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ABSTRACT Conventional objective image assessment metrics, such as mean squared error and peak signal-
to-noise ratio, which only calculates pixel-based differences between the original and the degraded images,
are not in agreement with the human vision. In this paper, we present an improved objective full-reference
image quality assessment method, called the multiscale and multidirectional visibility differences (MMVD)
predictor. The proposed MMVD metric considers multiscale and multidirectional visibility differences in
the domain of the discrete nonseparable shearlet transform, which emulates the multichannel structure of
information processing of the human vision system. In the process of constructing the visual just noticeable
difference threshold in the shearlet domain, the contrast sensitivity function and the visual masking effect
which are important properties of the human visual perception are considered simultaneously to approximate
the sensitivities of human visual responses. Both contrast masking and entropy masking are considered to
tackle the visual masking issue. All subbands of the shearlet transform are evaluated, and perceptual errors
of subbands are pooled together to yield the objective quality index of a distorted image. The extensive
validation experiments are conducted on five public image databases, namely, TID2008, TID2013, CSIQ,
IVC, and LIVE. The experimental results demonstrate the proposed method is well coherent with human
perception and has better performance compared to the several state-of-the-art image quality metrics.

INDEX TERMS Discrete nonseparable shearlet transform, image quality assessment, human visual system,

visual masking, visual just noticeable difference threshold.

I. INTRODUCTION

Image Quality Assessment (IQA) is a basic and challenging
research field for image processing. The objective of the stu-
dies about image quality evaluation is to obtain an objective
image quality method, and this method can be in agreement
with subjective ratings made by humans. A triumphant objec-
tive image quality method can reduce laborious works of
human, such as image quality inspection in communication,
printing quality inspection, and other image system perfor-
mance evaluation in manufacturing environment. Moreover,
in a lot of image processing applications, such as digital
image collection, intensity transformations, smoothing, shar-
pening, watermarking, reconstruction, display, and printing,
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we can employ this objective IQA method online to optimize
algorithm effect and cut down computational complexity [1].
The Mean Square Error (MSE) and the Peak Signal-to-Noise
Ratio (PSNR) are traditional objective IQA metrics, and they
are the most widely employed image quality indices. Mean-
while, they are relatively simple and easy to be implemented.
However, they only calculate differences of pixels between
the reference image and the degraded image, and don’t deal
with the correlation between pixels and properties of human
vision, so they don’t correlate well with subjective evalu-
ations and have been widely criticized [2], [3].

A class of image quality assessment metrics is based
on the assumption that the Human Visual System (HVS)
attemps to abide by an overarching principle when a dis-
torted image is observed. Typical overarching principles con-
sist of the Structural SIMilarity (SSIM) metric [4], features
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synthesis index, and the Visual Information Fidelity (VIF)
measure [5]. The SSIM metric is under the hypothesis that
human vision is very sensitive to structural information of
an image, and the image quality degradation is quantified by
structural distortion of the image. In the SSIM method, struc-
tural distortion is differentiated from luminance and contrast
distortion. The SSIM method is a landmark in the research
process of IQA, and initiates a new important research direc-
tion of objective IQA by investigating the structural change
of an image. However, the SSIM metric has a drawback
that it cannot correctly assess blurred images. In addition,
the SSIM metric don’t consider visual characteristics of the
HVS. In [6], the standard deviation of the pixel-wise gradi-
ent magnitude similarity map of an image is calculated as
local structural distortion measurement. In [7], to identify
the dominant structures of an image, the image gradient is
multiplied by the anisotropy measurement and the local direc-
tionality measurement which are computed from the structure
tensor. In [8], both first- and high-order image structures are
extracted and are fused together by Support Vector Regres-
sion (SVR). In [9], the microstructural and macrostructural
similarities of the image gradient magnitude are computed.
In [10], gradient magnitudes are weighted by neighborhood
gradient information and contrast sensitivity of human vision.
So far, how to precisely define the structure of an image,
and how to quantify structural distortion of an image, still
remain open issues and are further investigated in a great
many literatures on image quality measure.

Because image features are attractive to the HVS, they
can be adopted in the research of image quality assessment.
In the features synthesis index, multiple features are selected
and then are properly combined together to derive objec-
tive evaluation scores. Zhang et al. [11] presented a Feature
SIMilarity (FSIM) method which integrates two features,
the phase congruency and the image gradient magnitude.
Yang et al. [12] proposed the Riesz transform and Visual
contrast sensitivity-based feature SIMilarity (RVSIM) metric
which achieves better prediction capability than traditional
models. In the RVSIM metric, both a log Gabor filter and
the Riesz transform are performed to images, and in the
Riesz transform domain, three features including amplitude,
phase and direction are extracted and are properly combined
with another feature, the image gradient magnitude, to derive
the similarity index. Ding et al. [13] selected three image
features, namely, the image gradient, the energy of the log
Gabor filter, and histograms of local pattern analysis, and
in [14], six basic image features and eleven auxiliary image
features are employed. In addition, in [13] and [14], SVR is
adopted to map these features into a predictive score. In [15],
non-negative matrix factorization is applied to obtain image
features about degradation, and Extreme Learning Machine
(ELM) is adopted as the features pooling method. Although
features synthesis methods improve objective assessment
ability to some extent, it is very difficult to find appropriate
features which are highly sensitive to human vision. Addi-
tionally, the features polling technique is very important and
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can significantly affect assessment performance. Obviously,
if machine learning approaches, including support vector
machine, SVR, ELM, deep learning and so on, are employed
as polling techniques, computational complexity of the
IQA method will be greatly increased.

In the VIF metric [5], the issue of image quality evaluation
is tackled as an information retaining issue and image sig-
nals are dealt with to extract cognitive information through
the HVS channels. The VIF metric employs the wavelet
transform, and the IQA is accomplished by measuring
information quantity loss of the distorted image relative to the
undistorted image. In [16], the Discrete Wavelet Transform
(DWT) is performed to decompose the weighted gradient
magnitude image, and entropies of DWT subbands are com-
puted and pooled together. Kuo et al. [17] used the log Gabor
filter to decompose low-frequency components resulted
from the Haar wavelet transform of images, and the local
mutual information of log Gabor subbands is calculated and
combined together. In [18], image information is classi-
fied into three types, namely, saliency information, specific
information and entanglement information, and statistical
features of the three types of image information are extracted
to form the quality assessment model. Information measure-
ment methods can achieve better predictive performance, yet
they seldom incorporate the effects from characteristics of
human perception.

