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ABSTRACT The finite-time stabilization for stochastic high-order nonlinear systems is considered in this
paper using output feedback. The power orders in the system nonlinearities are relaxed to be rational number
greater than one. A new constructive output-feedback, finite-time controller is designed based on a finite-
time observer together with the homogeneous domination. The stochastic finite-time stability analysis is
given rigorously for the closed-loop stochastic system.

INDEX TERMS Stochastic, feedforward systems, finite-time, output feedback control.

I. INTRODUCTION
Stabilization of feedforward systems is of practical impor-
tance [1], [2]. There are many deterministic results on feed-
forward systems, see [3]–[12] and the references therein.
In recent years, some stabilization results have been achieved
for stochastic nonlinear feedforward systems

dηi = (ηpii+1 + fi(ηi+2, · · · , ηn, v))dt
+ g>i (ηi+2, · · · , ηn, v)dω, i = 1, · · · , n− 2,

dηn−1 = (ηpn−1n + fn−1(v))dt + g>n−1(v)dω, η(0) = η0,
dηn = vpndt,
y = η1, (1)

where n ≥ 2, and η = (η1, · · · , ηn)> ∈ Rn, v ∈ R, y = η1 and
η0 ∈ R are the system state, input, output and initial value.
ω is an m-dimensional standard Wiener process defined on
the complete probability space (�,F ,P). For i = 1, · · · , n,
pi ∈ R≥1odd , {

p
q ∈ R+: p and q are odd integers, p ≥ q},

system (1) is called as high-order system if one pi > 1, fi :
Rn−i−1×R→ R and gi : Rn−i−1×R→ Rm are continuously
differential with fi(0, 0) = 0, gi(0, 0) = 0.
For instance, [13] studied the stochastic stabilization of

nonlinear systems in feedforward form with noisy out-
puts. [14] constructed a state feedback stabilized controller
for stochastic high-order nonlinear feedforward systems.
Reference [15] considered the global stabilization of feedfor-
ward systems with time-delay. However, all of these results
only consider the asymptotic stabilization.

The associate editor coordinating the review of this manuscript and
approving it for publication was Feiqi Deng.

Recently, more attention have been paid on the finite-
time stabilization of deterministic feedforward systems [9],
stochastic lower-triangular systems [17], [18], switched
stochastic nonlinear systems [19], [20]. For stochastic non-
linear feedforward systems, the finite-time stabilization is
considered in [21] but where only a finite-time state feedback
stabilized controller is designed.

In this paper, we will design a finite-time output feed-
back controller for stochastic high-order nonlinear feedfor-
ward systems (1). Based on stochastic Lyapunov theorem
on finite-time stability in probability established in [22],
by using the homogeneous domination method, the adding
one power integrator and sign functionmethod, constructing a
C2 Lyapunov function and verifying the existence and unique-
ness of solution, a continuous output feedback controller
is designed to guarantee the closed-loop system finite-time
stable in probability. The effectiveness of control method is
showed by a simulation example.

II. PRELIMINARIES
The following notations are to be used in this paper.
Notations: Rn denotes the n-dimensional Euclidean space,

R+ stands for the set of all nonnegative real numbers. For a
vector or matrix X , X> denotes its transpose, Tr{X} denotes
its trace when X is square. ‖X‖ denotes Euclidean norm
(
∑n

i=1 x
2
i )

1
2 and Frobenius norm (Tr{X>X})

1
2 for vector X

and matrix X , respectively. A function f : Rn→ R is Ci if it is
i-times differential. K denotes the set of all functions: R+→
R+ that are continuous, strictly increasing and vanishing at
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zero, K∞ denotes the set of all functions that are of class
K and unbounded. sgn(x) is the sign function defined as:
sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0, and sgn(x) = −1
if x < 0.
For system

dx = f (x)dt + g>(x)dω, x(0) = x0 ∈ Rn, (2)

where f (x), g(x) are continuous in x, f (0) = 0, g(0) = 0, x0 is
the initial value, we have the following three lemmas.
Lemma 1 [23]: Suppose continuous functions f (x) and g(x)

satisfy ‖f (x)‖2+‖g(x)‖2 ≤ K (1+ x2) for a constant K > 0,
then for any x0 ∈ Rn, system (2) has a solution.
Lemma 2 [17]: If one nonnegative, radially unbounded and

C2 function V (x) satisfies LV (x)|(2) ≤ 0 for all x ∈ Rn, then
system (2) has a solution for any x0 ∈ Rn.
Lemma 3 [22]: Suppose system (2) admits a unique solu-

tion, if there is a C2 function V : Rn → R+, K∞ functions
γ1 and γ2, real numbers λ > 0 and 0 < γ < 1 such that
for all t > 0 and x ∈ Rn, γ1(‖x‖) ≤ V (x) ≤ γ2(‖x‖),
LV (x) ≤ −λV γ (x), then the trivial solution of system (2)
is finite-time stable in probability.
Lemma 4 [25]: For x, y ∈ R, if p ≥ 1 ∈ R, then

|x + y|p ≤ 2p−1|xp + yp|, (|x| + |y|)
1
p ≤ |x|

1
p + |y|

1
p .

