY
As mentioned earlier, the existing streaming clustering algo-
rithms are highly restricted by the unbounded memory
complexity, dynamic characteristics and prior knowledge
on streaming data. In order to overcome these con-
straints, a dynamic clustering algorithm referred to as
DFPS-clustering is proposed in this section. First of all, due
to the success of the Gaussian Kernel function in many offline
density-based clustering techniques, a novel recursive lower
bound of the Gaussian kernel function is derived to capture
the density evolution of the data stream over time. Based
on the recursive lower bound, the offline FPS-clustering is
applied within each arriving data chunk by considering the

184988 VOLUME 7, 2019

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

historical samples. In this way, a temporary cluster summary
of each data chunk can be obtained and an online update of the
global cluster summary can be performed to track the change
of clusters in the data stream. At the same time, the three-
sigma principle is used to distinguish the outliers from the
novel clusters. The details are discussed in the following
subsections.

A. OFFLINE FPS-CLUSTERING ALGORITHM
Unlike the most often used offline clustering algorithms,
the FPS-clustering algorithm is developed to handle a data set
without any prior knowledge, i.e., cluster number or radius.
It is a density-based clustering algorithm and it maps the
clustering algorithm into a multi-modal optimization prob-
lem. Considering the density function as an objective function
(fitness), the cluster centers are defined as those peaks that
reach the local maximum of the density distribution. With the
Gaussian kernel type of density function used in [48]–[50],
the fitness of each data sample is evaluated and it is defined
as follows:

f
(
x i
)
=

N∑
m=1

(
e−
‖xi−xm‖

β

)γ
, i ∈ [1,N] . (1)

The normalization parameter β denotes the variance of
data, and γ represents the scaling parameter that approxi-
mates the shape of clusters. N is the total number of samples
and the norm here refers to the Euclidean distance between
sample x i and sample xm. A candidate set is established
from the whole data set, and FPS-clustering will evaluate
the potential for every point to be a cluster center based
on their density value. Then, a search for candidate cluster
centers is implemented by ranking individuals in the candi-
date set and the rank of individuals follows the descending
order. The first individual in the rank is considered as a
potential cluster center. Fitness proportionate sharing [51]
is performed on individuals within the niche radius of the
current potential cluster center so that their fitness values are
scaled down, which provides a good opportunity for other
local peaks to be searched in the next competition. The niche
here refers to the neighboring region of each local peak and
the idea of fitness proportionate sharing is motivated from
the procedure of population migration. For example, the city
with the best living conditions can attract many people to
come; then, the resources of the city are shared by a large
population, which decreases the average resource usage of
each individual and makes the city become unpleasant to
stay in. Due to a depletion of resources, people will then
search for the second most pleasant city and migrate to it.
In an analogy to this procedure, all of the potential cluster
centers can be explored with fitness proportionate sharing
as detailed in [52]. After the search of potential cluster
centers, a dynamic niche expansion [13], [53] is employed
to remove redundant clusters, and obtain an optimal set of
clusters.

B. RECURSIVE LOWER BOUND OF THE DENSITY
ESTIMATION
As previously discussed, the proposed streaming clustering
framework is developed based on the density-based objective
function and it is necessary to obtain a good estimation of the
density distribution of the data stream dynamically. Hence,
a recursive lower bound of the Gaussian kernel function [54]
is derived here to track the sample density distribution in the
data stream. Data chunk (Ct) [55] is used to partition the data
stream (Dt) into several partitions evenly, and each partition
is processed based on their arriving time for the continuous
flow and high rate of the data stream. By partitioning, each
data chunk Ct becomes a subset of the data stream and Dt is
the collection of data chunks until the arrival ofCt , which can
be expressed as:

Dt =
t⋃

ti=1

{Cti}, Ct =
M⋃
i=1

{x i(t)}. (2)

The parameter t denotes the time index of the arriving
data chunk and M is the size of the data chunk. For each
data chunk, the FPS-clustering algorithm is implemented to
locate all clusters offline while the summary of those clus-
ters is kept online, which is updated with time. To use the
DFPS-clustering to analyze streaming data, both a recursive
formula for the lower bound of density estimation and a sum-
mary of clustering history are required. Specifically, the sum-
mary of the clustering history reflects the change in patterns
of the data stream and it consists of: global mean, global
variance, stabilization parameter, cluster centers, the radius,
and density values of the centers. It is represented as St =
{µt , βt , γt ,

[
Z jt , f

(
Z jt
)
,Rjt

]
, j = 1, 2, . . . , |Zt |}. The cardi-

nality notation | ∗ | is adopted to represent the number of ele-
ments in the set. The summary of the clusters is continuously
updated by performing the merge between new clusters and
historical clusters, which is described in Algorithm 1. Also,
the global statistical information of the data stream, including
mean, variance, and stabilization parameter, is recursively
updated with Equations (4), (5), and Algorithm 2. Thus, there
is no need to save the entire data stream, which effectively
overcomes the memory limitations. A recursive formula is
proposed based on Equation (1) and the cluster summary,
which is expressed as:

f̂
(
x i(t)

)
=

|Zt−1|∑
j=1

[(
e−

d2ij
βt

)γt
×f

(
Z jt−1

)]
+

|Ct |∑
m2=1

(
e−
−d2im2
βt

)γt
,

(3)

where dij is the Euclidean distance from the newly arriving
sample x i to the center of the previous cluster Z jt−1 and

f
(
Z jt−1

)
is the density value of the previous cluster center j.

Assume |Pjt−1| refers to the number of samples that belong to

the jth clusters at t−1, the value of f
(
Z jt−1

)
can be obtained

VOLUME 7, 2019 184989

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

from the following equations:

f
(
Z jt−1

)
=

|Pjt−1|∑
k=1

(
e
−

d2kj
βt−1

)γt−1
, βt=

t − 1
t
×βt−1+

βCt

t
.

(4)

where

βCt =

∑M
i=1

(
x i − µt

)2
M − 1

, µt =
(t − 1)× µt−1

t
+
µCt

t
,

(5)

The normalization parameter βt denotes the variance of the
data stream at t , and βCt is the variance of the current data
chunk Ct , where µt denotes the mean of the data stream at t
and µCt is the mean of samples in the current data chunk Ct .
γt is a stabilization parameter that determines the shape of the
cluster and t is the time index of the data chunk. Considering
the property of Gaussian distribution, the three-sigma prin-
ciple is adopted in Lemma 1 below to remove outliers. The
sample with a density value that falls outside of the three-
sigma distance away from the average density values of the
existing clusters has a probability of 0.00135 to be considered
as the cluster center, which can be used to remove the effect
of outliers in discovering new potential clusters. Based on
Equation (3) and the three-sigma principle, a lower bound
condition to check the existence of new clusters by the mean
µ (f (Zt−1)) and variance σ (f (Zt−1)) of the density values of
the previous cluster centers is derived as:
Lemma 1: If f̂ (x i(t)) ≥ |µ (f (Zt−1)) − 3σ (f (Zt−1)) |.

A new cluster will appear and the cluster expansion pro-
cedure will be triggered to check for possible cluster
expansions.

