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ABSTRACT Blind source separation (BSS) is a technique to recognize the multiple talkers from the multiple
observations received by some sensors without any prior knowledge information. The problem is that the
mixing is always complex, such as the case where sources are mixed with some direction angles, or where the
number of sensors is less than that of sources. In this paper, we propose amulti-subspace representation based
BSS approach that allows the mixing process to be nonlinear and underdetermined. The approach relies on
a multi-subspace structure and sparse representation in the time-frequency (TF) domain. By parameterizing
such subspaces, we can map the observed signals in the feature space with the coefficient matrix from the
parameter space. We then exploit the linear mixture in the feature space that corresponds to the nonlinear
mixture in the input space. Once such subspaces are built, the coefficient matrix can be constructed by solving
an optimization problem on the coding coefficient vector. Relying on the TF representation, the target matrix
can be constructed in a sparse mixture of TF vectors with the fewer computational cost. The experiments
are designed on the observations that are generated from an underdetermined mixture, and that is collected
with some direction angles in a virtual room environment. The proposed approach exhibits higher separation
accuracy.

INDEX TERMS Underdetermined BSS, multi-subspace representation, nonlinear mixture, sparse coding,
time-frequency representation.

I. INTRODUCTION
Recognizing multiple talkers from the multiple observations
(or mixtures) received by a set of sensors is the task of
source separation. The problem is referred to as ‘‘blind’’
source separation when the procedure has access only to the
observations without any prior knowledge information for the
mixing system. In general, most BSS algorithms assume that
the number of sources is less than that of sensors, denoted as
overdetermined BSS. However, in practice, this assumption
is difficult to be satisfied since the number of sources is
unknown.

Various attempts [1]–[3] on underdetermined BSS (UBSS)
have been proposed that consider the scenario, where the
number of sensors is less than that of sources. Since the
mixing matrix is irreversible in this case, the recovered
sources also need to be estimated even though the mixing
matrix has been known. To solve this problem, a well-known
framework has been proposed by exploiting the sparse-
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ness of the sources in the representation domain, such as
wavelet packet transform [4] or short-time Fourier transform
(STFT) [5]. For instance, the degenerate unmixing estima-
tion technique (DUET) was proposed in [6]. The approach
exploits the ratio of TF transforms of the observed signals to
recover the source signals. Yilmaz and Rickard [7] assumed
that the sources are disjoint in the TF domain. These meth-
ods work on the assumption that there exists at most one
active source at any point in the TF domain. This implies
that the separation performance will degrade as the number
of the TF disjoints points being increased. To relax this
constraint, [8], [9] proposed a scenario that allows the sources
to be non-disjoint in the TF domain, however, the number of
the sources that coexist at any TF point is less than that of the
mixtures [8].

In the above methods, the mixing process is consid-
ered to be linear only. In fact, however, the assumption
is restrictive and easy to be violated in the real-world
applications [10], such as communication [11], [12], speech
or audio processing [13], and biomedical engineering [14].
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The problem for the nonlinear BSS is intractable solely
based on the assumption that the sources are statistically
independent. e.x., if x and y are two independent random
variables, then f (x) and g(y) are also independent for any f
and g [15]. Therefore, the solutions are highly non-unique
without any further constraints for the space of nonlinear
mixing function [16].

Efforts on exploiting such further constraints in the nonlin-
ear domain have involved, such as extracting unknown non-
linearities upon unknown parameters [17], approximating a
nonlinear function whose inverse function can be constrained
well on the estimator of a priori neural network [11], [18].
Another popular approach consists in using kernel so as to
implicitly map the data via kernel trick. The main advantage
of this approach is that the estimation of the parameters in
the model is actually independent of the number of channels.
Formally, the data are mapped into H using φ : X →

H, x → φ(x) so as to extract the nonlinearity. To avoid
working on the high-dimensional space H, one tries in the
feature space in which the dot product can be calculated by
k(x, x′) = 〈φ(x), φ(x′)〉, which is called as kernel trick.
Typically, Harmeling et al. [19], and Martinez and

Bray [20] exploit the temporal information of sources for
separation, and do not enforce mutual independence of out-
puts. This method produces successful results in many exper-
iments. However, a problem is that the cost of storing and
evaluating the model is proportional to the number of data
points [21]. Moreover, this method may fail if some sources
lack specific time structures. [22], [23] provides a good
approximation of the value attained by the nonlinear mixing.
Relying on such spaces spanned by a set of vanishing polyno-
mial, the data implicitlymapped into high-dimensional space,
and the effective subspace is extracted. It allowed us to solve
a nonlinear problem linearly. But, unfortunately, the approach
can not be used for the underdetermined case.

