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ABSTRACT Separation of mixed signals from a noisy environment without prior conditions is one of
the difficulties in blind signal separation. To solve the problem of poor separation effect of mixed signals
in a strong noise environment, we propose an enhanced non-negative matrix factorization method in this
paper. By extending the Kullback–Leibler divergence form, this method adopts a new target signal and noise
estimation algorithm to overcome the shortcomings of existing methods in noise estimation. Furthermore,
combining with the least squares algorithm, the computational complexity is effectively reduced, and the
computational efficiency of the algorithm is improved while the source signals are well estimated. The
theoretical analysis and simulation results show that the proposed algorithm is better than the existing
algorithms in terms of the source signal separation frommixed signals with noise, especially when the signal
and noise energy are equivalent and the mixed signals are completely obliterated in the noise, the proposed
algorithm has more obvious advantages than the existing algorithms, while the operation efficiency has been
improved.

INDEX TERMS Signal separation, non-negative matrix factorization, Kullback-Leibler divergence, least
squares.

I. INTRODUCTION
In the field of signal processing, the problems of multiple
signals mixing are often encountered. In these problems,
the source signals before being mixed are unknown and the
mixing process is also unknown. How to recover the source
signals from the mixed signals is one of the research hotspots
and emphases in signal processing [1]. Blind signal separa-
tion (BSS) extracts source signals from observed mixed sig-
nals, which is widely used in digital communication [2], [3],
speech signal processing [4], [5], medical diagnosis [6], [7]
and image processing [8].

Nowadays, the methods of independent component anal-
ysis (ICA) [9], sparse component analysis (SCA) [10]
and non-negative matrix factorization (NMF) [11] are usu-
ally used for blind separation of mixed signals. The core
idea of independent component analysis is to minimize
the statistical relationship between each signal source [12].

The associate editor coordinating the review of this manuscript and
approving it for publication was Matti Hämäläinen.

FastICA algorithm is a typical ICA optimization algo-
rithm [13]. However, the ICA is not suitable for under-
determined systems and requires only one Gaussian signal
in the source signals [14]. Sparse component analysis can
separate underdetermined systems, but the source signals
are required to be sparse and not suitable for all mixed
cases [15].

From a mathematical point of view, when the observed
mixed signal matrix is positive, the NMF method makes it
possible to solve the problem of signal separation. In fact,
time-domain signals, such as speech signals and noise, which
may not necessarily satisfy the non-negative conditions, can
be transformed to non-negative signals by signal transforma-
tion (such as FFT).

In 1999, D. Lee and H. Sueng proposed the NMF [16],
which attracted great attention in the academic circles. NMF
takes the advantages of simple calculation, fast factorization
and obvious physical properties of the results. Various signal
separation algorithms based on NMF have been studied and
proposed. The basic NMF algorithm includes NMF algorithm
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based on Euclidean distance and NMF algorithm based on
Kullback-Leibler (KL).

NMF does not require statistical independence of the
source, nor does it have non-Gaussian restrictions, and is
also applicable to non-sparse cases. NMF is used for tar-
get signal separation, which can effectively separate sev-
eral linear mixed signals, especially in the field of image
signal separation [17]–[21]. For image processing, Yong
Peng et al. successively put forward the graph regularized
discriminative NMF (GDNMF) and Flexible NMF model
with adaptively learned graph regularization (FNMFG)
with guaranteed convergence and relatively low complex-
ity [22]–[24]. In the speech signals separation, the trans-
formed non-negative signals have also been applied to some
extent.

In speech signal processing, the mixed speech signal will
inevitably be affected by noise from all aspects, which
makes it difficult to recognize the separated speech signal.
To solve the problem of NMF separation in noisy environ-
ment, K. Kwon proposed a speech enhancement technique
which combines statistical model with NMF to update the
speech and noise online [25]. M. Sun decomposed the input
noise amplitude spectrum into low-order noise parts and
sparse speech-like parts to achieve noise and speech esti-
mation [26]. S. Wood and others proposed an unsupervised
dictionary learning algorithm based on NMF combined with
generalized cross-correlation (GCC) spatial positioning blind
source separation algorithm GCC-NMF [27]. A. Vaghmare
characterized the noisy signal as NMF with sparse con-
straints to eliminate noise [28]. The above algorithms add
a lot of constraints to NMF algorithm, which improves
the noise reduction effect and reduces the separation
efficiency.