Because the eyes of a person are ultimate receptors and
appreciators of distorted images in the majority of applica-
tions, modeling the HVS accurately and efficiently becomes
a significant research issue, and it is very important and
reasonable to incorporate psychophysical characteristics of
the HVS into image quality evaluation algorithms of system
implementation, optimization, and testing. During the last
two decades, researches have already conducted a great deal
of works about HVS-based IQA. In the Visual Signal-to-
Noise Ratio (VSNR) metric [19], multiple HVS properties
which include contrast sensitivity, visual masking, perceived
contrast and global precedence are employed. In [20], con-
trast sensitivity, contrast interaction and contrast masking are
taken into account to obtain a Noise Quality Measure (NQM)
of a degraded image which is corrupted by additive noise.
In [21] and [22], a sensitive threshold of subband coefficients
of different transforms in multiscale geometric analysis and
the Contrast Sensitivity Function (CSF) are incorporated to
develop a IQA framework. In [23], a semi-local masking
of subband coefficients of the wave atoms transform is cal-
culated. In [24], the CSF is adopted to simulate the initial
vision processing in the HVS, and the structural randomness
of each pixel is employed to quantify the masking effect.
Uzair and Dony [25] proposed a just noticeable distor-
tion model in the pixel domain, which combines the CSF,
the foveal vision effect, the eye-movement effect, and the
content-based masking effect. In [26], the internal generative
mechanism of the human brain is modeled by sparse repre-
sentation. In [27], both visual saliency and visual masking are
employed to pool features of three different image regions:
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contour region, edge-extension region and flat region. Appar-
ently, HVS-based methods are the most intuitive and reliable
IQA ones, and can achieve the best evaluation performance
in theory. However, the HVS has complex perception mecha-
nisms, so accurately modeling multiple properties of the
HVS is very necessary in IQA scheme.

The wavelet transform has already been employed exten-
sively to derive image features and emulate multiple
resolutions and localization characteristics of the HVS.
In [19] and [28], the wavelet transform is employed to
accomplish image quality evaluation. Though the wavelet
achieves remarkable success in many image processing appli-
cations, it is far from the optimal in dimensions larger than
one. Wang-Q Lim proposed an image sparse representation
method, namely, the Discrete Nonseparable Shearlet Trans-
form (DNST) [29]. Multidimensional representations of the
shearlet transform exhibit better mathematical and geometri-
cal properties than the wavelet transform, which include mul-
tiscale, localization, anisotropy, and directionality [30], [31].
Inspired by these ideas, in this paper, an efficient Multiscale
and Multidirectional Visibility Difference (MMVD) predic-
tor is proposed as the Full-Reference Image Quality Assess-
ment (FR-IQA) metric, and the image quality evaluation is
conducted in DNST domain. Multiple lowlevel psychophy-
sical characteristics of the HVS employed in this metric
include the multi-channel structure [32], the CSF, the contrast
masking effect, the entropy masking effect, the visual Just
Noticeable Difference (JND) threshold, and error pooling.
Firstly, the multi-channel structure is simulated by subband
decomposition based on the five-level DNST, and a local
directional bandlimited contrast is defined at each position
of all subbands at different scales and different orientations
in DNST domain. Then a new visual JND threshold model
in DNST domain is established. Besides contrast masking,
entropy masking is also taken into account to handle the
visual masking problem. Entropy masking can be employed
to account for the semi-local complexity of an image [33].
Finally, to yield a final quality index, the Minkowski sum-
mation is employed to poll perceptual errors of all subbands.
To evaluate the efficiency of the proposed MMVD metric,
we compare it with subjective evaluation and six objective
assessment metrics.

This paper is organized as follows. Section II reviews the
characteristics of the DNST. Section III describes the detail-
ed implementation of our MMVD method. In Section IV,
experiments conducted on five public IQA databases and
thorough analyses are presented. Section VI gives general
conclusions.

Il. DISCRETE NONSEPARABLE SHEARLET TRANSFORM

It is known that the traditional wavelet transform only
provides optimal approximation for one-dimensional piece-
wise continuous signals with pointwise singularities. But,
the wavelet transform has a drawback, i.e., it has limited
capability to tackle multivariate and directional signals, such
as images and videos. In a two-dimensional image, other
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types of singularities, such as edge and texture, are usually
primary, and the wavelet cannot represent them very effi-
ciently for lacking of directionality. In recent years, the Mul-
tiscale Geometric Analysis (MGA) method is presented to
overcome this disadvantage. The MGA method includes mul-
tiple types, such as the curvelet transfrom [34], the contourlet
transform [35], and the shearlet transform [29]-[31], [36].
The shearlet transform is originally proposed in [30] and [31].
It is a polydimensional extension of the conventional wavelet
transform, and inherits many advantages of the curvelet and
contourlet transforms. Additionally, the shearlet transform
can implement sparse representation for multidimensional
signals and anisotropic information at multiple scales and
multiple directions. So, it can accurately detect signal singu-
larities of images, such as edges. The shearlet transform is
being employed gradually in image processing field owing
to its characteristics of multiresolution, multidirectional
representation, and localized analysis [37]-[40].

In the two-dimensional case, the shearlet transform is
defined as

SHyf (,0,1) =< f, Yjo1 > 1)

where f denotes a function. j, o, and [ respectively rep-
resent scaling, orientation, and location parameters. The
shearlet ¥; , ; is given as

Vo = detM o) 3y (M} (x — 1) )

where M , = ((J) _\‘//jj‘)) = B,Aj, Aj = <{) \%), and
0 _10 .A;j and B, respectively represent a scaling
matrix and a nonexpansive shear matrix. In this paper, j and
o are setto 4 and — 1, respectively. ¢ denotes a well localized
generating function and can satisfy appropriate admissibilty
conditions.

Let f represent a two-dimensional function which is C?
except for discontinuities along C? curves. The N largest
coefficients in the different transform are employed to recon-
struct f. Here, let fiy denote the reconstructed result. The

resulting asymptotic approximation error is

en = |If —fwll? A3)

If the Fourier transform is employed, the asymptotic
approximation error is as follows:

ey <N/ )

Bo =

The coefficients of the wavelet transform has a slow
decline, and its asymptotic approximation error satisfies

ey <N~ (&)

The asymptotic approximation error of the wavelet trans-
form is better than that of the Fourier transform, but it is far
from the optimal theoretical approximation error, which is as
follows:

ey <N? (6)
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For the shearlet transform, the approximation error
satisfies

en<N2(logN)® 7

Obviously, for two-dimensional piecewise smooth
functions with discontinuities along C? curves, the shearlet
transform provides a better approximation property than the
Fourier transform and the wavelet transform.

Furthermore, the shearlet transform has a number of other
advantages relative to the wavelet transform and the contour-
let transform. For example, the shearlet transform don’t res-
trict the quantity of orientations. In addition, its shearing
filters have lesser support sizes than the directional filters
employed in the wavelet transform and the contourlet trans-
form, and can be implemented much more efficiently.