A detailed mathematical proof for Equation (3) and
Lemma 1 is presented in the Appendix. Considering the
uncertainty of streaming data, most of the density-based clus-
tering algorithms utilize a Gaussian kernel to approximate
the true density distribution of the data stream, and identify
clusters in the data streams. For clusters that are identified
with a Gaussian kernel, we exploit the symmetric property
of the distribution that can simplify the density calculation
of streaming data. Therefore, for the mathematical proof,
a Gaussian density distribution with symmetric property is
considered in the Appendix.

C. DYNAMIC FITNESS PROPORTIONATE SHARING
(DFPS)-CLUSTERING ALGORITHM
As described above, the recursive lower bound of the Gaus-
sian kernel function is derived to approximate the density
of samples over time. Also, a related Lemma is defined
to discriminate the outliers from the novel clusters. With
Equation (3), the fitness of samples in the data stream is
approximated recursively. Then, the FPS-clustering algo-
rithm is implemented to locate all clusters offline while the
summary of those clusters is kept online, which is updated
with time. According to Lemma 1, a possible expansion

Algorithm 1 Dynamic Fitness Proportionate Sharing
Clustering (DFPS-Clustering)
1: Data chunk: Ct , t = 1, 2 . . . ,Tin
2: The summary of clusters at t
3: St = {[Z

j
t , f

(
Z jt
)
,Rjt], j = 1, 2, . . . , |Zt |}

4: The size of data chunk: Buffersize
5: for t = 1 : Tin do
6: Input the data chunk Ct
7: Form a sampling data set S by randomly selecting Ns

samples from the data chunk Ct
8: if t = 1 then
9: Compute the statistical information of the data

stream: {µt = µC1 , β1 = βCt , γ1 = γC1}

10: Conduct the fitness proportionate sharing cluster-
ing in the first data chunk C1 with Equation (1)

11: Create the summary of the identified clusters S1
12: else
13: Update the statistical information of the data

stream (βt , µt , and γt)
14: Conduct the fitness proportionate sharing cluster-

ing based on the fitness values that are obtained from
Equation (3) and St−1

15: Check the estimated density values of new iden-
tified potential clusters with the boundary condition in
Lemma 1 to compute new clusters

16: Perform possible cluster expansions among the
previous clusters and new clusters

17: Update the cluster summary St with the latest
statistical information and clusters that are obtained from
cluster expansions

18: end if
19: end for

between the previous clusters and the new clusters is per-
formed to remove all redundant clusters. Then, the summary
of clusters is updated to capture the characteristics of the data
stream continuously, as detailed in Algorithm 1.

Algorithm 1 suggests clusters can be evolved with the
change of the data stream continuously and the summary of
the previous clusters can be updated simultaneously. This is
implemented by applying offline fitness proportionate shar-
ing clustering for each data chunk with an online estimation
of density. Similar to the FPS-clustering algorithm, the cluster
expansions between the previous and new clusters are per-
formed to update the cluster summary, which can effectively
capture the association between the past and new patterns of
streaming data. The density estimation that uses Equation (3)
can greatly reduce the computational complexity without
losing any of the characteristics of the previous data, which
can speed up the clustering procedure.

D. PARAMETER TUNING AND SELECTION
As shown in the density function, Equation (1), the
parameter γ [46], [48] can be considered as a scaling factor
to model the stable density distribution, which has previously

184990 VOLUME 7, 2019

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

Algorithm 2 Dynamic Correlation Comparison
Algorithm (DCCA)
1: Data chunk: Ct , t = 1, 2 . . . ,Tin
2: Stabilization parameter of the current data stream: γt
3: Stabilization parameter of the previous data stream:γt−1
4: Stabilization parameter of the first data chunk C1:γ0
5: Variance of the current data stream: βt
6: Variance of the previous data stream: βt−1
7: Initial variance of the data stream: β0
8: if t = 1 then
9: Obtain γ0 from the first data chunk C1 using CCA

[48]
10: else
11: Compute the new stabilization parameter: γt = γ0 ×

βt
β0

12: end if

been defined as a stabilization parameter. In [46], the
‘‘Correlation Comparison Algorithm’’ (CCA) [48] is used to
obtain a good estimate of γ in the mean-shift based clustering
procedure. It is implemented by continuously increasing the
value of γ step by step until there are no further significant
improvements to the approximation of density distribution.
It is similar to the procedure of hypothesis testing and a
threshold value of Rt in [48] is used here. According to the
confidence level of 95%, a threshold of 0.97 is widely used
in the CCA to provide an acceptable estimation of the density
distribution. However, due to the dynamic characteristics of
streaming data, the value of γ also needs to be updated with
the arrival of new data to approximate the density distribution
of data as time varies. In order to use CCA in the proposed
Algorithm 1, modifications are made on the CCA, and we
introduced a dynamic version of CCA that is summarized
in Algorithm 2.

According to Algorithm 2, the value of the stabilization
parameter γ is also updated as the variance of the data stream
varies. Instead of keeping γ fixed, the relative value between
β and γ is kept constant and is referred to as bandwidth BW ,
which is defined to reduce the overlap between clusters.

IV. SIMULATION RESULTS AND DISCUSSIONS
To evaluate the performance of the proposed algorithm, seven
datasets, three synthetic created by the authors and four others
from [56] and [57] are used. For simplicity, they are labeled
as D1, D2, D3, D4, D5, D6, and D7, respectively. Also, two
performance metrics, Rand Index [58] and Kappa Index [59],
are used to provide a good interpretation of its performance.
Since the proposed approach is developed based on the
two-phase clustering framework, five representatives from
the existing well-known two-phase algorithms, including
STREAM [17], [24], CluStream [16], [19], D-stream [19],
HDDStream [30], and DBStream [20], are applied and a
comparison between them and DFPS-clustering is discussed
to show the effectiveness of the proposed algorithm in
this section. Due to the popularity of these five clustering

algorithms, there are several public software packages written
in R programming language for statistical computing, which
makes it easier for analysis and testing. Besides, the com-
plexity analysis of the proposed clustering approach and the
other five baseline methods is discussed in this section. The
scalability analysis of the proposed DFPS-clustering method
is presented in this section as well. By default, all of the
datasets are partitioned into several data chunks to generate
streaming data. The size of the data chunk used for different
data is selected based on the criterion that the number of
samples in the data set is divisible by the size of the data
chunk. According to this criterion, different sizes of data
chunks are used in this paper and the details are discussed
below.

A. SYNTHETIC DATASETS
Three synthetic continuous datasets are generated to validate
the efficacy of the proposed streaming clustering method, and
their characteristics are summarized in Table 1. The detailed
descriptions of these two synthetic datasets are discussed
below:

• D1 has 18, 000 samples that are randomly generated
around nine clusters and it is a 2D synthetic dataset.
Clusters in D1 are separate from one another and each
cluster has an equal number of samples. It is divided into
six data chunks with an equal size of 3, 000. By parti-
tioning,D1 is processed in the streaming fashion and the
corresponding clusters at different sampling time indices
are displayed respectively in FIGURE 1.