(3)

If p ∈ R≥1odd , then

|xp − yp| ≤ p(1+ 2p−3)|x − y|((x − y)p−1 + yp−1), (4)

|x − y|p ≤ 2p−1|xp − yp|. (5)

Lemma 5: Let real numbers p ≥ 1 and q ≥ 1 satisfy 1
p +

1
q = 1, then for any x, y ∈ R and any given positive number

γ > 0, xy ≤ γ |x|p + 1
q (pγ )

−
q
p |y|q.

Lemma 6 [26]: For any real numbers p = b1
b0
∈ R≥1odd with

b1 ≥ b0 ≥ 1 and a ≥ 1, there hold

|xp − yp| ≤ 21−
1
b0 |sgn(x)|x|b1 − sgn(y)|y|b1 |

1
b0 , (6)∣∣∣sgn(x)|x| 1a − sgn(y)|y|

1
a

∣∣∣ ≤ 21−
1
a |x − y|

1
a . (7)

Lemma 7 [27]: If r ≥ 1 is any given rational number, then
there are two constants c0(r) > 0 and 1 ≥ d(r) > 0 both
dependent on r such that for any x, y ∈ R,

|sgn(x)|x|a−sgn(y)|y|a|≤c0|x − y|d (|x−y|a−d+|y|a−d ).

(8)

III. DESIGN OF FINITE-TIME OUTPUT
FEEDBACK CONTROLLER
A. PROBLEM FORMULATION
To obtain the stochastic finite-time output feedback stabil-
ity of system (1), in this paper, the nonlinear functions are
assumed to satisfy the following conditions:
Assumption 1: There exist real numbers M1 > 0 and

M2 > 0, and a rational number τ ∈ (− 1
2(1+

∑n
l=2 p1···pl−1)

, 0)

such that for i = 1, · · · , n− 2,

|fi(ηi+2, · · · , ηn, v)| ≤ M1

( n∑
j=i+2

|ηj|
ri+τ
rj + |v|

ri+τ
rn+1

)
,

‖gi(ηi+2, · · · , ηn, v)‖ ≤ M2

( n∑
j=i+2

|ηj|
2ri+τ
2rj + |v|

2ri+τ
2rn+1

)
,

|fn−1(v)|≤M1|v|
rn−1+τ
rn+1 , ‖gn−1(v)‖≤M2|v|

2rn−1+τ
2rn+1 , (9)

where

r1 =
1
2
, ri+1 =

ri + τ
pi

, i = 1, · · · , n. (10)

Remark 1: Assumption 1 holds for system (1) with n ≥ 2.
It’s worth noting that, when n = 2, system (1) reduces to

dη1 = (ηp12 + f1(v))dt + g
>

1 (v)dω,
dη2 = vp2dt,
y = η1. (11)

For this case, system (11) just needs to satisfy the condi-

tion M1|v|
rn−1+τ
rn+1 , ‖gn−1(v)‖ ≤ M2|v|

2rn−1+τ
2rn+1 with n = 2 in

Assumption 1.
Remark 2: For the finite-time stabilization of stochastic

nonlinear systems by output feedback, several latest results
such as [29]–[31] have been achieved. However, all of them
consider the systems in feedback form. To our knowledge,
there is no stochastic output feedback finite-time stabilization
result on feedforward systems, so Assumption 1 is the weak-
est until now. To ensure that Assumption 1 holds, one must
find a constant τ ∈ (− 1

2(1+
∑n

l=2 p1···pl−1)
, 0) such that fi and

gi satisfy (9). For system dη1 = η
5
3
2 dt + η

a
3dω, dη2 = η

3
3dt ,

dη3 = vdt , where a takes any real constant inside (5, 436 ),
by choosing τ = 3a−15

15−16a , Assumption 1 holds due to g1 ≤

|η3|
a
= |η3|

2r1+τ
2r3 .

There are a variety of nonlinearities satisfying Assump-
tion 1. For example, if there is τ such that τ+ri = ai+2ri+2+
· · · + anrn, then fi = η

ai+2
i+2 · · · η

an
n satisfies Assumption 1.