In [29], Lim presented a modified version of the shearlet
transform, i.e., the Discrete Nonseparable Shearlet Transform
(DNST), which employs a nonseparable shearlet generator.
The DNST utilizes a discrete framework, which implements
a faithful digitization of the continuum domain directional
transform. It uses compactly supported shearlets obtained
from a nonseparable generator, and offers the superior
localization property of the spatial domain. In addition,
its directional selectivity is improved over previous shear-
let transforms, and anisotropic singularities of signals
which have multiple variables can be encoded sparsely by
the DNST.

Fig.1 illustrates subband decomposition of the DNST of
the Zonenplatte_Cosinus image at the two scales, and a low-
pass subband and multiple highpass subbands are generated.
The first scale decomposition has four subbands at different
directions, and the second scale decomposition yields six
subbands at different directions.

In short, the DNST forms a Parseval frame that is localized
fine in the space and frequency domains, and provides better
sensibility of the orientation and best sparse approximation to
represent images which have edges and textures. With these
fine characteristics, the DNST offers more information in
regard to images, and is very suitable to be applied in the
IQA work.

Ill. PROPOSED IMAGE QUALITY ASSESSMENT METRIC
IN DNST DOMAIN

The HVS is a multichannel structure, namely, different visual
information components are preprocessed via different neu-
ral channels, and then are inputted into the visual cortex.
Considering this multichannel behavior of the HVS, in this
paper, the DNST is employed to mimic this behavior and
extract an image’s features. Fig.2 illustrates the framework
of the MM VD method in DNST domain, and this framework
includes four major parts. Firstly, in order to construct the
perceptual model of the HVS, the multichannel mechanism
of information processing in the HVS is emulated by apply-
ing the DNST which decomposes the reference and the
degraded images into many subbands at multiple scales and
multiple orientations. Secondly, coefficients of each subband
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(d)

FIGURE 1. An illustration of subband decomposition in DNST domain.
(a) The original Zonenplatte_Cosinus image. (b) The lowpass subband.
(c) Four highpass subbands at the first scale and four directions. (d) Six
highpass subbands at the second scale and six directions.

of the DNST are utilized to compute the local directional
bandlimited contrast in DNST domain. Thirdly, the visual
JND threshold model is constructed by simultaneously
exploiting the CSF and the visual masking effect in DNST
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FIGURE 2. The framework of the proposed MMVD metric based on
the DNST.

domain. Finally, all perceptual errors are pooled together as
an objective index to denote the scalar quality value of the
distorted image. Details on each component in this frame-
work of the proposed MMVD metric will be given in the
following content.

A. LOCAL DIRECTIONAL BANDLIMITED CONTRAST

IN DNST DOMAIN

An image’s contrast is one of the most important fac-
tors which need to be considered in image processing.
We know human perception is not sensitive to the absolute
luminance but the relative luminance, i.e., the local vari-
ance of the surrounding luminance. In order to account for
nonstationarity and local structure of natural and complex
images, the local contrast rather than the global contrast needs
to be defined. Peli [41] originally presented the definition
of the local bandlimited contrast at every point in an image,
and the definition of this contrast takes into account both the
local luminance and the spatial frequency. On the basis of this
local bandlimited contrast, Winkler and Vandergheynst [42],
Dauphin et al. [43], and Fei et al. [44] proposed the
local directional bandlimited contrast in the wavelet domain,
the Gaussian filter domain and the contourlet domain, respec-
tively. Besides the local luminance and the spatial frequency,
directional information is also considered to define the local
directional bandlimited contrast. Inspired by these studies,
in this paper, a new local directional bandlimited contrast at
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every point in all subbands at different scales and directions
in the DNST domain is defined as follows:

15 ,(x, y)
IIx,y)
Ly =G +y I, @) ©)

Ciox,y) = ®)

where C{ ,(x,y) denotes the local directional bandlimited
contrast of the position (x, y) in the reference image’s
subband at the sth scale and the oth orientation, I{ ,(x,y)
represents the coefficient located at the position (x, y) in the
reference image’s subband at the sth scale and the oth orien-
tation, and /] (x, y) denotes the background energy, namely,
the total of coefficients in all subbands of the reference image
whose scale is less than s. In (9), [j (x, y) denotes the coeffi-
cient at the position (x, y) in the zero-frequency subband of
the reference image, and Iif , (x,y) represents the coefficient
at the position (x, y) in the reference image’s subband at the
ith scale and the oth orientation. Analogously, the local direc-
tional bandlimited contrast of the distorted image, C S”{ oY),
is defined by the same approach.

B. CONTRAST SENSITIVITY FUNCTION IN DNST DOMAIN
The human visual contrast sensitivity is affected by proper-
ties of the visual signal, namely, its spatial frequency, ori-
entation, and so on. The contrast sensitivity has a nonlinear
bandpass characteristic in the frequency domain, and exhibits
different intensities to different spatial frequencies. In gen-
eral, the wellknown CSF is employed to account for vari-
ations in sensitivity about spatial frequencies [12]. The
CSF reaches the maximum at the middle frequency, and
decreases both the low frequency and the high frequency.
Meanwhile, the HVS has the oblique effect, i.e., the eyes of
a person have the most sensitivity to the visual signal in the
horizontal orientation or the vertical orientation, and have the
least sensitivity to the visual signal in the diagonal orienta-
tion. In this paper, a model of the CSF, H (f, 0), is applied
to describe quantitatively the sensitive extent of the HVS to
different spatial frequencies and directions. This CSF model,
H (f, 0), is initially presented by Mannos and Sakrison [45]
and is further modified by Daly [46]. Additionally, H (f, 0)
has been also employed in many IQA metrics [16], [47], [48],
[49]. H (f, 6) is shown as follows:

H(f.0)= 2.6 (0.0192 + Afg) exp [=Afol  fo = fpeak
"7 10.981 otherwise
fo=£/10.15 cos(40) + 0.85] (a1

where f represents the radial frequency in cycles per degree
(c/deg), 0 denotes the orientation, and fy denotes an orienta-
tion-based modification of f to account for the oblique effect.
In addition, parameters A and fpeq are constants. Here,
we have used A = 0.114 and fpeqx = 8 c/deg. For the
horizontal orientation or the vertical orientation, 0 is equal
to 0 or w/2, and cos (460) is equal to 1. For the diagonal
orientations, 6 is equal to 7 /4 or 37 /4, cos (49) is equal
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to —1, and at this point, H (f,0) yields an approxi-
mately —3dB attenuation.