• Similar to D1, D2 is generated by distributing sam-
ples within each cluster with a Gaussian distribution.
It has 20, 000 instances that lie around ten clusters with
unequal sizes and each instance has two features. How-
ever, clusters in dataset D2 both have high overlapped
coverage and uneven sizes. It is divided into five data
chunks with an equal size of 4, 000 and the performance
of DFPS-clustering is presented in FIGURE 2.

• D3 has 50, 000 samples that are distributed around ten
non-overlapped clusters and each instance consists of
ten features. There are 1, 000 outliers that are randomly
distributed in the entire data space and the remaining
49, 000 data samples lie around those ten clusters. With
a default chunk size of 1000, it is divided into 50 data
chunks and then processed sequentially as a stream of
data.

B. REAL DATASETS
Considering the complexity and uncertainty of real data,
the proposed algorithm is applied to several real datasets. The
summary of all real datasets is presented in Table 1. Also,
the last two columns of Table 1 indicate the presence of the
overlapped clusters and outliers for each dataset, respectively.
The symbol T asserts true and symbol F denotes the false.
The details of those four real datasets are summarized as
follows:

VOLUME 7, 2019 184991

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

TABLE 1. Datasets descriptions in terms of number of instances, features, actual clusters, predicted number of clusters, the presence of overlapped
clusters and outliers.

FIGURE 1. Simulation results for the synthetic dataset D1 (a): clusters at t = 1, (b): clusters at t = 2, (c): clusters at t = 3, (d): clusters at t = 4, (e):
clusters at t = 5 and (f): clusters at t = 6.

• D4 is from seismic data provided by IRIS [56] and there
are two highly overlapped clusters in the IRIS data set.
In the simulation, it is equally divided into three data
chunks, and each chunk is processed sequentially as a
stream of data.

• D5 is collected from the stability analysis of the decen-
tralized smart grid [56], [57]. There are two clusters
in dataset D5, and it is partitioned into ten consecutive
chunks with a size of 1000.

• D6 is a subset of the Forest Cover Type Dataset [56] and
the first 100, 000 instances with ten numeric features
are used here. It has seven ground truth clusters, and
clusters are heavily overlapped with each other. Due
to the high overlap among clusters, the cluster analy-
sis of dataset D6 is very challenging. With the default
experimental setting in [16], [19], [20], [24], [30], it is
partitioned into 100 sequential chunks with an equal size
of 1, 000.

• D7 is selected from the Knowledge Discovery in
Database(KDD) Cup Network Intrusion data [56], and

it is widely used in the simulations of many clustering
algorithms. Regarding the large memory space, dataset
D7 only consists of the first 200, 000 samples from the
KDD Cup training dataset and all of its attributes are
normalized into the interval: [0, 1]. It is divided into
200 data chunks, and each data chunk has an equal size
of 1, 000, which keeps the same experimental setting
in [16], [19], [20], [24], [30]. There are twenty-two
different types of network attacks and one normal state
in D7, which results in a total number of twenty-three
clusters.

C. PERFORMANCE METRICS
To provide a comprehensive evaluation of the performance
of the proposed algorithm, two statistical score functions
known as Rand Index and Kappa Index from [58], [59] are
used, respectively. The Kappa Index is also named ‘‘Adjusted
Rand Index (ARI)’’ and it is widely used in the evaluation
of many clustering methods [60]. These two parameters are
based on the confusion matrix that reflects the consistency

184992 VOLUME 7, 2019

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

FIGURE 2. Simulation results for the synthetic dataset D2 (a): clusters at t = 1, (b): clusters at t = 2, (c): clusters at t = 3, (d): clusters at t = 4
and (e): clusters at t = 5.

TABLE 2. The comparison of RI between STREAM [17], [24], CluStream [16], [19], D-Stream [19], HDDStream [30] and DFPS-clustering.

TABLE 3. The comparison of KI between STREAM, CluStream, D-Stream, HDDStream, DBStream and DFPS-clustering.

between the original data clusters and the predicted results.
Assume N to be the total number of data samples in the
data space, and Nii to be the diagonal element of the con-
fusion matrix that defines the number of samples that are
assigned to cluster i that originally belonged to cluster i. The
number of samples belonging to the original cluster i can be
obtained by finding the sum of each row in the confusion
matrix: Nrowi =

∑
j Nij. The number of samples that are

classified into cluster j is the sum of each column in the con-
fusion matrix: Ncolj =

∑
i Nij. The performance indices are

defined as:

1) Rand Index (RI)

RI =

∑
i Nii
N

. (6)

2) Kappa Index (KI)

KI =
N ×

∑
i Nii −

∑
i Nrowi × Ncoli

N 2 −
∑

i Nrowi × Ncoli
. (7)

Based on Equations (6) and (7), the performance indices
of the proposed algorithm for both synthetic and real data
sets are summarized in Tables 2 and 3. The values of RI

VOLUME 7, 2019 184993

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

FIGURE 3. Simulation results for IRIS dataset D4 (a): cluster at t = 1, (b): clusters at t = 2 and (c): clusters at t = 3.

and KI are calculated at the arrival of the final data chunk
and it includes samples from all data chunks, which reflects
the change of patterns in the streaming data. The results
for the STREAM, CluStream, D-Stream, HDDStream, and
DBStream algorithms based on RI and KI indices are also
presented in Tables 2 and 3, respectively. All of the data sets
are simulated 30 times and the average values of RI and
KI are presented in Tables 2 and 3.

D. RESULTS DISCUSSIONS
As shown in Table 1, the proposed algorithm can successfully
capture all natural clusters in all eight data sets at the arrival of
the last data chunk. For D1, Tables 2 and 3 demonstrate that
the proposed method achieves a higher clustering accuracy
than the remaining five compared existing methods. The
clustering results for each data chunk in D1 are presented in
FIGURE 1 and it shows the capability of the proposedmethod
in tracking the change of clusters over time. InD2, FIGURE 2
shows that all of the overlapped clusters with uneven density
values are successfully discovered in each data chunk and
a final set of nine overlapped clusters are obtained after
the arrival of the fifth data chunk. From Tables 2 and 3,
the proposed algorithm provides a better performance than
the other five clustering algorithms for D2 in terms of higher
values of RI and KI, which indicates that the efficacy of the
proposed algorithm in clustering data streams with highly
overlapped clusters. In D3, the robustness of the proposed
DFPS-clustering approach is tested in the presence of out-
liers and Table 1 demonstrates that all ten synthetic clusters
with outliers can be discovered from the proposed DFPS-
clustering approach. According to Tables 2 and 3, it is
observed that the proposed approach still achieves a higher
clustering accuracy than the other five compared methods,
which implies the robustness of the proposed method to out-
liers. For real data sets, the performance of DFPS-clustering
on the IRIS dataset is plotted in FIGURE 3 and the sampling
time t = 1, 2, 3 represents the arriving time of the data
chunksC1,C2, andC3. As shown in FIGURE 3, the proposed
algorithm can not only capture the change of clusters for
streaming data in the time series, but also can distinguish
the overlapped clusters. As mentioned before, D5 is a high-
dimensional real data set that has two clusters and there are

some outliers in D5. Compared with the other five state-
of-the-art methods, Tables 2 and 3 reveal that the proposed
algorithm can effectively identify two ground truth clus-
ters in D5 with better clustering accuracy, which shows its
effectiveness on handling the high data dimensionality and
outliers. As for D6, it is a real data set that has both out-
liers and overlapped clusters. Although the proposed stream-
ing clustering algorithm can successfully discover all seven
clusters in the data stream, the accuracy is less comparable
to other simulated data sets. However, compared with the
other five methods, the proposed method still demonstrates
better or comparable performance. As shown in Table 1,
the proposed algorithm successfully discovers all of the
clusters in D7. Furthermore, a comparable and even better
performance of the proposed algorithm over the other five
clustering algorithms for the real data with outliers and the
overlapped clusters can be seen in Tables 2 and 3.