It’s worthy to note that some nonlinearities such as sin η,
ln(1+ |η|) can be bounded by |η|. �

B. OUTPUT FEEDBACK CONTROLLER OF SYSTEM (1)
The design of output feedback controller of system (1) con-
sists of three parts. In Part I, the output feedback controller
of the nominal system for system (1) based on a observer is
designed. Part II determines the observer gains `1, · · · , `n−1.
In Part III, a dynamic gain 0 is introduced into system (1)
by the transformation, the output feedback controller of
system (1) with the dynamic gain is obtained.
Part I. Output feedback controller of nominal system
In this subsection, we design a homogeneous output feed-

back controller for the nominal system:

dxi = xpii+1dt, i = 1, · · · , n− 1,
dxn = upndt,
y = x1. (12)
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Denote sgn(x)|x|a , [x]a for any a ∈ R+, x ∈ R.

Step 1: Choose V1(x1) = m1
∫ x1
0 [s]

4−r2p1
r1 ds with m1 > 0

being a constant, and define z1 = [x1]
1
r1 . Obviously, V1(x1) is

C2 since 4 − r2p1 ≥ 1. The infinitesimal generator1 of
V1 along (12) satisfies LV1(x1)|(12) = m1[z1]4−r2p1 (x

p1
2 −

α
p1
1 )+m1[z1]4−r2p1α

p1
1 . Choosing α1 = −β

r2
1 [z1]r2 with β1 =

( a1,1m1
)

1
r2p1 and a1,1 being a positive constant to be designed,

one has LV1(x1)|(12) ≤ −a1,1z41 + m1[z1]4−r2p1 (x
p1
2 − α

p1
1 ).

Step k (k = 2, · · · , n): We demonstrate this step by
Proposition 1 whose proof is placed in the Appendix.
Proposition 1: Suppose that there is a C2, positive defi-

nite and radially unbounded function Vk−1(x̄k−1), and vir-
tual controllers α0, · · · , αk−1 defined by α0 = 0, αj−1 =

−β
rj
j−1[zj−1]

rj , zj−1 = [xj−1]
1

rj−1 − [αj−2]
1

rj−1 , j = 1, · · · , k ,
such that

LVk−1(x̄k−1)|(12)

≤ −

k−3∑
j=1

(
aj,j − ãj+1,j − āj+1,j −

k−1∑
l=j+2

āl,j
)
z4j

− (ak−2,k−2 − ãk−1,k−2 − āk−1,k−2)z4k−2
− ak−1,k−1z4k−1 + mk−1[zk−1]

4−rkpk−1 (xpk−1k − α
pk−1
k−1 ),

(13)

then by defining zk = [xk ]
1
rk − [αk−1]

1
rk , there is a virtual

controller αk = −β
rk+1
k [zk ]rk+1 such that the kth Lyapunov

function

Vk (x̄k ) = Vk−1(x̄k−1)+ mkWk (x̄k ),

Wk (x̄k ) =
∫ xk

αk−1

[
[s]

1
rk − [αk−1]

1
rk

]4−rk+1pk
ds (14)

satisfies

LVk (x̄k )|(12) ≤ −
k−2∑
j=1

(
aj,j − ãj+1,j − āj+1,j −

k∑
l=j+2

āl,j
)
z4j

− (ak−1,k−1 − ãk,k−1 − āk,k−1)z4k−1
− ak,kz4k + mk [zk ]

4−rk+1pk (xpkk+1 − α
pk
k ),

(15)

where mk−1, mk , ãj+1,j, āj+1,j, āl,j, ãk,k−1, āk,k−1, j =
1, · · · , k − 2, l = j + 2, · · · , k , are positive constants,
a1,1, · · · , ak−1,k−1, ak,k are positive constants to be designed,
β1, · · · , βk are positive constants dependent on a1,1, · · · ,
ak−1,k−1, ak,k .
At step n, choose Vn(x) =

∑n
k=1 mkWk (x̄k ) with m1, · · · ,

mn being positive constants and design

u∗ = −βrn+1n [zn]rn+1 ,

zj = [xj]
1
rj − [αj−1]

1
rj ,

α0 = 0, αj−1 = −β
rj
j−1[zj−1]

rj , j = 1, · · · , n, (16)

1For C2 function V (x), the infinitesimal generator of V (x) along system

(2) is defined as LV (x) = ( ∂V (x)
∂x )>f (x) + 1

2Tr{g(x)
∂2V (x)
∂x2

g>(x)}, where

1
2Tr{g(x)

∂2V (x)
∂x2

g>(x)} is called the Hessian term of L.

then there are positive constants β1, · · · , βn such that

LVn(x)|(12) ≤ −
n−2∑
j=1

(
aj,j − ãj+1,j − āj+1,j −

n∑
l=j+2

āl,j
)
z4j

− (an−1,n−1 − ãn,n−1 − ān,n−1)z4n−1
− an,nz4n + mn[zn]

4−rn+1pn (upn − u∗pn ), (17)

where fn = 0, gn = 0, ãj+1,j, āj+1,j, āl,j, ãn,n−1, ān,n−1, j =
1, · · · , n − 2, l = j + 2, · · · , n, are positive constants, a1,1,
· · · , an,n are positive constants to be designed.