In this paper, an image is decomposed by the DNST
into subbands with different directions and different scales.
Here, in consideration of the contrast sensitivity and the
oblique effect of human perception, we apply the CSF model,
H (f, 0), to describe subband decomposition of the DNST.
The frequency, f, in H (f, 0) is used to denote the scale, s, of a
subband in DNST domain, and the direction, 6, in H (f, 0) is
used to denote the direction, o, of a subband in DNST domain.

The contrast detection threshold denotes the minimum
contrast value when an observer perceives a target signal. It is
expressed as

1
,

Too =BG Dlmamy (12
where CT7 , represents this threshold value of the reference
image’s subband at the sth scale and the oth orientation.
In (12), the frequency f in H (f, 0) is equal to the scale s
of the DNST, and the direction 6 in H (f, 0) is equal to the
direction o of the DNST.

C. VISUAL MASKING EFFECT IN DNST DOMAIN

Visual masking is one important characteristic of human
vision, and reflects changes in the visibility threshold of
a target signal because of the presence of the background
signal. Psychovisual experiments indicate if the target and
background signals have similar spatial frequency, direction,
phase, location, and so on, the visual masking effect will
become more obvious. The visual masking effect includes
two parts, namely, the contrast masking effect and the entropy
masking effect. The contrast masking effect indicates when
the contrast of the background signal changes, the detection
threshold of a target signal will also change accordingly.
The strength of the background signal can be quantitatively
represented by the detection threshold of a target signal.
Daly [50] proposed a contrast masking model in the cortex
transform domain, and in [44], this model is also employed in
the contourlet transform domain. Here, the contrast masking
effect in the DNST domain is defined by employing this
Daly’s contrast masking model:

Sl

’ v b
CM¢ , (x,y) = (1 + (ki(k2|Cy , (x, ) 1) ) ) (13)

where CM{ , (x, y) denotes the visibility threshold elevation
at the position (x, y) in the reference image’s subband at
the sth scale and the oth orientation, which results from the
contrast masking effect. Parameters k; and k, are related to
the pivot point of the contrast curve. The parameter b decides
the adjacent degree between the curve and the asymptote in
the transitional area, and its value varies from 2 to 4. The
parameter v denotes the slope of the high masking contrast
asymptote, and its value varies from 0.65 to 1. In this paper,
k1, k2, v, and b are respectively set to 0.0164, 390.325,

/

0.75, and 4. CS” o (x,¥) denotes the weighted local direc-
tional bandlimited contrast of the reference image. Here, the
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CSF model, H(f, 0), is employed to weight the local direc-
tional bandlimited contrast. Cy , (x, y) is given as follows:

Cso (x,y) = C5 o(x, ) H(f, 0)lf=s,0=0 (14)

Besides contrast masking, entropy masking also should
be considered simultaneously in the visual masking
effect [33]. Contrast masking only takes account of the
change of the visual detection threshold because of the
contrast value. Entropy masking considers the change of
the visual detection threshold because of the neighboring
properties. Entropy masking indicates that when the uncer-
tainty of the masking signal changes, the masking extent will
also change accordingly. Entropy masking has the important
and positive impact, and is the reasonable complement to
contrast masking. For instance, it is difficult to detect a
distorted signal in texture regions, but not in smooth regions.
So, to quantitatively describe the strength of the entropy
masking effect, neighborhood properties of a target signal
are needed to be considered. In [51] and [52], the Daly’s
contrast masking model [50] in (13) is modified to define the
entropy masking effect in the wavelet transform domain, and
in [33], this modified contrast masking model is employed to
define the entropy masking effect in the contourlet transform
domain. In [23], the same model is applied in the wave
atom transform domain. Inspired by the three literatures,
in this paper, we define the entropy masking effect in the
DNST domain by using this modified contrast masking
model, and the visibility threshold elevation in (13) is
adjusted as follows:

’ v+Av(x,y) b %
VM, (x,y) = (1 + (k1(k2|Cg , (x, ) ) )) (d5)

where VM , (x, y) denotes the modified visibility threshold
elevation at the position (x, y) in the reference image’s sub-
band at the sth scale and the oth orientation, and Av(x, y)
represents the neighborhood complexity parameter and is
estimated from components of both the reference and the
degraded images. A sigmoid function is employed to map
the entropy value, E (x, y), into the value, Av(x, y), which is
given by:

I

AVEY) = T hEa

(16)
where three parameters t1, f, and #3 are empirically com-
puted from different types of texture in the image. Here,
11, t2, and t3 are respectively set to 0.3, 2, and 1. E (x,y)
denotes the neighborhood activity and is computed on
a n-by-n neighborhood, which is given by

E(x,y) ==Y plx, »log(px,y)) (17)

where p(x,y) denotes the probability computed from the
luminance histogram of the n-by-n surrounding area of the
position (x, y). Here, we set n = 8.
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D. VISUAL JUST NOTICEABLE DIFFERENCE THRESHOLD
IN DNST DOMAIN

We know the HVS cannot notice every change in an image,
and the visual IND threshold can be exploited to describe this
characteristic of the HVS. The visual JND threshold denotes
the least visibility threshold and is as a result of physiological
and psychophysical phenomena of human vision [53]. If a
change is lower than this threshold, it will not be perceived
by most observers. The visual IND modeling deals with the
issue of visual resemblance, and expresses the local property
of the human perception.

In this paper, on the basis of the contrast detection
threshold in (12), we define the visual JND threshold in
DNST domain by incorporating the visual masking effect,
which is given by

JND; , (x,y) = CT , VM, (x,y) (18)

where JNDy , (x, y) denotes the visual JND threshold value
of the coefficient at the position (x, y) in the reference
image’s subband at the sth scale and the oth orientation, and
CTg , denotes the contrast detection threshold value men-
tioned before. VMg , (x,y) measures the visual masking
strength of the position (x, y) in the oth orientation subband at
the sth scale, and denotes the increase of the HVS’s detection
threshold owing to the visual masking effect. Here, in this
paper, visual masking measured in the visual JND thresh-
old model consists of contrast masking as well as entropy
masking.

E. ERROR POOLING IN DNST DOMAIN

According to above research, we know that if a local con-
trast error between the reference and the degraded images is
less than the visual JND threshold, there will have no or little
effect. On the contrary, enough attention should be paid to
perceptual distortion caused by this error. Hence, we define
the perceptual error of each coefficient of subbands in DNST
domain to describe this relationship, which is given by

Es,u (x,y)

PE Y = 0
5,0 (X,Y) INDL, (x.9)

(19)
where PE; , (x,y) denotes the perceptual error map of the
oth orientation subband at the sth scale in DNST domain,
and Es , (x, y) denotes the absolute value of the local direc-
tional bandlimited contrast error in DNST domain between
the reference and the degraded images. E;, (x, y) is repre-
sented as

Es o (x,y) = |Ch, (x,y) — C (x, y)l (20)

where C{, (x,y) represents the local directional bandli-
mited contrast of the reference image in DNST domain, and
C‘g o(x,y) represents the local directional bandlimited con-
trast of the degraded image in DNST domain. Obviously,
according to the definition of the perceptual error proposed
in this paper, when JND; ,(x, y) is larger, the perceived error
is less for a same amount of E;, (x, y). Decreasing value
of PEg, (x,y) indicates decreasing detected distortions and
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thus increasing visual image quality. Further, a value of
PE;, (x,y) = 0 shows that the distortions in a distorted
image cannot be perceived, namely, this image exhibits the
optimum visual quality.