In this paper, an enhanced NMF algorithm is proposed
by extending the NMF model directly with another idea.
Based on the extended KL divergence, the algorithm can
effectively separate the source signals and interference
noise, and its computational complexity is equivalent to
that of the basic NMF algorithm without noise. To fur-
ther reduce the computational complexity, a new algorithm
combining extended KL divergence with least squares is
proposed.

The rest of this paper is organized as follows:
Section 2 summarizes the NMF separation model of
mixed signals; Section 3 proposes an enhanced NMF algo-
rithm based on extended KL divergence, which establishes
and solves the unconstrained optimization cost function;
Section 4 proposes a new method combining extended KL
divergence with least squares; Section 5 selects mixed speech
signals for implementation to verify the separation effect of
the algorithm.

In this paper, a large number of operations for matrix row,
column and element are involved. For a matrix A, (A)ij is the
element of i−th row and j−th column for the matrix A; (A).j
is the j−th column vector of the matrix A; (A)i. is the i−th
row vector of the matrix A.

II. NMF SEPARATION OF MIXED SIGNALS
The n− dimension sources are mixed to produce the
m− dimension mixed observations. It may be assumed that
the signal mixing mode is linear mixing. For convolutional
mixing, it can be transformed into linear mixing by signal
transformation. Suppose the unknown source signals matrix
is H ∈ Rn×L ; the observation data matrix is V ∈ Rm×L ; the
mixed matrix isW ∈ Rm×n. L is the length of the signal data,
L � m, n. The signal mixingmodel can be obtained as shown
in (1).

V =WH (1)

The hybrid model is consistent with NMF: a non-negative
matrix is decomposed into the product of two non-negative
matrices, that is, for an arbitrary non-negative matrix V, the
NMF algorithm can decompose it into the product of a non-
negative matrix W and a non-negative matrix H. Therefore,
the extraction of the target signal from the mixed signal can
be realized by NMF.

NMF algorithm is a new multivariate statistical analysis
method with simple principle and concise algorithm, easy
to understand and execute. In order to get the final desired
factorization matrix, it is necessary to optimize the objective
function and establish the update rules of the factor matrix in
the iterative process. Only in this way can the final goal of
matrix factorization be achieved.

Signal separation boils down to some parameters or direct
signal estimation under given conditions. These parame-
ters or signal estimates minimize or maximize a given objec-
tive function, or cost function, which is called optimization.
The optimization under given certain conditions is called
constrained optimization. That is to say, solving parame-
ters or estimating signals can be transformed into establishing
suitable target functions.

In order to complete the factorization of non-negative
matrices, we must find an objective function to measure the
degree of similarity between thematrices before and after fac-
torization. In the process of solving the problem, all matrices
must be non-negative. The commonly used objective func-
tions are the objective function under maximum likelihood
estimation, Euclidean distance and KL divergence, as shown
from (2) to (4) respectively.

F =
m∑
i=1

n∑
j=1

(
(V)ij log2 (WH)ij − (WH)ij

)
(2)

E =
1
2
‖V−WH‖2 =

1
2

∑
i,j

(
(V)ij − (WH)ij

)2 (3)

D =
∑
i,j

(
(V)ij ln

(V)ij
(WH)ij

− (V)ij + (WH)ij

)2

(4)

Because KL divergence is more sensitive than that of
Euclidean distance and more suitable for speech estimation
under low energy observation, this paper uses the objective
function under KL divergence. Then the NMF problem is
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transformed into an optimization problem, as shown in (5).

[W,H] = argminD (V||WH)

s.t. (W)ij ≥ 0, (H)ij ≥ 0 (5)

Iterated by the gradient descent method, the incremental iter-
ation rules of H and W can be written as follows.