In this paper, we propose a multi-subspace representa-
tion based separation approach that tackles the scenario of
the nonlinear and underdetermined mixture. The separa-
tion system is constructed using the kernel methods with a
multi-subspace structure. To obtain a set of basis so as to
the spanned subspace could be orthonormal in the theoretical
support, we propose to use the geometric vertices of data.
Then we solve a linear problem by exploiting the technique
of sparse coding. The coefficient matrix is adjusted by mini-
mizing the loss function.

We first consider a model related to the input space
x ∈ RN by a kernel mapping with multi-subspace structure.
The effective number of basis denoted by k , provides the
smallest construction error in the nonlinear approximation.
One of the keys in that algorithm is to find a set of orthog-
onal basis to study the parameterized signals in multiple
feature spaces. Some techniques [19], [24], [25] can help that
are roughly analogous. Either random sampling or k-means
clustering is considered to obtain some vectors, which is
expected to be independent. However, the method may not be
appropriate for mixture data. We attempt to use the geometric

vertices of the convex hull as the basis, which parameterizes
the multi-subspace that contains the reduced vectors in the
feature space. Relying on a set of an orthonormal basis,
the spanned subspaces can represent the nonlinearity of mix-
ing function in the minimum number.

Another contribution is to derive the coefficient matrix by
solving the loss function on the coding coefficient vector.
Once such subspaces are built, by allowing multiple sources
to be presented at any point in the TF domain, we can
figure out the target matrix in a sparse mixture TF vectors
with less computational cost. Finally, using this coefficient
matrix, the original sources in underdetermined scenarios can
be estimated.

The remainder of this paper is organized as follows.
Section II reviews the consents of convex geometry, Kernel
theorem first. Then, the nonlinear mixture model is intro-
duced for further study. Section III introduces some condi-
tions necessary for the separation of nonstationary sources in
the TF domain. Section IV describes our proposed separation
approach that relies on multi-subspaces representation and
sparse representation in the TF domain. Section V shows the
experimental settings and results. Conclusions are reported in
Section VI.

II. NOTATIONS AND SYSTEM MODEL
The following notations will be used in the ensuing
presentation.

A, A>, A† Matrix, its transposed matrix and pseudo-
inverse matrix.

R, RN , RN×M Set of real numbers, set of N vectors, and
set of N ×M matrices.

R+, RN
+, R

N×M
+ Set of non-negative real numbers, set of

non-negative N vectors, and set of non-
negative N ×M matrices.

1N Vector one of N elements.
s, Ds The vector of source signals, and source

signals in the TF domain.
x, Dx The vector of observed signals, and obser-

ved signals in the TF domain.

In the following, a brief review of some concepts on convex
geometry and Kernel method will be given for ease of later
use.

A. CONVEX GEOMETRY
The Definition 1 of convex hull [26] for a set of vectors
{x(1), · · · , x(T )} will be given in the following.
Definition 1: Given a set of vectorsX = {x(1), · · · , x(T )}.

The convex hull of the finite nonempty set X ⊆ RN gives the
form

conv{x(1), · · · , x(T )} =

{
T∑
i=1

λix(i)
∣∣∣∣λ ∈ RT

+, 1
>
T λ = 1

}
,

where λ = [λ1, · · · , λT ]> is any non-negative vector. �
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In the above equation, conv{x(1), · · · , x(T )} is called as a
(T−1)-dimensional simplexwith T vertices {x(1), · · · , x(T )}
if and only if {x(1), · · · , x(T )} is affinely independent, or
equivalently. Furthermore, if {x(1) − x(T ), · · · , x(T − 1) −
x(T )} is linearly independent that is called a simplest simplex
in RN [27]. As see in the Fig. 1, a triangle is a 2-dimensional
simplest simplex in R2, and a tetrahedron is a 3-dimensional
simplest simplex in R3.