Introduce a homogeneous reduced-order observer:

dξ̂k = −`k−1x̂
pk−1
k dt, x̂k = [ξ̂k + `k−1x̂k−1]

rk
rk−1 , (18)

where k = 2, · · · , n. Using the certainty equivalence princi-
ple together with (16), one obtains the implementable output
feedback controller for system (12):

u = α̂n = −β
rn+1
n

[
[x̂n]

1
rn +

n−1∑
i=1

( n−1∏
j=i

βj

)
[x̂i]

1
ri

]rn+1
. (19)

Part II. Determination of observer gains `1, · · · , `n−1
For k = 2, · · · , n, define ek = [xpk−1k − x̂pk−1k ]

1
rk pk−1 and

choose

V = Vn +
n∑

k=2

∫ [xk ]
4−rk pk−1

rk

[ξ̂k+`k−1xk−1]
4−rk pk−1
rk−1

(
[s]

rk−1
4−rk pk−1

− (ξ̂k + `k−1xk−1)
)
ds ,

n∑
k=2

Uk + Vn. (20)

Obviously, 4−rkpk−1
rk

≥
4−rkpk−1
rk−1

≥ 1 imply that
∑n

k=2 Uk
is C1. Using (12), (18), (20) yields

LUk

=
4− rkpk−1

rk

(
[xk ]

rk−1
rk − (ξ̂k + `k−1xk−1)

)
|xk |

4−rk pk−1−rk
rk

· xpkk+1 − `k−1[ek ]
rkpk−1

(
[xk ]

4−rk pk−1
rk − [x̂k ]

4−rk pk−1
rk

)
− `k−1[ek ]rkpk−1

(
[x̂k ]

4−rk pk−1
rk − [ξ̂k+`k−1xk−1]

4−rk pk−1
rk−1

)
,

(21)

where xn+1 = u.
We can easily verify the following Proposition 2 directly

by Lemmas 3,6, we omit the proof here.
Proposition 2: For k = 2, · · · , n, there holds

−`k−1[ek ]rkpk−1 ([xk ]
4−rk pk−1

rk − [x̂k ]
4−rk pk−1

rk ) ≤ −`k−1

2
1−

4−rk pk−1
rk pk−1 e4k .

To further estimate (21), we give the following Proposi-
tion 3-Proposition 5 whose proofs are in the Appendix.
Proposition 3: For k = 2, · · · , n − 1, there holds

4−rkpk−1
rk

([xk ]
rk−1
rk − (ξ̂k + `k−1xk−1))|xk |

4−rk pk−1−rk
rk xpkk+1

≤ b1
∑k+1

j=k−1 z
4
j +c1,ke

4
k+h1,k (`k−1)e

4
k−1, where b1 and c1,k

are positive constants, h1,k is a positive constant related to
`k−1.
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Proposition 4: For k = 3, · · · , n, there holds

−`k−1[ek ]rkpk−1 ([x̂k ]
4−rk pk−1

rk − [ξ̂k + `k−1xk−1]
4−rk pk−1
rk−1 ) ≤

b2
∑k

j=k−1 z
4
j +c2,ke

4
k+h2,k (`k−1)e

4
k−1, where b2 and c2,k are

positive constants, h2,k is a positive constant related to `k−1.

Proposition 5: There holds 4−rnpn−1
rn

([xn]
rn−1
rn − (ξ̂n +

`n−1xn−1))|xn|
4−rnpn−1−rn

rn upn ≤ b3
∑n

j=1 z
4
j + c3

∑n
k=2 e

4
k +

h3(`n−1)e4n−1, where b3 and c3 are positive constants, h3 is a
positive constant related
to `n−1.
We estimate mn[zn]4−rn+1pn (upn − u∗pn ) in (17) by the

following proposition whose proof is in the Appendix.
Proposition 6: mn[zn]4−rn+1pn (upn −u∗pn ) ≤ b4

∑n
k=1 z

4
k +

c4
∑n

k=2 e
4
k .

From (17), (20), (21) and Propositions 2-6, it follows that

LV |(12),(18),(19)

≤ −

n−2∑
j=1

(
aj,j − ãj+1,j − āj+1,j −

n∑
l=j+2

āl,j − 2b1

− 2b2 − b3 − b4
)
z4j − (an−1,n−1 − ãn,n−1 − ān,n−1

− 2b1 − 2b2 − b3 − b4)z4n−1 − (an,n − 2b1 − 2b2 − b3

− b4)z4n −
(
21−

4−r2p1
r2p1 `1 − c1,2 − h1,3(`2)− h2,3(`2)

− c3 − c4
)
e42 −

n−2∑
k=3

(
2
1−

4−rk pk−1
rk pk−1 `k−1 − c1,k − c2,k

− h1,k+1(`k )− h2,k+1(`k )− c3 − c4
)
e4k

−

(
2
1−

4−rn−1pn−2
rn−1pn−2 `n−2 − c1,n−1 − c2,n−1 − h2,n(`n−1)

− c3 − h3(`n−1)− c4
)
e4n−1 −

(
2
1−

4−rnpn−1
rnpn−1 `n−1

− c2,n − c3 − c4
)
e4n.