E. COMPLEXITY ANALYSIS
Likemost of the existing clustering algorithms, one important
measure to evaluate the performance of different clustering
algorithms is the computational cost, especially for streaming
data. Assume the chunk size isM and a percentage of l sam-
ples in the chunk is selected randomly to form the sampling
set, then the number of distance calculations for the sam-
pling set to discover Ns potential clusters is (M + |Zt−1|) ×
(l ×M) ≈

(
l ×M2

)
, where |Zt−1| is the number of the pre-

vious clusters. The computational cost of cluster expansions
can be divided into two parts: cluster expansions within the
data chunk and clusters expansions between the previous and
new clusters. For cluster expansions within the data chunk,
the number of distance calculations is Nm × Np × (M +
|Zt−1|) ≈

(
Nm × Np ×M

)
. The termNm refers to the number

of merges among the potential clusters and Np denotes the
number of pseudo points that are generated for an individual
merge. On the other hand, the cluster expansions between
previous |Zt−1| clusters and |ZCt | new clusters take |ZCt | ×
Np × (M + |Zt−1|) ≈

(
|ZCt | × Np ×M

)
distance calcula-

tions for the online update of cluster summary. Since each
sample consists of d variables, the total counts of distance
calculations within each data chunk become (M + |Zt−1|)×(
l ×M + |ZCt | × Np + Nm × Np

)
× d ≈

(
l ×M2

× d
)
.

184994 VOLUME 7, 2019

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

TABLE 4. Computational costs of STREAM, CluStream, D-Stream,
HDDStream, DBStream and DFPS-clustering.

The major computational cost is associated with calculating
the density values for the sampling set and it is proportional
to the square of chunk sizeM and the sample dimensionality
d . Thus, the upper bound of the computational costs for the
proposed method can be expressed as O(M2d). In order to
evaluate the effectiveness of the proposed algorithm, the com-
putational costs of the other five clustering algorithms in
terms of Big O notation [61] are described in Table 4.

According to Table 4, the computational cost of STREAM
is K1 × M × iterations when the number of clusters K1
is selected properly. The term iterations here refers to the
number of iterations it takes to converge, and a large num-
ber of iterations is required when the initial cluster centers
are not selected properly. CluStream has a computational
cost that is based on the number of micro-clusters: q and
macro-clusters: K2. The micro-clusters here refer to those
small clusters that are obtained from each data chunk and
macro-clusters are created based on the reclustering of micro-
clusters. Similar to STREAM, the value of q and K2 should
be specified in advance to guarantee a good performance of
CluStream with low computational cost. Also, some itera-
tions are required for CluStream to compute the final con-
verged clusters, which may increase the computational cost.
Unlike STREAM and CluStream, the computational com-
plexities of the D-Stream algorithm can be decomposed as
attributed to the online mapping from data to grid list and the
offline density-based clustering in the grid list. There is no
distance calculation for the online mapping of data to grids,
and thus the computational cost isO(1). However, the number
of grids is greatly influenced by the dimensions of data and
it could take a significant amount of computations when
data has a large number of dimensions. The computational
cost of DBStream primarily depends on the chunk size M
and the user-specified time interval tgap [20]. The parameter
tgap denotes the duration for the cleanup of weak clusters
and it needs to be selected carefully in advance. Besides,
the implementation of DBStream requires several thresh-
old values to be given by the user, such as radius, density
fading factor, minimum weight and intersection factor. For
HDDStream clusteringmethod, its time complexity primarily
depends on the number of potential projected core micro-
clusters (p1) and outlier micro-clusters (p2), which results in a
total cost ofO(p1×d+p2). Similar to other DBSCAN-based
streaming clustering approaches, the HDDStream clustering
algorithm requires a set of predefined parameters to guarantee
a high-quality clustering performance. Compared with the

other five clustering algorithms, the proposed algorithm has
higher computational costs because the number of distance
calculations it requires is based on O(M2

× d).
Based on the comparison from Table 4, there is a trade-

off between the computational costs and the amount of prior
information about data. Insufficient knowledge, or no prior
knowledge, calls for a higher computational cost, which
is the case of the proposed algorithm. On the other hand,
sufficient prior knowledge about the data can effectively
reduce the computational cost by eliminating unnecessary
trails needed to guess the number of clusters and cluster
radii. Therefore, compared with prior well-known clustering
techniques, the proposed DFPS-clustering can provide better
performance with an acceptable computational cost, which is
more applicable to real-world problems.

F. SCALABILITY ANALYSIS
The scalability of the streaming data clustering technique is
another important aspect of the efficiency evaluation. To eval-
uate the scalability of the proposed method, the mixture
model of Gaussian distributions is used to generate sev-
eral synthetic datasets with varying dimensionality. Also,
the KDD Cup 99 Network Intrusion Dataset is used as the
real-world benchmark for the scalable analysis. The computer
used in the simulation has an Intel Core 2 Duo CPUwith 3GB
RAM and it uses the Microsoft Windows 7 operating system.
Both the execution time andmemory usage are analyzed here.

1) EXECUTION TIME ANALYSIS
As discussed in the complexity analysis, the execution time
of the proposed clustering approach mainly depends on the
number of dimensions and the chunk size. Hence, the analysis
of the execution time with respect to the dimensionality and
chunk size is conducted. There are five synthetic datasets
with 20000 samples that are generated from a mixture of
ten Gaussian distributions. Each Gaussian distribution forms
a cluster around its mean vector and thus ten clusters exist
in those synthetic datasets. All ten clusters share the same
sample size in each synthetic dataset. The dimensionality of
those five synthetic datasets increases from 10 to 50 with an
increment of ten. A chunk size of 1000 samples is used in
the simulation and the execution time of the proposed clus-
tering method in all five synthetic datasets is obtained. The
execution time measures the duration from the first arriving
data chunk to the last arriving data chunk. FIGURE 4(a)
shows that the execution time of the proposed method is
linearly growing with the number of dimensions, which
justifies the computational complexity analysis previously.
Simultaneously, the real-world Network Intrusion dataset is
used to evaluate the overall execution time under different
chunk sizes. As mentioned previously, the first 200K samples
with 34 numeric features are used in the scalability analysis.
Similar to the default setting from [16], [19], [20], [24], [30],
the chunk size changes from 1000 samples to 5000 samples
with a step size of 1000 and the execution time is recorded
here. As shown in FIGURE 4(b), the execution time increases

VOLUME 7, 2019 184995

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

FIGURE 4. (a): Execution time vs. Dimensions (Synthetic Datasets), (b): Execution time vs. Chunk Sizes (KDD Network Intrusion Dataset).