FIGURE 1. A graphical illustration for the convex geometry concepts. The
line segment connecting x(0) and x(3) is the convex hull of {x(0), x(3)},
which is denoted by conv{x(0), x(3)}. The shaded triangle is the convex
hull of {x(1), x(2), x(3)}, i.e., conv{x(1), x(2), x(3)}.

According to the N-FINDR criterion [28], the approach
finds the endmembers’ convex hull that in fact of extracting
the data-enclosing simplex with the maximum volume [29].
That can be given by solving the maximization problem

max
p(i)∈RM−1,∀i

V(p(1), · · · ,p(k))

s.t. x(t) ∈ conv{p(1), · · · ,p(k)}, ∀t

whereV(·) denotes the volume of the simplex conv{p(1), · · · ,
p(k)} ⊆ RM−1.
The above theory is introduced for the theoretical support

in our further work, where the geometric vertices can estab-
lish a set of orthogonal basis so that the spanned multiple
subspaces can represent the nonlinearity in the minimum
number.

B. NONLINEAR MIXTURE MODEL
Consider a nonlinear, instantaneous and invertible mixing
system withM inputs and N outputs

x(t) = F(s(t)), (1)

for t = 1, 2, · · · ,T , where s(t) = [s1(t), · · · , sM (t)]> is the
original sources of M statistically independent vectors. The
superscript [·]> denotes the transpose operator. si(t) denotes
the original source of the i-th signal at t time index. The
mixing functionF transform the s(t) fromRM toRN , i.e., the
observations x(t) = [x1(t), · · · , xN (t)]> are N -dimensional
mixture vectors.

The general idea of performing is to design a separation
function G : RN

→ RM such that

ŝ(t) = G(x(t)), (2)

where the recovered sources ŝ are statistically independent.
One has been given in [30], where the nonlinear mixtures of
independent variables are still independent. However, the sta-
tistical independence of estimated sources is no longer a suf-
ficient constraint for demixing function, without additional
prior knowledge on the mixing process [16]. To form a map-
ping function with multi-subspace structure, we consider the
Kernel theorem and its feature space.

C. KERNEL AND FEATURE SPACE
The key point is how to generate a mapping function that
can achieve the approximation of the inverse operator of (1).
In [19], the kernelization method was introduced by mapping
the data x(t) implicitly into the kernel feature space H with
the kernel functionK : RN

×RN
→ R. The basic definitions

are introduced at first.
Definition 2: Let X be a nonempty set. The symmetric

function K : X × X → R is called as a positive definite
kernel, if

N∑
i,j=1

cicjK(x(i), x(j)) ≥ 0, (3)

holds for any x(i) ∈ X and c1, · · · , cN ∈ R. �
One can easily deduce from Definition 2 that the positive

definite kernel transforms data into kernel feature space,
which can be simply calculated by matrices of kernel built
on the sample of points as

〈φ(x(i)),φ(x(j))〉 = K(x(i), x(j)), (4)

where i, j = 1, · · · ,T and 〈·, ·〉 is the inner product. φ(x) is
the Hilbert mapping function. Using the kernel trick, the inner
product of two feature mappings in the Hilbert space can
be computed by a kernel function in the original space. The
computational complexity can be controlled within a linear
range.

This would first define a direction W ∈ H that enables us
to parameterize the data by

W = 8xα =

T∑
j=1

αjφ(x(j)) ∈ H, (5)

where α = [α1, · · · , αT ]> is a parameter vector. 8x is
the matrix with the column vectors [φ(x(1)), · · · ,φ(x(T ))]>.
Using the kernel trick of (4), the demixing process in the
feature space is given by

ŝ(t) = W>8(x(t)) = α>8>x φ(x(t))

=

T∑
j=1

αjK(x(j), x(t)). (6)

The main advantage of Kernel mapping is that the number
of parameters to estimate in the model is actually independent
of the number of channels. However, without extra con-
straints, generating a unique mapping function is intractable.
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This paper proposes a multi-subspace representation based
on Kernel spaces to tackle the ill-posed with a few assump-
tions. The k multiple subspaces produce k outputs, and we
propose the way to select n outputs as the estimator of the
original sources.