(H)au ← (H)au + ηau

[∑
i

(W)ia
(V)iu
(WH)iu

−

∑
i

(W)ia

]
(6)

(W)ia ← (W)ia + ηia

[∑
u

(H)au
(V)iu
(WH)iu

−

∑
u

(H)au

]
(7)

Unconstrained optimization problems cannot guarantee that
the results are non-negative by gradient descent. Then gra-
dient descent method can be turned into a multiplication
algorithm. When ηau =

(H)au∑
i
(W)ia

, ηia =
(W)ia∑
i
(H)au

, iteration

rules of H and W are transformed into:

(H)kj ← (H)kj

∑
i
(W)ik (V)ij / (WH)ij∑

i
(W)ik

(8)

(W)ik ← (W)ik

∑
j
(H)kj (V)ij / (WH)ij∑

j
(H)kj

(9)

The iteration rules of (8) and (9) are consistent with (6)
and (7).

The above analysis is the usual NMF algorithm. The algo-
rithm does not consider the influence of noise or take noise
as one of the signals. The NMF under noise is studied below.

III. NMF UNDER NOISE
A. NMF SEPARATION WITH NOISY SIGNAL
When the mixed system is noisy, the signal mixing model
under the noise condition is shown in the following
expressions.

V =WH+ N (10)

where N represents additive noise, V,N ∈ Rm×L ,
W ∈ Rm×n, H ∈ Rn×L . Correspondingly, the expanded KL
divergence is:

D=
∑
i,j

(
(V)ij ln

(V)ij
(WH)ij+(N)ij

−(V)ij+(WH)ij+(N)ij

)
(11)

Under the condition of non-negative constraint, (W)ij ≥ 0,
(H)ij ≥ 0, (N)ij ≥ 0. For coefficient regularization,∑
i
(W)ij = 1. Therefore:

∑
i,j

(∑
r

(W)ir (H)rj + (N)ij

)
=

∑
r,j

(H)rj
∑
i

(W)ir +
∑
i,j

(N)ij

=

∑
r,j

(H)rj +
∑
i,j

(N)ij

=

∑
i,j

(V)ij (12)

So the optimization model can be described as:

[W,H,N] = argminD (V||WH+ N)

s.t.
∑
i

(W)ij = 1,

(W)ij ≥ 0,

(H)ij ≥ 0,

(N)ij ≥ 0,∑
r,j

(H)rj +
∑
i,j

(N)ij =
∑
i,j

(V)ij (13)

The multiplication algorithm is used to iterate as follows.

(H)kj ← (H)kj

∑
i
(W)ik (V)ij /

(
(WH)ij + (N)ij

)
∑
i
(W)ik

(14)

(W)ik ← (W)ik

∑
j
(H)kj (V)ij /

(
(WH)ij + (N)ij

)
∑
j
(H)kj

(15)

(N)ij ← (N)ij
(V)ij

(WH)ij + (N)ij
(16)

Considering the normalization of coefficients, the iterative
process can be described as the following matrix form:

W ← W�
(
(V© (WH+ N))HT

)
(17)

H ← H�
(
WT (V© (WH+ N))

)
(18)

N ← N� (V© (WH+ N)) (19)

where � is the Hadamard product of the matrices, with ©
representing the corresponding elements of the matrices.

B. ALGORITHM CONVERGENCE ANALYSIS
Define{W(t),H(t),N(t)} as the result of the t−th iteration,
then V(t) = W(t)H(t) + N(t). The divergence deviation

D
(
V(t)

)
=

∑
i,j

(
(V)ij ln

(V)ij
(V)(t)ij
− (V)ij + (V)

(t)
ij

)
is non-

negative, if and only if V(t) = V then D = 0. It is only
necessary to prove that the monotonicity of D(t) does not
increase during each iteration.

In order to prove the convergence of the algorithm, an aux-
iliary function is introduced.
Definition 1: G

(
V,V(t)

)
is the auxiliary function ofD (V),

if G
(
V,V(t)

)
≥ D (V) and G (V,V) = D (V).

Lemma 1: Under the iterative rule V(t+1) = argmin
G
(
V,V(t)

)
, the divergence function D is not increasing.