FIGURE 5. (a): Memory Space vs. Chunk size (Synthetic Dataset), (b): Memory Space vs. Chunk size (KDD Network Intrusion Dataset).

as the chunk size grows. The execution time of the proposed
method increases quadratically with the chunk size, which is
also consistent with the complexity analysis.

2) MEMORY USAGE ANALYSIS
The limited memory space is another major challenge in
clustering streaming data. Since the proposed algorithm only
keeps the summary of optimal clusters at each time step,
bounded memory complexity is guaranteed here. The mem-
ory usage of the proposed method is simulated with a syn-
thetic dataset and the real-world KDDCupNetwork Intrusion
dataset. The number of entities is used to evaluate memory
usage. Each entity refers to a specific cluster object that
includes the cluster center vector, cluster density value, and
radius. Three default entities are used to hold the global
mean, variance and stabilization parameter in memory. The
synthetic dataset consists of 20K samples with ten features.
There are ten overlapped clusters in the synthetic dataset
and each cluster has the same number of samples. Similar
to the execution time analysis, the first 200K samples with
34 continuous variables are selected from the Network

Intrusion dataset as the benchmark. With a similar setting
in [16], [19], [20], [24], [30], the chunk size is set in
the range from 1000 to 10000 with a constant increment
of 1000.

As shown in FIGURE 5(a), the memory usage of the pro-
posed streaming clustering method is fixed as the chunk size
increases and it equals to the number of the natural clusters
in the synthetic data stream. Similar to the synthetic data
stream, FIGURE 5(a) reveals that the memory space of the
proposed method in real-world data stream does not change
when chunk size varies. The chunk size does not affect the
memory space and the memory space completely depends on
the number of natural clusters. Therefore, a bounded memory
space for the proposed dynamic clustering procedure can be
guaranteed.

V. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a recursive lower bound of
the Gaussian kernel function and developed a new two-phase
streaming clustering algorithm named Dynamic Fitness

184996 VOLUME 7, 2019

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

Proportionate Sharing clustering algorithm (DFPS-clustering)
for streaming data cluster analysis. Unlike most state-of-the-
art methods, our proposed method evolves the cluster struc-
ture of the data stream from scratch without the predefined
cluster number or the radius. The proposed recursive lower
bound of the Gaussian kernel function automatically captures
the dynamic evolution of the density distribution in the data
stream and a related Lemma is proposed to discriminate the
outliers from the new clusters. From the scalability analysis,
our proposed streaming clustering method demonstrates a
bounded memory space usage as the chunk size increases.
Compared with five well-known existing methods from the
literature, our proposed method shows a comparable or better
clustering performance without any prior knowledge about
the data or user-specified parameters, especially when clus-
ters are highly overlapped due to the nature of the data stream.
Although the computational cost of the proposed algorithm
is more expensive than the other five clustering algorithms,
it is reasonable because it does not use any prior information
about the data. Furthermore, the efficacy of the proposed
method on smart grid stability data and network intrusion data
suggest a promising future for the DFPS-clustering algorithm
in real-world applications.

In the future, the application of the proposed method will
be explored in the area of social media analysis, stock market
prediction, and network intrusion detection. Besides, more
efforts will be employed to enhance the computational effi-
ciency of the proposed method.

APPENDIX
Proof: Assume that the distance from the current sample

x i(t) to the rest of the samples in the data stream follows a
Gaussian distribution, then the density value of the sample
x i(t) can be expressed as:

f (x i(t)) =
|Dt |∑
m=1

(
e−
‖xi(t)−xm(t)‖2

βt

)γt
, (8)

where Table 5 provides the definitions of all the necessary
parameters. The norm here refers to the Euclidean distance
dim, between sample x i(t) and xm(t).
The parameter |Dt | is the total number of the previous

and current samples that can be decomposed by the sum of
the number of the previous samples |Dt−1| and the current
samples |Ct |, hence: |Dt−1| + |Ct | = |Dt |. Also, the number
of the old samples can be further decomposed by the sum
of samples in the previous clusters: |Dt−1| =

∑|Zt−1|
j=1 |P

j
t−1|.

The density value of the new sample x i(t) can be rewritten as
the sum of the densities from the previous samples and the
new samples :

f (x i(t)) =

|Dt−1|∑
m1=1

(
e−

d2im1
βt

)γt
+

|Ct |∑
m2=1

(
e−

d2im2
βt

)γt , (9)

TABLE 5. Table of parameters.

where

|Dt−1|∑
m1=1

(
e−

d2im1
βt

)γt
=

|Zt−1|∑
j=1

|P
j
t−1|∑
k=1

(
e−

d2ijk
βt

)γt. (10)

According to the cosine principle of the triangle
{x i(t), xkj (t − 1),Z jt−1} in FIGURE 6(a), the following rela-
tionship holds

d2ijk = d2ij + d
2
kj − 2dijdkjcosαk , (11)

As shown in FIGURE 6(b), each sample xk,1j (t − 1) in

cluster Pj(t − 1) has a sample xk,2j (t − 1) that is symmetrical
with respect to a line Lc that passes through the center of
the cluster. Due to the symmetric property of samples in the

cluster j, all samples in cluster j can be represented by
|Pjt−1|

2
pairs of samples in the cluster, which can be described by
Equation (12).

|Pjt−1|∑
k=1

(
e−

d2ijk
βt

)
=

|Pjt−1|∑
k=1

(
e
−d2ij−d

2
kj+2dijdkjcosαk
βt

)

=

|Pjt−1|
2∑

k=1

[
e

(
−d2ij−d

2
kj1+2dijdkj1cosαk,1

)
βt

+ e

(
−d2ij−d

2
kj2+2dijdkj2cosαk,2

)
βt

]
. (12)

Since αk,1 + αk,2 = 180◦ and dkj,1 = dkj,2, the right hand
side of Equation (12) can be rewritten as

|Pjt−1|
2∑

k=1

e

(
−d2ij−d

2
kj1+2dijdkj1cosαk,1

)
βt + e

(
−d2ij−d

2
kj1−2dijdkj1cosαk,1

)
βt

=

|Pjt−1|
2∑

k=1

[
e
−d2ij−d

2
kj

βt ×

(
e
2dijdkjcosαk,1

βt + e−
2dijdkjcosαk,1

βt

)]
.

(13)

VOLUME 7, 2019 184997

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

FIGURE 6. (a): The old sample xk
j (t − 1) in the previous cluster j and new instance x i , (b):The symmetric points xk,1

j (t − 1), xk,2
j (t − 1) with respect

to the middle line Lc in the cluster j and the new instance x i (t).