III. LINEAR TF-UBSS APPROACH
We first review the TF domain based underdetermined
BSS (UBSS) method that was presented by [8] and
later proposes a multi-layer representation based nonlinear
TF-UBSS algorithm. The discrete-time short-time Fourier
transform (STFT) is given by

Dsi (τ, ω) =
∞∑

t=−∞

si(t)h(t − τ )e−jωt , (7)

at frame τ and frequency bin ω, where h(t) is a window func-
tion. Using STFT of (7), the linear BSS can be transformed
into the TF domain

Dx(t, ω) = ADs(t, ω), (8)

where Dx(t, ω) = [Dx1 (t, ω), · · · ,DxN (t, ω)]
> is the

mixture signals in the TF domain and Ds(t, ω) =

[Ds1 (t, ω), · · · ,DsM (t, ω)]
> is the STFT vector of the source

signals. Dsi (t, ω) is the i-th source signal in the ω-th fre-
quency bin at t time index.
Assumption 1: For each source signal si, its STFT trans-

formation is denoted as Dsi in the TF domain. There are
some TF points, where only si is dominant, i.e., |Dsi (t, ω)| �
|Dsj (t, ω)| for ∀j 6= i.
The assumption implies that all sources are disjoint in

the TF domain, i.e., there is only one source that is active.
Then, (8) can be rewritten as

Dx(ta, ωa) = aiDsi (ta, ωa), (9)

where the subscript a indicates any one of the sources is active
in the TF domain.

The noise thresholding procedure proposed by [7] is used
to keep those points having sufficient energy, which is
referred to as auto-source points. The procedure is performed
for each time-slice of the TF representation, by applying a cri-
terion for all the frequency points belonging to this time-slice

if
‖Dx(ta, ωa)‖

maxω{‖Dx(ta, ω)‖}
> ε, then keep (ta, ωa), (10)

where ε is a small threshold, e.x., the threshold ε = 0.05
is given in [8]. Then, the set of all selected points � is
expressed by � =

⋃n
i=1�i, where �i is the TF support of

the source si(t).
To estimate the mixing vectors ai, the clustering algorithm

is performed on the assumption in [8] that the highest densi-
ties occur around the vectors ai. Thus, the average values over
the samples of each cluster are defined as the mixing vectors

âi =
1
|Ci|

∑
(t,ω)∈�i

Dx(t, ω)
‖Dx(t, ω)‖

, (11)

where |Ci| is the number of vectors included in the same
cluster.

Finally, each source in the TF domain can be estimated by

D̂si (t, ω) =

{
â†i Sx(t, ω), ∀(t, ω) ∈ �i,

0, otherwise,
(12)

where the superscript [·]† denotes the pseudo-inverse opera-
tor. The source estimator ŝi(t) is then obtained by transform-
ing D̂si (t, ω) into the time domain using the inverse STFT.

IV. MULTI-SUBSPACE REPRESENTATION BASED
NONLINEAR TF-UBSS APPROACH
The TF-UBSS method relies on the assumption that the
sources were mixed linearly, which has led to the recovered
structure in (12). However, for the nonlinear blind source sep-
aration, the solutions are non-unique [16] without any extra
constraints for the mixing process. In this paper, we propose
a multi-subspace representation to construct the nonlinear
variants bymapping the data implicitly in some kernel feature
spaces. If one of the subspaces can match the nonlinearity of
the mixing functions, the nonlinear problem can be broken
down into the version of the linear case.

A. CHOOSING VECTORS FOR BASIS
To extract a vector that formed a matrix with full column
rank, we use the N-FINDR algorithm, which was originally
developed by Winter in [28]. The approach finds a set of
vertices in fact of extracting a vector of data space that defined
the largest volume.
Definition 3: LetX = {x(i)}Ti=1 be a set of sample vectors.