By designing constants a1,1, · · · , an,n, `1, · · · , `n−1 as

aj,j ≥ 1+ ãj+1,j + āj+1,j +
n∑

l=j+2

āl,j + 2b1 + 2b2

+ b3 + b4, j = 1, · · · , n− 1,
an,n ≥ 1+ 2b1 + 2b2 + b3 + b4,

`n−1 ≥ 2
4−rnpn−1
rnpn−1

−1
(1+ c2,n + c3 + c4),

`n−2 ≥ 2
4−rn−1pn−2
rn−1pn−2

−1
(1+ c1,n−1 + c2,n−1 + c4

+ c3 + h3(`n−1)+ h2,n(`n−1)),

`k−1 ≥ 2
4−rk pk−1
rk pk−1

−1
(1+ c1,k + c2,k + h1,k+1(`k )

+ h2,k+1(`k )+ c3 + c4), k = n− 2, · · · , 3,

`1 ≥ 2
4−r2p1
r2p1

−1(1+c1,2+h1,3(`2)+h2,3(`2)+c3+c4),

(22)

one obtains

LV |(12),(18),(19) ≤ −
n∑

k=1

z4k −
n∑

k=2

e4k . (23)

Denote X = (x1, · · · , xn, ξ̂2, · · · , ξ̂n)>, the closed-loop sys-
tem (12), (18), (19) can be rewritten as

dX = 8(X )dt
= (xp12 , · · · , u

pn ,−`1x̂
p1
2 , · · · ,−`n−1x̂

pn−1
n )>dt. (24)

Introducing the dilation weight2 1 = (r1, · · · , rn, r1, · · · ,
rn−1) for X , we have the following proposition whose proof
is in the Appendix.
Proposition 7: There exist positive constants π1, π2 and π3

such that π1‖X‖4−τ1 ≤ V (X ) ≤ π2‖X‖4−τ1 , LV |(19),(24) ≤
−π3‖X‖41.
Part III. Output feedback controller of system (1)
Introduce the transformation

xi = 0−diηi, u = 0−dn+1v, i = 1, · · · , n, (25)

then system (1) can be converted into

dxi = (0xpii+1 + f̃i(xi+2, · · · , xn, u))dt
+ g̃>i (xi+2, · · · , xn, u)dω, i = 1, · · · , n− 2,

dxn−1 = (0xpn−1n + f̃n−1(u))dt + g̃>n−1(u)dω,
dxn = 0upndt, x(0) = x0(η0),
y = x1, (26)

where d1 = 0, di =
di−1+1
pi−1

, i = 2, · · · , n, 0 < 0 ≤ 1 is

a constant to be determined, f̃i = 0−di fi and g̃i = 0−digi,
i = 1, · · · , n− 1.
In view of (18), the observer of system (26) is constructed

as:

dξ̂k = −0`k−1x̂
pk−1
k dt,

x̂k = [ξ̂k + `k−1x̂k−1]
rk

rk−1 , k = 2, · · · , n, (27)

where `1, · · · , `n−1 are chosen in (22). Then, (19), (26) and
(27) can be rewritten in the compact form:

dX = (08(X )+ F(X ))dt + G>(X )dω, (28)

where 8(X ) is defined in (24), F = (f̃1, · · · , 0, 0, · · · , 0)>,
G = (g̃1, · · · , 0, 0, · · · , 0). Noting that 8 in (28) has the
same structure as (24), by adopting the same Lyapunov func-
tion V (X ) as in the preceding subsection, one can conclude
from Proposition 7 that

LV |(19),(28) ≤ −0π3‖X‖41 +
∂V
∂X

F +
1
2
Tr
{
G
∂2V
∂X 2G

>

}
.

(29)

We now estimate the last two terms on the right-hand side
of (29) by the following proposition whose proof is in the
Appendix.

2For a more precise definition of dilation and homogeneity, please refer
to [28].
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Proposition 8: There exists a positive constant γ0 such that

∂V (X )
∂X

F(X )+
1
2
Tr
{
G(X )

∂2V (X )
∂X 2 G>(X )

}
≤ γ00

1+ν
‖X‖41. (30)

Substituting Proposition 8 into (29), and choosing 0 =
min{( π32γ0

)
1
ν , 1}, one gets

LV (X )|(19),(28) ≤ −0(π3 − γ00ν)‖X‖41 ≤ −
π30

2
‖X‖41.