Error pooling is crucial in the implementation of
image quality assessment metrics. Physiological experiments
revealed that numerous cortical cells concentrate on speci-
fic areas in their receptive fields, and they pool the outputs
from entire photoreceptors on the identical retinal position.
Accordingly, the total visual perception of human vision is the
integration of each cell’s response in the primary cortex of the
brain. This wellknown mechanism of human being is referred
to as the summation effect. In order to mimic this mecha-
nism, the perceptual errors of all positions of all subbands
at total scales and total orientations in DNST domain should
be integrated together into a unified perceptual response for
a whole distorted image. In this paper, the error pooling
scheme is implemented by employing the most widely used
nonlinear fusion method, i.e., the Minkowski summation. The
Minkowski metric is a normal characteristic of the majority
of current image processing paradigms [54]. In this paper,
the total error pooling in DNST domain includes two parts,
i.e., the intrasubband pooling and the intersubband pooling.
Here, the intrasubband error pooling is given by

_ 1 XS,O yx,o ﬁ 1//3
PE;, = (W Dt 2o [PEox, )] ) @1)

where PE; , denotes the result of the intrasubband pooling
of the oth orientation subband at the sth scale; X, , and
Y, denote the height and width of the oth orientation sub-
band at the sth scale, respectively; 8 is based on practical
experience, and is relevant to the psychometric function and
probability summation. The range of B is between 2 and
infinity. Psychophysical experiments showed 4 is an appro-
priate selection of B in the intrasubband pooling. So, in this
paper, we utilize 4 as the value of S.

The intersubband error pooling includes the pooling of
subbands at the same scale and whole orientations, and the
polling of subbands at whole scales. They are expressed as

PE, = (5 3 (PE, ) /P @2)
PE = (% ZISVZI[PEs]ﬁS)I/ﬁS (23)

where PE denotes the pooling result value of subbands at
the sth scale and whole orientations, O, denotes the number
of whole orientations at the sth scale, PE denotes the pooling
result value of subbands at all scales and N is the number
of total decomposition scales. In this paper, 8, = 2.3 and
Bs = 2.5.

At last, in terms of the Weber-Fechner law, namely, the
perceived intensity of a target signal is in direct proportion to
the logarithm of the physical magnitude of this target signal,
we define the scalar quality assessment value of a distorted
image, QA, as follows:

OA = log,((PE + C) (24)
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where the parameter C denotes a constant. To avoid a non-
positive result of objective IQA, we set C = 1 in this paper.

F. SUMMARY OF IMPLEMENTATION STEPS OF PROPOSED
MMVD METHOD

In summary, let r denote a reference image, let d denote
the degraded image of r, each stage of the proposed
MMVD method is roughly summarized in Fig.2, and its
detailed implementation steps are given as following:

Stage 1: Perform the DNST of r and d to derive subbands
{Sr,} and {SZ,} via (1).

Stage 2: Compute the visual JND threshold.

1. Compute the local directional bandlimited contrasts
Cs, (x,y) and CS‘{O(x, y) of each subband of r and d via (8)
and (9), respectively.

2. Employ the CSF via (10) and (11) to compute the
contrast detection threshold CT'g , of r via (12).

3. Compute the visibility threshold elevation CM{ , (x, y)
of r owing to the contrast masking effect via (13).

4. Compute the weighted local directional bandlimited
contrast C;o (x,y) of r via (14).

5. Compute the modified visibility threshold elevation
VM , (x,y) of r owing to both the entropy masking effect
and the contrast masking effect via (15), (16) and (17).

6. Compute the visual JND threshold JNDY , (x,y) of r
via (18).

Stage 3: Pool all perceptual errors.

1. Compute the perceptual error map PE; , (x, y) of each
subband via (19) and (20).

2. Compute the intrasubband error pooling PE , via (21).

3. Compute the intersubband error polling PE via (22)
and (23).

4. Compute the final assessment value QA via (24).

IV. EXPERIMENTAL RESULTS

In this section, we employ the proposed MM VD method to
predict the subjective IQA. Then, we present experimental
results and evaluate predictive ability of the MM VD metric.
Here, in consideration of the reasonable tradeoff between
computational complexity and predictive accuracy, the five-
level DNST decomposition is applied in the MM VD metric,
and five scales are respectively separated into 16, 16, 16, 8,
and 8 directional subbands from finer to coarser scales. The
Matlab source code of the DNST employed in our proposed
MMYVD metric is downloaded online at http://www.shearla
b.org.

A. IMAGE DATABASES AND PERFORMANCE MEASURES

In order to validate the MM VD metric, we conduct extensive
experiments on five public image databases, which include
the Tampere Image Database (TID2008) [55], the Tam-
pere Image Database 2013 (TID2013) [56], the Categorical
Subjective Image Quality (CSIQ) database [57], the IVC
database [58], and the LIVE database [59]. These databases
contain vast distorted images and many distortion types,
and their properties are listed in Table 1. Moreover, they
provide subjective ratings values of distorted images, namely,

78722

TABLE 1. Properties of five image databases.

Reference | Degraded | Distortion | Typical (Image

Images Images | Categories |[Image Size | Type Subjects
TID2008 25 1700 17 384x512 |Color| 838
TID2013 25 3000 24 384x512 |Color| 971
CSIQ 30 886 6 512x512 |Color| 35
IVC 10 185 5 512x512 |Color| 15
LIVE 29 779 5 634x438 |Color| 29

Differential Mean Opinion Scores (DMOS) or Mean Opinion
Scores (MOS), which are exploited as the ground truths to
assess predictive ability of objective image quality evaluation
metrics.

In our experiments, all color images in these image data-
bases are converted into grayscale images, and this pixel-wise
conversion is calculated by

I =0.2989R 4 0.587G +- 0.114B (25)

where I denotes the resultant grayscale image; R, G, and
B denotes, respectively, the red, green, and blue component of
a color image. In this paper, the Matlab function “rgb2gray”
is utilized to implement this pixel-wise conversion.