Proof: Only if V(t) is local minima of G
(
V,V(t)

)
,

D
(
V(t+1)

)
= D

(
V(t)

)
. It is proved that only local minima

are real. If the derivative of D exists and is continuous within
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a minimal field of V(t), ∇D
(
V(t)

)
= 0.Therefore, each iter-

ation by V(t+1) = argminG
(
V,V(t)

)
will eventually con-

verge to a local minimumVmin = argminD (V). As is shown
in the following expression: D (Vmin) ≤ · · · ≤ D

(
V(t+1)

)
≤

D
(
V(t)

)
≤ · · · ≤ D

(
V(2)

)
≤ D

(
V(1)

)
≤ D

(
V(0)

)
.

Certificate.
Lemma 2:

G
(
h,h(t)

)
=

∑
i

(
υ(i) log2 υ(i) − υ(i)

)
+

∑
ik

(
W(ik)h(k)+N(ik)

)
−

∑
i

υ(i)
W(ik)h

(t)
(k) + N(ik)∑

k

(
W(ik)h

(t)
(k)+N(ik)

)

·

log2
(
W(ik)h(k)+N(ik)

)
− log2

W(ik)h
(t)
(k)+N(ik)∑

k

(
W(ik)h

(t)
(k) + N(ik)

)


is the auxiliary function of

D (h) =
∑
i

υ(i) log2
υ(i)∑

k

(
W(ik)h(k) + N(ik)

) − υ(i)

+

∑
k

(
W(ik)h(k) + N(ik)

).
Proof: Obviously, G (h,h) = F (h), so only

G
(
h,h(t)

)
≥ D (h) needs to be proved. From the property

of logarithmic function, − log2
∑
k

(
W(ik)h(k) + N(ik)

)
≤

−
∑
k
a(k) log2

W(ik)h(k)+N(ik)
a(k)

, while
∑
k
a(k) = 1, Set a(k) =

W(ik)h
(t)
(k)+N(ik)∑

a

(
W(ik)h

(t)
(k)+N(ik)

) , then

− log2
∑
a

(
W(ia)h(k)+N(ik)

)
≤−

∑
k

W(ik)h
(t)
(k)+N(ik)∑

k

(
W(ik)h

(t)
(k)+N(ik)

)

·

log2
(
W(ik)h(k)+N(ik)

)
−log2

W(ik)h
(t)
(k)+N(ik)∑

a

(
W(ik)h

(t)
(k)+!N(ik)

)
 .

Therefore G
(
h,h(t)

)
≥ D (h).

Certificate.
Theorem 1: Under the iterative rule (H)kj ← (H)kj∑

i
(W)ik (V)ij/(WH+N)ij∑

i
(W)ik

, (W)ik ← (W)ik

∑
j
(H)kj(V)ij/(WH+N)ij∑

j
(H)kj

and (N)ij← (N)ij
(V)ij

(WH+N)ij
, The divergenceD (V||WH+ N)

does not increase monotonously, and the algorithm converges
when H and W are locally optimal.

Proof: For G
(
h,h(t)

)
, the minimum value can be

obtained by gradient method:

∂G
(
h,h(t)

)
∂h(k)

= −

∑
i

(
υ(i)

W(ik)h
(t)
(k)

W(ik)h
(t)
(k) + N(ik)

)
+

∑
i

W(ik)h(k)

= 0.

Therefore, the corresponding iteration rule is: h(t+1)(k) ←

h(t)
(k)∑

i
W(ik)

∑
i

υ(i)W(ik)

W(ik)h
(t)
(k)+N(ik)

.

Since H and W are symmetrical, the same method can be
used to prove that the iterative rules for W are also valid.

Certificate.

IV. NNMF COMBINED WITH LEAST SQUARES
Equations (17) to (19) contain a large number of matrix
multiplication and division operations with low efficiency,
which can be combined with the least squares (LS) algorithm
to optimize to reduce the matrix division. V = WH + N,
V,N ∈ Rm×L , W ∈ Rm×n, H ∈ Rn×L , among them m ≥ n,
L � m, n. Form ≥ n, the definition ofW†1 is the left pseudo
inverse of W, if W†1W = I. For n � L, the definition of
H†2 is the right pseudo inverse of H, if HH†2

= I. Therefore
H†2
= HT

(
HHT)−1.