(31)

Up to now, by (19), (25), (27), one obtains output feedback
controller of system (1):

v = −0dn+1βrn+1n

[
[x̂n]

1
rn +

n−1∑
i=1

( n−1∏
j=i

βj

)
[x̂i]

1
ri

]rn+1
, (32)

where x̂1 = η1 and x̂2, · · · , x̂n are observed by (27).

IV. FINITE-TIME STABILITY
We state the main result in this paper.
Theorem 1: When Assumption 1 holds, the equilibrium

η = 0 of the closed-loop system (1) with (27), (32) is finite-
time stable in probability.

Proof: With (31), Lemma 2, the closed-loop stochastic
system (19) and (28) has a solution for any initial value
X0 ∈ Rn. Since 08(X ) + F(X ) and G>(X ) are C1 on
Rn/{0}, the closed-loop stochastic system obviously has a
unique solution in forward time for any X0 ∈ Rn/{0}. When
X0 = 0, the closed-loop stochastic system has a unique zero
solution, that is, when X0 = 0, P(‖X (t;X0)‖ ≥ r) = 0 for
all r > 0 and t ≥ 0, which can be verified by the following
counter-evidence:

Suppose that there are r0 > 0 and t0 ≥ 0 such that

P(‖X (t0;X0)‖ ≥ r0) > ε0, (33)

where 1 ≥ ε0 ≥ 0. By Definition 2.1 and Theorem 2.2 in
[32, Sec. 4.2], one concludes from (31) that the trivial solution
of stochastic system (19) and (28) is stable in probability,
that is, for every pair of ε ∈ (0, 1) and r > 0, there exists
a δ = δ(ε, r) > 0 such that P(‖X (t;X0)‖ < r for all
t ≥ 0) ≥ 1 − ε whenever ‖X0‖ ≤ δ. This conclusion
implies that for above r0 and ε0, P(‖X (t;X0)‖ < r0 for all
t ≥ 0) ≥ 1− ε0. This contradicts (33).

According to the lemmas of weighted homogeneity
in [28], there is a constant π0 > 0 such that

LV (X )|(19),(28) ≤ −
π3

2
0‖X‖41 ≤ −π0V (X )

4
4−τ . (34)

Since the closed-loop system (19), (28) has a unique solution,
then it follows from 0 < 4

4−τ < 1, Lemma 3 and Propo-
sition 7 that the origin of the closed-loop stochastic system
is finite-time stable in probability. Since (25) is an equiv-
alent transformation, one concludes that origin of closed-
loop stochastic system (1), (27), (32) is finite-time stable in
probability. �

V. A SIMULATION EXAMPLE
Without loss of generality, we consider a simple example:

dη1 =
(
η

5
3
2 + 0.2 ln

(
1+ |v|

25
13
))

dt + 0.05v2dω,

dη2 = vdt,
y = η1. (35)

By choosing τ = − 1
27 ∈ (− 1

2(1+p1)
, 0) = (− 3

16 , 0) and (10),
one has r1 = 1

2 , r2 =
5
18 , r3 =

13
54 . Assumption 1 holds with

f1 = 0.2 ln(1 + |v|
25
13 ) ≤ |v|

25
13 = |v|

r1+τ
r3 , g1 = 0.05v2 ≤

0.05|v|
2r1+τ
2r3 .

Following the design procedure as in Section III, one con-
structs the finite-time output feedback controller:

v = −0
8
5 β

13
54
2

[
[x̂2]

18
5 + β1[η1]2

] 13
54
,

dξ̂2 = −0`1x̂
5
3
2 dt, x̂2 = [ξ̂2 + `1η1]

5
9 , (36)

where β1 > 0, β2 > 0, `1 > 0, 0 < 0 ≤ 1 are design
parameters.

Choose (η1(0), η2(0), ξ̂2(0))> = (0.04,−0.002, 0.02)>,
0 = 0.09, `1 = 500, β1 = 1, β2 = 20. Fig.1 shows the
effectiveness of control method.

FIGURE 1. The responses of closed-loop system (35)-(36).

VI. A CONCLUDING REMARK
The finite-time output feedback stabilization in probability
of stochastic high-order nonlinear feedforward autonomous
systems is considered. In this paper, we initially list some
lemmas which will deal with the nonlinearities with powers
being any rational number and bigger than one, then based
on the homogeneous domination and stochastic Lyapunov
finite-time stability theory, the stochastic finite-time output
feedback stabilizer is designed and analysed. A remaining
problem is whether the finite-time stabilization can be estab-
lished for stochastic nonlinear feedforward nonautonomous
systems.