To quantify predictive ability of image quality evalua-
tion methods, the Video Quality Experts Group (VQEG)
[60] recommended three performance criteria, i.e., the pre-
diction accuracy, the prediction monotonicity, and the pre-
diction consistency. A metric’s prediction correlation with
subjective ratings values, as well as average errors between
objective assessment values and subjective ratings values,
are employed to quantify the prediction accuracy. Here,
the Pearson Correlation Coefficient (CC) and the Root-Mean-
Squared Error (RMSE) are employed to quantify correla-
tion and average errors, respectively. Before calculating CC
and RMSE, in order to derive a linear relationship between
objective values and subjective values, a nonlinear regre-
ssion is employed to each objective value. Here, we employ
a monotonic logistic function to implement this regression,
which is given by
€2 —C3

exp (Z;J) +1

5

f@=a+ (26)

where z denotes the original objective assessment value, and
f () represents the objective assessment value after the regres-
sion. In (26), we employ five parameters c1, 2, ¢3, ¢4, and c5
to derive the least average square errors between converted
objective assessment values and corresponding subjective
ratings values. In this paper, the Matlab function “nlinfit” is
utilized to accomplish this regression.

Let O; denote the ith predicted quality value after nonli-
near regression, and S; denote the ith corresponding subjec-
tive quality value. Meanwhile, let N denote the total number
of images. The formula of CC is given by:

_ L1 (0: - 0) (s - 5)
\/Zﬁvzl (0i - 5)2\/Z§V=1 (si—3)°

where O and S denote the average values of O; and §;,
respectively.

cc

27)
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FIGURE 3. Scatter plots and fitted curves of the proposed MMVD metric output values versus the subjective ratings values from five image databases
(after the nonlinear regression). (a)TID2008. (b)TID2013. (c) CSIQ. (d)IVC. (e) LIVE.

RMSE is computed from where N is the quantity of predicted values, and N, is the
1 N quantity of predictions out of the range of two standard
RMSE = \/ N Z . (0; — Si)2 (28) deviation of the subjective rating values.
=

Th dicti . R . h If an objective IQA metric can simultaneously offer high-
e prediction monotonicity refers to measuring the er values of CC, SROCC and KROCC, and lower values of

QA .metrlc s ?b‘h.ty acc.ordmg to predicting th.e. rank- RMSE and OR, it is deemed that this metric achieves better
ordering of subjective ratings values. Here, we utilize the -
predictive performance.

Spearman Rank-Order Correlation Coefficient (SROCC) and
the Kendall Rank-Order Correlation Coefficient (KROCC) to B. OVERALL PERFORMANCE COMPARISON

quantify the monotonicity. SROCC is calculated as: Fig.3 depicts scatter plots and fitted curves of the MMVD

SROCC = 1 6 ZN 1 X; — ;)2 (29) metric output values versus subjective ratings values of per-
=

N(N?—1) ceived distortion on five image databases including TID2008,
where X; and Y; denote the ranks of the ith image in the TID2013, CSIQ, IVC, and LIVE. Each dot in these plots
predicted quality values and the subjective quality values, represents a degraded image of databases. In all graphs, the
respectively. vertical axis represents distorted images’ subjective ratings

KROCC is defined as: values, namely, MOS or DMOS, and the horizontal axis
2N =N denotes MMVD metric output values transformed by the
KROCC = m (30) nonlinear regression. These graphs show that the objective
, evaluation values predicted by the MM VD metric are highly

where N represent th(;/ quantity of concordant pairs in the consistent with the subjective evaluation values.
image database, and N represent the quantity of discordant In our experiments, the predictive ability of the pro-
pairs in the image database. posed MMVD metric is compared with eleven representative
In order to quantify the prediction consistency between FR-IQA metrics, including two extensively used traditional
objective assessment values and subjective ratings values, metrics, i.c., PSNR and MultiScale Structural SIMilarity
the Outlier Ratio (OR) is employed in this paper. OR is given (MSSSIM) [61], four state-of-the-art FR-IQA metrics, i.e.,
by VIF [5], VSNR [19], FSIM [11], NQM [20], and the latest
OR — No 31 RVSIM [12], EFS [27], GDRW [2], SLY [3], SCQI [62],
N which are published in 2018, 2018, 2017, 2015, 2016,
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TABLE 2. Overall performance comparison of twelve objective evaluation metrics.
PSNR |MSSSIM| VIF | VSNR | FSIM NOQM |RVSIM| EFS |GDRW| SLY | SCQI | MMVD
CC 0.5446 | 0.8420 |0.8078 [0.679710.8733 | 0.6162 |0.79240.8793 | 0.8817 | 0.8918 | 0.8884 | 0.9271
TID2008 SROCC | 0.5340 | 0.8531 |0.7495]0.6871|0.8805| 0.6242 |0.7381 | 0.9382 | 0.8967 | 0.8857 | 0.9103 | 0.9347
KROCC | 0.3696 0.6556 |0.586210.5290 | 0.6946 | 0.4524 |0.5634(0.71070.7131]0.7183 | 0.7284 | 0.7574
RMSE 1.1237 | 0.7251 [0.7900 |0.9937]0.6539 | 1.0594 |0.81210.6335[0.6317|0.6176 | 0.6116 | 0.4279
CC 0.6729 | 0.8266 |0.7708 | 0.7134]0.8577 | 0.6357 |0.7847]0.9107 | 0.8906 | 0.8237 ] 0.9067 | 0.9171
TID2013 SROCC | 0.6397 0.7809 ]0.674710.6808 | 0.8015| 0.6195 |0.6741 | 0.8937 | 0.8817]0.7973 | 0.9047 | 0.9106
KROCC | 0.4696 | 0.6047 [0.5147]0.5087 | 0.6289 | 0.4247 |0.5134[0.7186 | 0.6984 | 0.6104 | 0.7334 | 0.7426
RMSE 0.9176 | 0.6976 |0.7898 | 0.8704 | 0.6255| 1.0681 |0.7692|0.5227 | 0.5636 | 0.7125 ] 0.5224 | 0.5157
CC 0.7999 | 0.8807 |0.9255]0.8016|0.9101 | 0.7420 |0.9215|0.9294 | 0.9557 | 0.9184 | 0.9257 | 0.9365
SROCC | 0.8055 0.9031 ]0.9030|0.8058 [ 0.9230 | 0.7411 |0.8984 |0.9362 | 0.9584 | 0.9137 [0.9447 | 0.9351
CSIQ | KROCC | 0.6042 | 0.7395 |0.75350.6239]0.7567 | 0.7558 |0.7221]0.7773 | 0.8174 | 0.7454 | 0.7861 | 0.7674
RMSE 0.1577 0.1197 ]0.098310.157910.1080 | 0.1758 | 0.0987 | 0.0981 | 0.079 | 0.1047 | 0.0994 | 0.0845
OR 0.3423 0.2459 10.2261 | 0.3210 [ 0.2346 | 0.3705 |0.2184 |0.2364 | 0.1847 [ 0.1965 | 0.1767 | 0.1754
CC 0.7385 0.8987 10.9110|0.8416 [ 0.9377 | 0.8494 |0.8956 | 0.9254 | 0.9431 | 0.9484 | 0.9175 | 0.9423
ve SROCC | 0.7154 0.8915 ]0.89630.8333]0.9261 | 0.8344 |0.8894|0.925710.94730.9178 | 0.9341 | 0.9354
KROCC | 0.5219 | 0.7012 [0.7165]0.5947 | 0.7564 | 0.6038 |0.6947 [ 0.7364 | 0.7764 | 0.7674 | 0.7462 | 0.7847
RMSE 0.8524 | 0.5520 [0.5239]0.725910.4236| 0.6422 |0.5264|0.4238 | 0.5047 [ 0.5284 1 0.5194 | 0.4132
CC 0.8547 | 0.9403 [0.9583 [0.91530.9610| 0.9019 |0.9561 | 0.9487 | 0.9593 | 0.9592 | 0.9367 | 0.9567
SROCC | 0.8540 | 0.9446 [0.9610|0.9161 | 0.9663 | 0.8997 |0.9587 | 0.9548 | 0.9597 | 0.9567 | 0.9454 | 0.9557
LIVE | KROCC | 0.6865 0.7996 |0.8275]0.7581[0.8337 | 0.7048 |0.8194|0.8118 | 0.8293 | 0.8235]0.7973 | 0.8501
RMSE | 12.4620 | 8.7735 |7.4048|9.2801 | 7.7812 | 10.4680 | 7.9284 | 8.4804 | 7.6251 | 4.6107 | 8.8967 | 7.4964
OR 0.6841 0.5995 10.54210.6043 [ 0.3894 | 0.6670 |0.5394|0.5567]0.5014 |0.5149 | 0.4987 | 0.3910
CC 0.6805 0.8537 |0.8280|0.7447 [ 0.8837 | 0.6837 |0.8291 |0.9101 | 0.9070 | 0.8743 | 0.9084 | 0.9278
Weighted | SROCC | 0.6625 0.8390 ]0.7660 | 0.7322 | 0.8619 | 0.6775 |0.7617|0.9192 ] 0.9073 | 0.8587 [ 0.9173 | 0.9263
mean | KROCC | 0.4891 0.6622 |0.6090 | 0.5616 [ 0.6915| 0.5155 |0.5966 | 0.7360 | 0.7363 | 0.6869 | 0.7471 | 0.7638
RMSE | 2.2147 1.5651 |1.4600 | 1.7835[1.3919| 2.0286 |1.5177|1.4201 | 1.3387 | 1.0551 | 1.4666 | 1.2468
respectively. Matlab source codes of these methods are TABLE 3. Weights of five image database.
downloaded from websites provided in corresponding liter-
atures, or are derived from their authors. Here, CC, SROCC, Dafabase TID2008 | TID2013 |CSIQ |IVC | LIVE
Weight |0.2579 0.4552 0.1344 10.0357 | 0.1168