For the dimension ofW, m ≥ n, and if ‖V−WH‖2 is the
smallest, then the equation V = WH has a unique solution,
which is the least squares problem. The renewal formula of
the optimal solution of W and H is:

W← VH†2
= VHT

(
HHT

)−1
(20)

H←W†1V =
(
WTW

)−1
WTV (21)

NMF algorithm based on the LS is directly applied to signal
separation to obtain the LS-based NMF signal separation
algorithm, abbreviated as LS-NMF. The algorithm needs(
2mn+ m2

+ n2
)
L multiplication and two matrix inverse

operations every update.
Correspondingly, for the noisy signal modelV =WH+N,

the renewal formula of the optimal solution of H andW is:

W← (V− N)H†2
= (V− N)HT

(
HHT

)−1
(22)

H←W†1 (V− N) =
(
WTW

)−1
WT (V− N) (23)

Combining (19), we can get the hybrid algorithm as follows.
W← (V− N)HT

(
HHT)−1

H←
(
WTW

)−1WT (V− N)
N← N� (V© (WH+ N))

(24)

HHT and WTW are n × n dimensional matrices, whose
inverse computation is far less than that of m× L dimension
operation V© (WH+ N).
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FIGURE 1. Original signals.

FIGURE 2. Spectrograms of original signals.

FIGURE 3. Mixed signals.

V. SIMULATION AND PERFORMANCE ANALYSIS
A. EXPERIMENTAL SIGNAL
The experimental signals are taken from the TIMIT standard
speech library. The four typical original signals and their
spectrograms are shown in Fig. 1 and Fig. 2.

A mixing matrix is randomly generated to mix the source
signals. The mixed signals and their spectrograms are shown
in Fig. 3 and Fig. 4.

FIGURE 4. Spectrograms of mixed signals.

FIGURE 5. Mixed signal when the SNR is 0 dB.

FIGURE 6. Spectrograms of mixed signal when the SNR is 0 dB.

Each mixed signal contains multiple signals, so multiple
voices overlap and mutually interfere. In this case, the usual
ICA or NMF algorithm can be used to effectively separate the
signals. But in the noise environment, the separation effect
will drop sharply. The mixed signals and their spectrograms
are shown in Fig. 5 and Fig. 6 when the signal-to-noise ratio
is 0dB.

Fig. 5 and Fig. 6 show that the signal is almost completely
annihilated when the SNR is 0 dB, and the existence of speech
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FIGURE 7. Separation by NMF method.

FIGURE 8. Spectrograms of separation by NMF method.

can hardly be recognized. In this case, ICA or basic NMF
method is used to separate the signals, but the separation
effect is poor. The separation effect is directly shown by NMF
method, as shown in Fig. 7 and Fig. 8.

Fig. 7 and Fig. 8 show that the signal can be separated to
a certain extent by using NMF directly, but the separation is
not thorough, and the influence of noise is very large, so the
separated speech is difficult to be identified.

B. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS
The unsupervised noise removal technique based on con-
strained NMF (UNMF) proposed in literature 28 is used to
separate the source signals and identify the speech content.
Noise can also be removed to some certain extent, but in the
case of low signal-to-noise ratio, the effect of noise cancella-
tion is limited, as shown in Fig. 9 and Fig. 10.

Using the proposed NNMF algorithm, the effect of signal
separation and noise cancellation is better than that of UNMF
algorithm, as shown in Fig. 11 and Fig. 12.

The proposed LS-NNMF algorithm can also eliminate
noise more effectively, while the effect of signal separation

FIGURE 9. Separation by UNMF method.

FIGURE 10. Spectrograms of separation by UNMF method.

FIGURE 11. Separation by NNMF method.

is similar to that of the NNMF algorithm, as shown
in Fig. 13 and Fig. 14.

C. RESULTS AND DISCUSSION
This section discusses the performance evaluation of the
proposedmethods.We use the typical speech signal of TIMIT
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FIGURE 12. Spectrograms of separation by NNMF method.