APPENDIX
Proof of Proposition 1: Firstly, Vk (x̄k ) is positive definite and
radially unbounded, one can see the detailed proof in [27].
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In view of − 1∑n
l=1 p1···pl−1

< τ < 0, one deduces that 1
rk
≥ 2,

4 − rk+1pk ≥ 2, k = 1, · · · , n. This implies that Vk is C2.
Define zk = [xk ]

1
rk − [αk−1]

1
rk , it follows from (13) that

LVk−1(x̄k−1)|(12)

≤ −

k−3∑
j=1

(
aj,j − ãj+1,j − āj+1,j −

k−1∑
l=j+2

āl,j

)
z4j

− (ak−2,k−2−ãk−1,k−2−āk−1,k−2)z4k−2 − ak−1,k−1z
4
k−1

+mk [zk ]4−rk+1pk (x
pk
k+1 − α

pk
k )+ mk [zk ]4−rk+1pkα

pk
k

+mk−1[zk−1]4−rkpk−1 (x
pk−1
k − α

pk−1
k−1 )+mk

k−1∑
j=1

∂Wk

∂xj
x
pj
j+1.

(37)

Lemmas 5,6 yield

mk−1[zk−1]4−rkpk−1 (x
pk−1
k − α

pk−1
k−1 )
≤ ãk,k−1z4k−1 + λk,1z

4
k , (38)

where ãk,k−1 is a positive constant, λk,1 is a positive constant
dependent on ãk,k−1.
With the help of Lemmas 5,6,8 and the integral mean value

theorem, one can deduce that

mk
k−1∑
j=1

∂Wk

∂xj
· x

pj
j+1

≤ c
k−1∑
j=1

|zk |3−τ
(
|zj|1−rj+|zj−1|1−rj

) (
|zj+1|rj+1pj+|zj|rj+1pj

)
≤

k−1∑
j=1

āk,jz4j + λk,2z
4
k , (39)

where āk,1, · · · , āk,k−1 are positive constants, c, λk,2 are
appropriate positive constants, λk,2 is dependent on āk,1, · · · ,
āk,k−1.

Defining λk = λk,1 + λk,2, choosing βk = ( ak,k+λkmk
)

1
rk+1pk

with ak,k > 0 being a positive constant to be designed, and
substituting (38), (39) into (37), one gets (15). �
Proof of Proposition 3: By (16), (18), Lemmas 4,5,7, one

deduces that
4− rkpk−1

rk
([xk ]

rk−1
rk − (ξ̂k + `k−1xk−1))x

pk
k+1|xk |

4−rk pk−1−rk
rk

≤
4− rkpk−1

rk
(|[xk ]

rk−1
rk − [x̂k ]

rk−1
rk | + `k−1|xk−1 − x̂k−1|)

· |xk |
4−rk pk−1−rk

rk |xk+1|pk

≤ (c|ek |d1,k rk (|ek |rk−1−d1,k rk + |zk |rk−1−d1,k rk

+ |zk−1|rk−1−d1,k rk )+ h̄1,k (`k−1)|ek−1|rk−1 )

· (|zk |4−rkpk−1−rk + |zk−1|4−rkpk−1−rk )

· (|zk+1|rk+1pk + |zk |rk+1pk )

≤ b1
k+1∑
j=k−1

z4j + c1,ke
4
k + h1,k (`k−1)e

4
k−1, (40)

where c̄1,k = c0(
rk−1
rk

), d1,k = d( rk−1rk
), h̄1,k is a positive

constant related to `k−1, and throughout this paper we use
c to indicate a general constant. �
Proof of Proposition 4: From (16), (18), Lemmas 4,5,7,

it follows that

−`k−1[ek ]rkpk−1 ([x̂k ]
4−rk pk−1

rk − [ξ̂k + `k−1xk−1]
4−rk pk−1
rk−1 )

≤ `
1+d2,k
k−1 c̄2,k |ek |rkpk−1 |xk−1 − x̂k−1|d2,k

· (|x̂k |
4−rk pk−1−d2,k rk−1

rk +|`k−1(x
pk−1
k −x̂pk−1k )|

4−rk pk−1
rk−1

−d2,k )

≤ b2
k∑

j=k−1

z4j + c2,ke
4
k + h2,k (`k−1)e

4
k−1, (41)

where c̄2,k = c0(
4−rkpk−1
rk−1

), d2,k = d( 4−rkpk−1rk−1
), h̄2,k is a

positive constant related to `k−1. �
Proof of Proposition 5: By (16), (18), (19), Lemmas 4,5,7,

one deduces that
4− rnpn−1

rn
([xn]

rn−1
rn − (ξ̂n + `n−1xn−1))|xn|

4−rnpn−1−rn
rn upn

≤ c̄3|en|d1,nrn (|zn|4−rnpn−1−rn + |zn−1|4−rnpn−1−rn )