KROCC, RMSE, and OR are calculated as experimental
results listed in Table 2. For each row of Table 2, three
optimal objective evaluation entries are bolded. As TID2008,
TID2013, and IVC do not release standard deviations of
subjective ratings values, OR cannot be calculated on these
databases.

From Table 2, we can see the MMVD metric achieves
good performance on total image databases. Especially on
TID2008, TID2013, CSIQ, and IVC, the MMVD metric
is the most consistent objective image assessment index
according to CC, SROCC, KROCC, RMSE, and OR. The
MMYVD metric demonstrates quite good performance that the
CC values are 0.9271,0.9171, 0.9567, 0.9365, and 0.9423 for
TID2008, TID2013, LIVE, CSIQ, and IVC, respectively.
In addition, in order to derive an overall performance com-
parison, we calculate the weighted mean values of per-
formance measures including CC, SROCC, KROCC, and
RMSE, which are also given in Table 2. The weight of each
database is derived by the calculation, i.e., the quantity of
images in each database is divided by the total quantity of
images in all databases. Table 3 gives these weights.

Our MMVD metric also obviously outperforms the other
metrics according to these weighted mean experimental
results in Table 2 except for the RMSE value. Furthermore,
the RMSE value of our proposed MMVD metric is very
competitive and near with the least value, i.e. the RMSE value
of the SLY method.
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C. STATISTICAL SIGNIFICANCE

To verify the statistical significance of the MM VD method
compared to the other methods, an F-test is conducted in this
paper. The F-test is based on predictive differences between
subjective ratings values and nonlinear regression results of
objective evaluations values [63], [64]. Predictive differences
are defined as follows:

Di=0,-S5i=1,2,...,N (32)

where O; denotes the ith objective evaluations value after
the regression, S; represents the ith subjective ratings values,
D, represents the difference between O; and S;, and N repre-
sents the quantity of distorted images.

Predictive differences are supposed to satisfy a Gaussian
distribution. If the variance of predictive differences of an
objective evaluation metric is smaller than that of predictive
differences of the other metric, this metric is deemed to
have more accurate prediction performance than the other
metric. The variances of predictive differences of each
method on five databases are listed in Table 4, and the small-
est variance on each database is shown in boldface. Here,
F-ratio is employed to represent the proportion between the
variances of predictive differences of two objective evaluation
methods. In the F-ratio, the bigger variance and the smaller
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TABLE 4. Variances of predictive differences of objective evaluation metrics on five image databases.

PSNR |[MSSSIM| VIF |VSNR | FSIM | NQM |RVSIM| EFS |GDRW| SLY |SCQI |MMVD
TID2008 | 1.124 | 0.497 | 0.658 | 0.956 | 0.452 | 1.047 | 0.678 | 0.436 | 0.427 | 0.431 | 0.439 | 0.408
TID2013| 1.097 | 0.547 | 0.647 | 0.968 | 0.527 | 1.174 | 0.947 | 0.521 | 0.548 | 0.577 | 0.516 | 0.497
CSIQ [0.0257| 0.0157 |0.0104]0.0408|0.0148|0.0387| 0.0415 {0.0173| 0.026 |0.0143|0.0155] 0.0101
IVC 0.784 | 0.297 | 0.217 | 0.493 | 0.287 | 0.387 | 0.223 | 0.281 | 0.225 | 0.238 | 0.236 | 0.206
LIVE [175.93] 81.57 | 56.82 |107.21| 55.47 [121.56| 57.46 | 78.49 | 54.93 | 53.73 | 82.34 | 57.56
TABLE 5. Results of comparison in regard to statistical significance.
PSNR | MSSSIM | VIF | VSNR | FSIM | NQM |RVSIM |EFS | GDRW |SLY |SCQI
TID2008 1 - 1 1 1 1 1 1 1 1 1
TID2013 1 1 1 1 1 1 1 1 1 1 -
CSIQ 1 1 1 1 - 1 1 1 1 0
IVC 1 1 - 1 - 1 1 1 1 _ 1
LIVE 1 - 0 1 0 1 - 1 0 0 1
TABLE 6. Mean execution time of twelve FR-IQA Metrics.
FR-IQA metric | PSNR [MSSSIM | VIF | VSNR | FSIM | NQM [RVSIM| EFS |GDRW | SLY SCQI | MMVD
Time (second) | 0.0028 | 0.1255 |2.6122]0.0516 | 0.5947 | 0.4453 | 0.4287 | 0.3714 | 0.5658 | 6.7933 | 0.2403 | 0.4361