According to the inequality: a+ 1
a ≥ 2, a > 0, the follow-

ing inequality can be computed as follows(
e
2dijdkjcosαk,1

βt + e−
2dijdkjcosαk,1

βt

)
≥ 2. (14)

Since dij is constant for all samples in the cluster Pjt−1,
Equation (12) can be rewritten using the inequality (14) as

|Pjt−1|∑
k=1

(
e−

d2ijk
βt

)
≥ e−

d2ij
βt ×

|Pjt−1|∑
k=1

(
e−

d2kj
βt

)
. (15)

With inequality (15), an inequality of Equation (10) can be
expressed as

|Dt−1|∑
m1=1

(
e−

d2im1
βt

)γt
=

|Zt−1|∑
j=1

|P
j
t−1|∑
k=1

(
e−

d2ijk
βt

)γt
≥

|Zt−1|∑
j=1

(e− d2ij
βt)γt ×

|Pjt−1|∑
k=1

(
e−

d2kj
βt

)γt.
(16)

When a new cluster appears, the variance of the data stream
will change while the following relationship in Algorithm 2
holds:

βt

γt
=
βt−1

γt−1
, (17)

such that

|Pjt−1|∑
k=1

(
e−

d2kj
βt

)γt
=

|Pjt−1|∑
k=1

e
−

d2kj
βt
γt =

|Pjt−1|∑
k=1

(e
−

d2kj
βt−1
γt−1). (18)

Let f
(
Z jt−1

)
=
∑|Pjt−1|

k=1

(
e
−

d2kj
βt−1

)γt−1
, then

|Pjt−1|∑
k=1

(
e−

d2kj
βt

)γt
= f

(
Z jt−1

)
, (19)

With Equation (19), Equation (16) can be rewritten as

|Dt−1|∑
m1=1

(
e−

d2im1
βt

)γt
≥

|Zt−1|∑
j=1

[(
e−

d2ij
βt

)γt
× f

(
Z jt−1

)]
. (20)

Hence, an inequality of Equation (9) can be derived using
the inequality (20) as

f (x i(t))≥
|Zt−1|∑
j=1

[(
e−

d2ij
βt

)γt
×f

(
Z jt−1

)]
+

|Ct |∑
m2=1

(
e−

d2im2
βt

)γt
.

(21)

Based on above Equation (21), an estimated lower bound-
ary of the density value of sample x i(t) is defined as

f̂
(
x i(t)

)
=

|Zt−1|∑
j=1

[(
e−

d2ij
βt

)γt
×f

(
Z jt−1

)]
+

|Ct |∑
m2=1

(
e−

d2im2
βt

)γt
,

(22)

where f (x i(t)) ≥ f̂ (x i(t)).
Therefore, based on Equation (22), a recursive lower bound

of the estimated density values is derived and Lemma 1
is defined to check the occurrence of new clusters as the
variance of the data stream varies. Otherwise, samples in the
new data chunk are directly assigned to the existing cluster.

184998 VOLUME 7, 2019

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

ACKNOWLEDGMENT
The authors would like to thank the Air Force Research
Laboratory and Office of the Secretary of Defense. The
authors would also like to thank the NASA Langley Research
Centers.

REFERENCES
[1] S. Dua and X. Du, Data Mining and Machine Learning in Cybersecurity.

Berlin, Germany: Auerbach, 2016.
[2] J. Gama and M. M. Gaber, Learning From Data Streams Processing

Techniques in Sensor Networks. Berlin, Germany: Springer, 2007.
[3] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, ‘‘Mining data streams:

A review,’’ ACM SIGMOD Rec., vol. 34, no. 2, pp. 18–26, Jun. 2005.
[4] Q. Su and L. Chen, ‘‘A method for discovering clusters of e-commerce

interest patterns using click-stream data,’’ Electron. Commerce Res. Appl.,
vol. 14, no. 1, pp. 1–13, 2015.

[5] S. Geisler, C. Quix, S. Schiffer, and M. Jarke, ‘‘An evaluation framework
for traffic information systems based on data streams,’’ Transp. Res. C,
Emerg. Technol., vol. 23, pp. 29–55, Aug. 2012.

[6] M.A. Faisal, Z. Aung, J. R.Williams, andA. Sanchez, ‘‘Data-stream-based
intrusion detection system for advanced metering infrastructure in smart
grid: A feasibility study,’’ IEEE Syst. J., vol. 9, no. 1, pp. 31–44,Mar. 2015.

[7] X. Li, B. Plale, N. Vijayakumar, R. Ramachandran, S. Graves, and
H. Conover, ‘‘Real-time storm detection and weather forecast activation
through data mining and events processing,’’ Earth Sci. Inform., vol. 1,
no. 2, pp. 49–57, 2008.

[8] G. Krempl, I. Žliobaite, D. Brzeziński, E. Hüllermeier, M. Last,
V. Lemaire, T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, and
J. Stefanowski, ‘‘Open challenges for data stream mining research,’’ ACM
SIGKDD Explor. Newslett., vol. 16, no. 1, pp. 1–10, 2014.

[9] S. Mansalis, E. Ntoutsi, N. Pelekis, and Y. Theodoridis, ‘‘An evaluation of
data stream clustering algorithms,’’ Stat. Anal. Data Mining The ASA Data
Sci. J., vol. 11, no. 4, pp. 167–187, 2018.

[10] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho,
and J. Gama, ‘‘Data stream clustering: A survey,’’ ACM Comput. Surv.,
vol. 46, no. 1, p. 13, 2013.

[11] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, ‘‘Clustering data
streams,’’ in Proc. 41st Annu. Symp. Found. Comput. Sci., Nov. 2000,
pp. 359–366.

[12] A. Workineh and A. Homaifar, ‘‘A fitness proportionate reward sharing:
A viable default hierarchy formation strategy in LCS,’’ in Proc. Int. Conf.
Genetic Evol. Methods (GEM), 2012, p. 1.

[13] D.-X. Chang, X.-D. Zhang, C.-W. Zheng, and D.-M. Zhang, ‘‘A robust
dynamic niching genetic algorithm with niche migration for automatic
clustering problem,’’ Pattern Recognit., vol. 43, no. 4, pp. 1346–1360,
2010.

[14] J. Gan and K. Warwick, ‘‘Dynamic niche clustering: A fuzzy variable
radius niching technique for multimodal optimisation in GAs,’’ in Proc.
Congr. Evol. Comput., vol. 1, May 2001, pp. 215–222.

[15] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani,
‘‘Streaming-data algorithms for high-quality clustering,’’ in Proc. 18th Int.
Conf. Data Eng., Feb./Mar. 2002, pp. 685–694.

[16] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, ‘‘A framework for clustering
evolving data streams,’’ in Proc. 29th Int. Conf. Very Large Data Bases,
2003, pp. 81–92.

[17] T. Zhang, R. Ramakrishnan, and M. Livny, ‘‘BIRCH: An efficient data
clustering method for very large databases,’’ ACM SIGMOD Rec., vol. 25,
pp. 103–114, Jun. 1996.

[18] D. K. Tasoulis, N. M. Adams, and D. J. Hand, ‘‘Unsupervised clustering
in streaming data,’’ in Proc. 6th IEEE Int. Conf. Data Mining—Workshops,
Dec. 2006, pp. 638–642.

[19] Y. Chen and L. Tu, ‘‘Density-based clustering for real-time stream data,’’
in Proc. 13th SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2007,
pp. 133–142.