· (|en|rn−1−d1,nrn + |zn|rn−1−d1,nrn + |zn−1|rn−1−d1,nrn )

·
( n∑
j=2

|ej|rn+1pn +
n∑
j=1

|zj|rn+1pn
)
+ h̄3(`n−1)|en−1|rn−1

· (|zn|4−rnpn−1−rn + |zn−1|4−rnpn−1−rn )

·
( n∑
j=2

|ej|rn+1pn +
n∑
j=1

|zj|rn+1pn
)

≤ b3
n∑
j=1

z4j + c3
n∑

k=2

e4k + h3(`n−1)e
4
n−1,

where c̄3 is a positive constant, h̄3 is a positive constant related
to `n−1. �
Proof of Proposition 6:With (16), (19) and Lemmas 4,5,7,

one can deduce that

mn[zn]4−rn+1pn (upn − u∗pn )

≤ c̃4|zn|4−rn+1pn
n∑

k=2

|xpk−1k − x̂pk−1k |
d3,k

· (|xpk−1k − x̂pk−1k |

rn+1pn
rk pk−1

−d3,k
+ |xk |

rn+1pn
rk
−d3,kpk−1 )

≤ c̄4|zn|4−rn+1pn
n∑

k=2

|ek |d3,k rkpk−1 (|ek |rn+1pn−d3,k rkpk−1

+ |zk |rn+1pn−d3,k rkpk−1 + |zk−1|rn+1pn−d3,k rkpk−1 )

≤ b4
n∑

k=1

z4k + c4
n∑

k=2

e4k ,

where c̃4, c̄4 are positive constants, d3,j = d( rn+1pnrjpj−1
). �

Proof of Proposition 7: Obviously V is homogeneous of
degree 4− τ and the term −

∑n
k=1 z

4
k −

∑n
k=2 e

4
k = −W on
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right-hand side of (23) is is homogeneous of degree 4, which
is verified by

V (1ε(X ))

=

n∑
k=1

∫ εrk xk

εrk αk−1

[[s]
1
rk − ε[αk−1]

1
rk ]4−rk+1pkds

+

n∑
k=2

∫ [εrk xk ]
4−rk pk−1

rk

[εrk−1 ξ̂k+`k−1ε
rk−1xk−1]

4−rk pk−1
rk−1

([ι]
rk−1

4−rk pk−1

− εrk−1 (ξ̂k + `k−1xk−1))dι
= ε4−τV (X ),
−W (1ε(X ))

= −ε4
n∑

k=1

(ε[xk ]
1
rk +

k−1∑
i=1

(
k−1∏
j=i

βj)ε[xi]
1
ri )4

− ε4
n∑

k=2

(xpk−1k − [ξ̂k + `k−1[ξ̂k−1 + `k−2[· · ·

+ `2[ξ̂2 + `1x1]
r2
r1 · · · ]

rk−2
rk−3 ]

rk−1
rk−2 ]

rk pk−1
rk−1 )

4
rk pk−1

= −ε4W (X ).

Noting that V (X ) andW (X ) are both positive definite and
radially unbounded, by the lemmas of weighted homogeneity
in [28], one can find positive constants π1, π2, and π3 such
that Proposition 7 holds. �
Proof of Proposition 8: By (16), (19), (25), Lem-

mas 4,9 and Assumption 1, |f̃i| ≤ γ10
1+ν
‖X‖ri+τ1 , ‖g̃i‖ ≤

γ20
1+ν
‖X‖

2ri+τ
2

1 , where 0 < ν = min
i=1,··· ,n−1,
j=i+2,··· ,n+1

{
dj(ri+τ )

rj
− di− 1},

γ1, γ2 are positive constants. Then

∂V (X )
∂X

F(X )+
1
2
Tr
{
∂G(X )

∂2V (X )
∂X 2 G>(X )

}
=

n−1∑
j=1

∂V
∂xj

f̃j +
1
2

n−1∑
i,j=1

Tr{g̃i
∂2V
∂xi∂xj

g̃>j }

≤

n−1∑
j=1

∣∣∣∣∂V∂xj
∣∣∣∣ · |f̃j| + γ̄0 n−1∑

i,j=1

∥∥∥∥ ∂2V∂xi∂xj

∥∥∥∥ · ‖g̃i‖ · ‖g̃>j ‖
≤ γ̄010

1+ν
n−1∑
j=1

‖X‖4−τ−rj1 · ‖X‖rj+τ1

+ γ̄020
1+ν

n−1∑
i,j=1

‖X‖4−τ−ri−rj1 · ‖X‖
2ri+τ

2
1 · ‖X‖

2rj+τ
2

1

≤ γ00
1+ν
‖X‖41, (42)

where γ̄0, γ̄01, γ̄02 and γ0 are appropriate constants. �
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