variance are placed, respectively, as the numerator and the
denominator. If an F-ratio is large than the F-test threshold,
then the performance comparison of two objective metrics
is deemed to be significant in statistical performance, and
the metric in the denominator of this F-ratio is deemed
to have the statistically superior performance to the metric
in the numerator. The F-test threshold relates to both the
quantity of predictive differences and the assigned confidence
coefficient. Here, the confidence coefficient employed in our
experiments is 95%. Table 5 gives the results of compari-
son which are concerning statistical significance. The entry
values “17, “0”, and “-” respectively denote that, with 95%
confidence, the statistical performance of the MM VD metric
is superior, inferior, and indistinguishable to that of the other
metrics on the image database in the first column of Table 5.

Results of Table 6 shows the proposed MM VD method has
the minimum variance in comparison with the other metrics
on most databases except the LIVE database. On LIVE,
the variance of the MMVD metric is competitive with the
least value, namely, the variance of the SLY method.

Results of Table 5 demonstrate the MM VD metric is better
than the most of the other metrics in terms of statistical
significance. On TID2008, the proposed metric has better
statistical performance except for MSSSIM. On TID2013,
the proposed metric exceeds all other metrics statistically
except for SCQIL. On CSIQ, the MMVD metric outper-
forms other metrics statistically, except for FSIM, GDRW
and SCQI. On IVC, the proposed metric surpasses other
metric statistically, except for VIF, FSIM and SLY. On LIVE,
the statistical ability of the MMVD method is superior to
PSNR, VSNR, NQM, EFS and SCQI, and is inferior to VIF,
FSIM, GDRW and SLY. In Table 5, the number of total
statistical comparisons between two metrics is 5*11=55,
and the number of comparisons in which the proposed

VOLUME 7, 2019

MMVD method surpasses the other methods statistically
is 41. Hence, the proposed metric shows significant
improvement in 74.55% of the cases. In all, the proposed
MMVD metric obtains very promising statistical per-
formance when compared with the most of other metrics.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
Computational complexity is one important concern of an
objective image quality assessment metric. Here, evalu-
ation experiments are conducted on a computer which has
a 3.2-GHz Intel Core4 CPU and a 4-Gbyte RAM. MATLAB
R2017a is utilized as the software development platform to
implement all codes of these objective evaluation metrics. For
each metric, the mean execution time of a distorted image
is calculated on the TID2008 database, and the resolution of
distorted images is 384 x 512 pixels. The unit of the execution
time is second. Table 6 gives the mean execution time of
each metric. Results of Table 6 show the proposed MMVD
metric spends less time than VIF, FSIM, NQM, GDRW,
and SLY. Specifically, in all metrics, SLY needs the longest
time to finish the evaluation. Furthermore, PSNR, MSSSIM,
VSNR, RVSIM, EFS, and SCQI spend less time than the
MMYVD metric, but their performance is worse than that of
the MM VD metric, which can be viewed from Tables 2 and 4.
In a word, it is apparent that in comparison to the other
methods, computational complexity of the MM VD method
is moderate and competitive. Our next step is to optimize the
programming and further reduce its execution time.

E. DISCUSSION

The proposed MMVD metric is a multiscale image quality
evaluation scheme and tries to address the issue of image
quality assessment more effectively. Extensive experiments
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on five image databases are conducted to investigate pre-
diction accuracy and consistency of the MMVD metric.
The MMVD metric demonstrates better prediction accu-
racy than the other metrics. This remarkable performance
is attributed to two points. The first point is that the shear-
let transform is employed by the MMVD metric, and the
shearlet transform has many better characteristics than the
traditional wavelet transform in processing two-dimensional
image signals, which are already mentioned before. The
IQA is accomplished on the basis of the multiscale and
multidirectional subbands of the DNST. The second point
is that many properties of the HVS are precisely mod-
eled in the MMVD metric. These characteristics include the
multichannel mechanism, the local directional bandlimited
contrast, the contrast detection threshold, the contrast mas-
king effect, the entropy masking effect, the visual just notice-
able difference threshold, and the error pooling.

However, the MM VD metric has two drawbacks. Firstly,
it can be only applied to a greyscale image and cannot be
applied to a color image. To accomplish the color IQA,
the MM VD metric needs to be extended, and some perceptual
chrominance characteristics of the HVS should be taken into
account. For example, chrominance perception is also aggre-
gate responses of a large number of single space-frequency
local channels, which is similar to luminance perception of
a greyscale image. The masking effect of the chrominance
also affects the performance of color image quality assess-
ment. Secondly, the MM VD metric has the relatively long
run time. Therefore, its computational complexity should be
further reduced and its implementation codes should be opti-
mized. Additionally, our MMVD metric can also be further
extended to handle some other problems of visual quality
measure, such as video quality assessment and stereoscopic
image quality assessment, which are our future research
work.

V. CONCLUSIONS

This paper presents an effective FR-IQA metric on the basis
of multiscale and multidirectional visibility differences in
DNST domain, and multiple properties of human vision are
considered to mimic human responses to incoming image sig-
nal. In the proposed MM VD metric, the DNST is employed
to emulate the multichannel property of human perception.
The image is decomposed by the DNST into multiple dif-
ferent subbands. The CSF and the visual masking effect
are dealt with simultaneously and are incorporated into the
visual JND threshold in DNST domain. For the visual mas-
king effect, both contrast masking and entropy masking are
applied in the proposed metric. The perceptual error polling
is implemented by the Minkowski summation and a scalar
value is yielded to denote a distorted image’s quality. Exten-
sive validation experiments are conducted on five subjective-
rated image databases which are specially established to be
used in studies of image quality assessment. Experimen-
tal results indicate the proposed metric achieves better pre-
diction accuracy and consistency with subjective ratings of
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human beings in comparison with the existing state-of-the-
art IQA metrics, and demonstrate generally better predictive
performance.
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