FIGURE 13. Separation by LS-NNMF method.

FIGURE 14. Spectrograms of separation by LS-NNMF method.

standard speech library with noises of different intensity.
Algorithms of NMF, UNMF, NNMF and LS-NNMF were
used to separate the signals from each other, and the time
domain signals and spectrograms were displayed and com-
pared with each other when SNR was zero. For the separa-
tion of mixed signals under different SNR, we employ three

FIGURE 15. The SDR of separate signals from different algorithms.

FIGURE 16. The PESQ of separate signals from different algorithms.

evaluation indicators– signal-to-interference ratio (SDR),
speech quality perception assessment (PESQ) and short-term
target intelligibility (STOI) to compare the separation effect.
Among them, SDR is used to measure the effect of interfer-
ence noise suppression, the greater the SDR is, the better the
suppression effect will be; the PESQ is used to measure the
distorted speech signal, the greater the PESQ is, the better
the speech fidelity will be; the STOI is used to measure the
intelligibility of speech, the greater the STOI, the better the
intelligibility will be. The specific performance indicators are
shown from Fig. 15 to Fig. 17.

The simulation results show that the separation perfor-
mance of four methods at different input signal-to-noise
ratios. UNMF algorithm, NNMF algorithm and LS-NNMF
algorithm are significantly superior to the general NMF algo-
rithm in three indicators. The proposed NNMF algorithm
and LS-NNMF algorithm are superior to UNMF algorithm
in terms of SDR, PESQ and STOI. Especially under the
condition of low SNR, the performance of the proposed
NNMF algorithm and LS-NNMF algorithm is improved
significantly.

VOLUME 7, 2019 84655



L. Gao et al.: Enhanced NMF Separation of Mixed Signals in Strong Noise Environment

FIGURE 17. The STOI of separate signals from different algorithms.

TABLE 1. Comparison of computational complexity.

The computational complexity of NNMF algorithm and
LS-NNMF algorithm is compared as follows.

Since the iterative mode of N in both methods is the same,
only the computational amount of W and H needs to be
verified. For Eq. 17,

(
3mn+ n2

)
L times ofmultiplication and

division are required; While for Eq. 18,
(
3mn+ m2

)
L times

of multiplication and division are required. In other words,
in each iteration of NNMF algorithm, the sum of W and H
needs to be multiplied and divided

(
6mn+ m2

+ n2
)
L times.

For equation 22,
(
mn+ n2

)
L times multiplication and

1matrix inversion are required. For equation 23,
(
mn+ m2

)
L

times multiplication and 1 matrix inversion are required.
In other words, in each iteration of LS-NNMF algorithm,
the sum of W and H requires

(
2mn+ m2

+ n2
)
L times of

multiplication and 2 times of small matrix inversion. Since L
is the length of the signal data, L � m, n, the inverse oper-
ation time of small matrix can be ignored. The comparison
of computation amount between the two algorithms is shown
in Table 1.

When NNMF algorithm is adopted, each iteration will be
carried out 4mnL times multiplication and division opera-
tion more than LS-NNMF algorithm. In practical application
scenarios, m and n are usually not far apart. When m = n,
NNMF algorithm requires 8n2L times of multiplication and
division. In comparison, LS-NNMF algorithm only requires
4n2L times of multiplication and division, and the opera-
tion complexity is only half of NNMF algorithm. Adding
equation 19, which is used in both iterations, the efficiency
of LS-NNMF algorithm is still higher than that of NNMF
algorithm.

VI. ABBREVIATIONS
BSS: Blind signal separation;
ICA: Independent component analysis;
SCA: Sparse component analysis;
NMF: non-negative matrix factorization;
FFT: Fast Fourier transform;
KL: Kullback-Leibler;
LS: least squares;
UNMF: unsupervised noise removal NMF;
NNMF: Enhanced NMF separation in strong noise envi-

ronment;
LS-NNMF: LS-based NNMF
SNR: signal-to-noise ratio;
SDR: Signal to Interference Ratio;
PESQ: Perception Evaluation of Speech Quality;
STOI: Short-term Object Intelligibility
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