[20] M. Hahsler and M. Bolaños, ‘‘Clustering data streams based on shared
density between micro-clusters,’’ IEEE Trans. Knowl. Data Eng., vol. 28,
no. 6, pp. 1449–1461, Jun. 2016.

[21] J. Gama,KnowledgeDiscovery FromData Streams. Boca Raton, FL, USA:
CRC Press, 2010.

[22] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, ‘‘The ClusTree: Indexing
micro-clusters for anytime streammining,’’Knowl. Inf. Syst., vol. 29, no. 2,
pp. 249–272, 2011.

[23] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan, ‘‘Maintain-
ing variance and K-medians over data stream windows,’’ in Proc. 22nd
ACM SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst., 2003,
pp. 234–243.

[24] S. Guha and N. Mishra, ‘‘Clustering data streams,’’ in Data Stream Man-
agement. Washington, DC, USA: Springer, 2016, pp. 169–187.

[25] A. Zhou, F. Cao, W. Qian, and C. Jin, ‘‘Tracking clusters in evolving
data streams over sliding windows,’’ Knowl. Inf. Syst., vol. 15, no. 2,
pp. 181–214, 2008.

[26] F. Cao, M. Estert, W. Qian, and A. Zhou, ‘‘Density-based clustering over
an evolving data streamwith noise,’’ in Proc. SIAM Int. Conf. DataMining,
2006, pp. 328–339.

[27] J. Ren and R. Ma, ‘‘Density-based data streams clustering over sliding
windows,’’ in Proc. 6th Int. Conf. Fuzzy Syst. Knowl. Discovery, vol. 5,
Aug. 2009, pp. 248–252.

[28] S. Laohakiat, S. Phimoltares, and C. Lursinsap, ‘‘Hyper-cylindrical micro-
clustering for streaming data with unscheduled data removals,’’ Knowl.-
Based Syst., vol. 99, pp. 183–200, May 2016.

[29] N. Wattanakitrungroj, S. Maneeroj, and C. Lursinsap, ‘‘BEstream: Batch
capturing with elliptic function for one-pass data stream clustering,’’ Data
& Knowl. Eng., vol. 117, pp. 53–70, Sep. 2018.

[30] I. Ntoutsi, A. Zimek, T. Palpanas, P. Kröger, and H.-P. Kriegel, ‘‘Density-
based projected clustering over high dimensional data streams,’’ in Proc.
SIAM Int. Conf. Data Mining, 2012, pp. 987–998.

[31] A. A. A. Alazeez, S. Jassim, and H. Du, ‘‘EDDS: An enhanced density-
based method for clustering data streams,’’ in Proc. 46th Int. Conf. Parallel
Process. Workshops (ICPPW), Aug. 2017, pp. 103–112.

[32] J.-Y. Chen and H.-H. He, ‘‘A fast density-based data stream clustering
algorithm with cluster centers self-determined for mixed data,’’ Inf. Sci.,
vol. 345, pp. 271–293, Jun. 2016.

[33] S. Gong, Y. Zhang, and G. Yu, ‘‘Clustering stream data by exploring the
evolution of density mountain,’’ Proc. VLDB Endowment, vol. 11, no. 4,
pp. 393–405, 2017.

[34] A. Rodriguez and A. Laio, ‘‘Clustering by fast search and find of density
peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014.

[35] A. Amini and T. Y. Wah, ‘‘DENGRIS-Stream: A density-grid based clus-
tering algorithm for evolving data streams over sliding window,’’ in Proc.
Int. Conf. Data Mining Comput. Eng., 2012, pp. 206–210.

[36] C. Jia, C. Tan, and A. Yong, ‘‘A grid and density-based clustering algorithm
for processing data stream,’’ in Proc. 2nd Int. Conf. Genetic Evol. Comput.,
Sep. 2008, pp. 517–521.

[37] V. Bhatnagar, S. Kaur, and S. Chakravarthy, ‘‘Clustering data streams
using grid-based synopsis,’’ Knowl. Inf. Syst., vol. 41, no. 1, pp. 127–152,
Oct. 2014.

[38] A. Amini, H. Saboohi, T. Herawan, and T. Y.Wah, ‘‘MuDi-Stream: Amulti
density clustering algorithm for evolving data stream,’’ J. Netw. Comput.
Appl., vol. 59, pp. 370–385, Jan. 2016.

[39] U. Kokate, A. Deshpande, P. Mahalle, and P. Patil, ‘‘Data stream clustering
techniques, applications, and models: Comparative analysis and discus-
sion,’’ Big Data Cogn. Comput., vol. 2, no. 4, p. 32, 2018.

[40] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, ‘‘Density-based
clustering of data streams at multiple resolutions,’’ ACM Trans. Knowl.
Discovery Data (TKDD), vol. 3, no. 3, p. 14, 2009.

[41] A. Amini and T. Y. Wah, ‘‘Leaden-stream: A leader density-based clus-
tering algorithm over evolving data stream,’’ J. Comput. Commun., vol. 1,
no. 5, p. 26, 2013.

[42] P. Angelov, Autonomous Learning Systems: From Data Streams To Knowl-
edge In Real-Time. Hoboken, NJ, USA: Wiley, 2012.

[43] P. P. Angelov and D. P. Filev, ‘‘An approach to online identification
of Takagi-Sugeno fuzzy models,’’ IEEE Trans. Syst., Man, Cybern., B,
(Cybern.), vol. 34, no. 1, pp. 484–498, Feb. 2004.

[44] X. Gu and P. P. Angelov, ‘‘Autonomous data-driven clustering for live data
stream,’’ in Proc. IEEE Int. Conf. Syst. Man, Cybern. (SMC), Oct. 2016,
pp. 001128–001135.

[45] A. Hinneburg and H.-H. Gabriel, ‘‘DENCLUE 2.0: Fast clustering based
on Kernel density estimation,’’ inProc. Int. Symp. Intell. Data Anal.Berlin,
Germany: Springer, 2007, pp. 70–80.

[46] K.-L. Wu and M.-S. Yang, ‘‘Mean shift-based clustering,’’ Pattern Recog-
nit., vol. 40, no. 11, pp. 3035–3052, 2007.

[47] J. Chen, Y. Wu, X. Lin, and Q. Xuan, ‘‘DOE-AND-SCA: A novel SCA
based on DNN with optimal eigenvectors and automatic cluster number
determination,’’ IEEE Access, vol. 6, pp. 20764–20778, 2018.

VOLUME 7, 2019 184999

X. Yan et al.: Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing

[48] M.-S. Yang and K.-L. Wu, ‘‘A similarity-based robust clustering method,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 4, pp. 434–448,
Apr. 2004.

[49] L. A. Zadeh, ‘‘Similarity relations and fuzzy orderings,’’ Inf. Sci., vol. 3,
no. 2, pp. 177–200, Apr. 1971.

[50] R. R. Yager and D. P. Filev, ‘‘Approximate clustering via the moun-
tain method,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 24, no. 8,
pp. 1279–1284, Aug. 1994.

[51] A. Workineh and A. Homaifar, ‘‘Fitness proportionate niching: Maintain-
ing diversity in a rugged fitness landscape,’’ in Proc. Int. Conf. Genetic
Evol. Methods (GEM). Steering Committee World Congr. Comput. Sci.
Comput. Eng. Appl. Comput. (WorldComp), 2012, p. 1.

[52] X. Yan, A. Homaifar, S. Nazmi, and M. Razeghi-Jahromi, ‘‘A novel
clustering algorithm based on fitness proportionate sharing,’’ inProc. IEEE
Int. Conf. Syst. Man Cybern. (SMC), Oct. 2017, pp. 1960–1965.

[53] D. Chang, Y. Zhao, L. Liu, and C. Zheng, ‘‘A dynamic niching clustering
algorithm based on individual-connectedness and its application to color
image segmentation,’’ Pattern Recognit., vol. 60, pp. 334–347, Dec. 2016.

[54] A. Hinneburg and D. A. Keim, ‘‘An efficient approach to clustering in
large multimedia databases with noise,’’ in Proc. 4th. Int. Conf. Knowl.
Discovery. Data Mining, vol. 98. Aug. 1998, pp. 58–65.

[55] M. M. Masud, C. Woolam, J. Gao, L. Khan, J. Han, K. W. Hamlen, and
N. C. Oza, ‘‘Facing the reality of data stream classification: Coping with
scarcity of labeled data,’’ Knowl. Inf. Syst., vol. 33, no. 1, pp. 213–244,
Oct. 2012.

[56] M. Lichman. (2013). UCI Machine Learning Repository. [Online]. Avail-
able: http://archive.ics.uci.edu/ml

[57] B. Schäfer, C. Grabow, S. Auer, J. Kurths, D. Witthaut, and M. Timme,
‘‘Taming instabilities in power grid networks by decentralized control,’’
Eur. Phys. J. Special Topics, vol. 225, no. 3, pp. 569–582, 2016.

[58] W. M. Rand, ‘‘Objective criteria for the evaluation of clustering methods,’’
J. Amer. Statist. Assoc., vol. 66, no. 336, pp. 846–850, 1971.

[59] L. Hubert and P. Arabie, ‘‘Comparing partitions,’’ J. Classification, vol. 2,
no. 1, pp. 193–218, 1985.

[60] M. J. Warrens, ‘‘On the equivalence of cohen’s Kappa and the Hubert-
Arabie adjusted rand index,’’ J. Classification, vol. 25, no. 2, pp. 177–183,
2008.

[61] M. Ghesmoune, M. Lebbah, and H. Azzag, ‘‘State-of-the-art on clustering
data streams,’’ Big Data Anal., vol. 1, no. 1, p. 13, 2016.

XUYANG YAN received the B.S. degree from
North Carolina Agricultural and Technical State
University (NC A&T) and Henan Polytechnic
University, in 2016, and the M.S. degree from
NC A&T, in 2018, all in electrical engineering,
where he is currently pursuing the Ph.D. degree in
electrical engineering. His current research inter-
ests include extracting knowledge from streaming
data, analyzing the emergent behaviors of large-
scale autonomous systems, and the application of

machine learning techniques in robotics.

MOHAMMAD RAZEGHI-JAHROMI received
the B.S. degree from the Amirkabir University
of Technology, Tehran, Iran, in 1997, the M.S.
degree from the University of Tehran, Tehran,
in 2000, and the Ph.D. degree from the University
of Rochester, Rochester, NY, USA, in 2016, all
in electrical engineering. He has been a Research
Scientist with ABB Corporate Research United
States (USCRC), Raleigh, NC, USA, since 2017.
His current research interests include networked

control systems, control systems theory, stochastic control and stochastic
differential equations, Markov jump linear systems, machine learning tech-
niques, and convex optimization.

ABDOLLAH HOMAIFAR received the B.S.
and M.S. degrees from the State University of
New York at Stony Brook, in 1979 and 1980,
respectively, and the Ph.D. degree from the Uni-
versity of Alabama, in 1987, all in electrical engi-
neering. He is currently the NASALangley Distin-
guished Professor and the Duke Energy Eminent
Professor with the Department of Electrical and
Computer Engineering, North Carolina Agricul-
tural and Technical State University (NCA&TSU).

He is the Director of the Autonomous Control and Information Technology
Institute and the Testing, Evaluation, and Control of Heterogeneous Large-
scale Systems of Autonomous Vehicles (TECHLAV) Center, NCA&TSU.
His current research interests include machine learning, unmanned aerial
vehicles (UAVs), testing and evaluation of autonomous vehicles, optimiza-
tion, and signal processing. He is a member of the IEEE Control Society,
Sigma Xi, Tau Beta Pi, and Eta Kapa Nu. He serves as an Associate Editor of
the Journal of Intelligent Automation and Soft Computing. He is a Reviewer
of the IEEE Tbioscransactions on F bioscuzzy S bioscystems, M bioscan M
bioscachines and C bioscybernetics, and Neural Networks.

BERAT A. EROL received the B.Sc. degree in
mathematics from Kocaeli University, in 2007,
the M.Sc. degree in software engineering from St.
Mary’s University, in 2012, and the Ph.D. degree
in electrical engineering from The University of
Texas at San Antonio, in 2018. His dissertation
and research activities with UTSA’s Autonomous
Control Engineering Laboratories have been spon-
sored by several research grants and contracts that
he contributed to, including the US DoD, Bank

of America, 80|20 foundation, UTSA Lutcher Brown Endowed Chair, and
UTSA Open Cloud Institute. He is currently a Postdoctoral Fellow with the
ACIT Institute, North Carolina Agricultural and Technical State University.
His current research interests include autonomous systems, human-robot
interactions, manned-unmanned teaming, visual SLAM, machine learning,
and the Internet of Robotic Things (IoRT). He is a member of AIAA and
IEEE Eta Kappa Nu honor society.

ABENEZER GIRMA received the B.Sc. degree
in electrical and electronics engineering from the
Addis Ababa Institute of Technology. He is cur-
rently pursuing the direct Ph.D. degree in electrical
engineering with North Carolina Agricultural and
Technical State University. His current research
interests include machine learning, big data anal-
ysis, and data driven algorithms in autonomous
vehicles and connected cars.

EDWARD TUNSTEL received the B.S. and
M.Eng. degrees from Howard University, in 1986
and 1989, respectively, all in mechanical engi-
neering, and the Ph.D. in electrical engineering
from The University of New Mexico, in 1996.
He was a Senior Robotics Engineer with the
NASA Jet Propulsion Laboratory, Pasadena, CA,
USA, from 1989 to 2007, a Space Robotics and
Autonomous Control Lead and Senior Roboti-
cist with the Johns Hopkins Applied Physics

Laboratory, Laurel, MD, USA, from 2007 to 2017. He is currently an Asso-
ciate Director of robotics with the United Technologies Research Center,
East Hartford, CT, USA. He serves as the President of the IEEE Systems,
Man, and Cybernetics Society, from 2018 to 2019. His current research
interests include mobile robot navigation, autonomous control, cooperative
multirobot systems, human-collaborative robotics, robotic systems engineer-
ing, and applications of soft computing to autonomous systems.

185000 VOLUME 7, 2019