The convex hull of the finite nonempty set X ⊆ Rd gives the
form

conv({x(1), · · · , x(T )}) =

{
T∑
i=1

λix(i)
∣∣λi ≥ 0,

∑
i

λi = 1

}
,

(13)

Proposition 1: Let {p(1), · · · ,p(k)} be a subset of vectors
in the convex hull X = {x(i)}Ti=1. For k � T , if the vectors
p(1), · · · ,p(k) are the vertices of X , then we have

conv({x(1), · · · , x(T )}) ⊆ conv({p(1), · · · ,p(k)}). (14)

Proof: Without loss of generality, x(1), · · · , x(k) are
the vertices of P := conv({x(1), · · · , x(T )}), which are
expressed as p(1), · · · ,p(k). For any i > k , if x(i) is not a
vertex of P , then x(i) can be expressed by a linear combina-
tion x(i) =

∑k
j=1 λjp(j). Thus, for any sample x ∈ P , we have

x =
T∑
i=1

µix(i) =
k∑
i=1

µip(i)+
T∑

i=k+1

µixi

=

k∑
i=1

µip(i)+
T∑

i=k+1

µi

k∑
j=1

λjp(j)

=

k∑
i=1

µi + λi T∑
j=k+1

µj

p(i). (15)
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Since
∑k

i=1(µi + λi
∑T

j=k+1 µj) = 1, we conclude that x ∈
conv({p(1), · · · ,p(T − 1)}) ⊆ conv({p(1), · · · ,p(k)}).

Proposition 1 implies that the volume simplex formed by
the vertices is larger than or equal to any other volume defined
by any other combination of elements. Thus, the vertices can
be extracted in fact of finding a vector of data space that
formed the maximum volume. The approach can be briefly
described in the following implementation.

For a vertex simplex composed of k vectorsp(1),p(2), · · · ,
p(k), its volume V(P) = V(p(1), · · · ,p(k)) is defined by

V (P) =

∣∣∣∣det [ 1 . . . 1
p(1) . . . p(k)

]∣∣∣∣
(k − 1)!

. (16)

Find a set of k vectors in the data, denoted by P∗ =
[p∗(1),p∗(2), · · · ,p∗(k)], that forms a k-vertex simplex to
yield the maximum value of (16), which is given by

{p∗(i1), · · · ,p∗(ik )} = arg max
p(i1),··· ,p(ik )

V (P) . (17)

Thus, the desired set of independent vectors {p∗(i1),p∗(i2),
· · · ,p∗(ik )} are found. Assume that the dimension of vector
p∗ is larger that the number of vector k , then the columns of
the matrix being linearly independent. For further work, a set
of orthonormal subspaces produced by these k vectors can
represent the nonlinearity or distortion caused by the mixing
functions using the reduced data.

B. CONSTRUCTING A MULTI-SUBSPACE REPRESENTATION
Given the observation data x(t) ∈ RN , for all t = 1, · · · ,T
that are assumed to be generated by the nonlinear mixture
functions. To make the nonlinear problem linearly separable,
the idea is to fulfill a certain condition that induces a mapping
8 : RN

→ H in the feature space. Therefore, we attempt to
find some mapping functions, which are used to capture the
varieties of nonlinearity or distortion.

To describe the nonlinearity efficiently in a feature space,
we use a subset from {x(t)}Tt=1 ∈ RN , denoted as
p(1), · · · ,p(k) ∈ RN to generate a set of basis inH. Since the
data points belonging to the subset is expected to be mutually
independent in the feature space, we use the k center points
of clusters to form the subset {p(i)}ki=1. Thus, we can define
an orthonormal basis by using the empirical kernel map

4 := 8p〈8p,8p〉
−

1
2 , (18)

where 8p = [8(p1), · · · ,8(pk )] is the mapping of data
points in the feature space.

By defining the basis that allows us to parameterize such
subspace, the observed signals are mapped in the feature
space with the coefficient matrix from a parameter space.
9(x(t))
= 4>8(x(t)) = 〈8p,8p〉

−
1
2 〈8p,8(x(t)〉

=

K(p(1),p(1)) · · · K(p(1),p(k))
...

...

K(p(k),p(1)) . . . K(p(k),p(k))


1
2
K(p(1), x[t])

...

K(p(k), x[t])


(19)

where K(p(i),p(j))
−

1
2

i,j is an invertible real valued matrix.
Due to the 8p constructed by a subset, the computational
complexity of the projection function in (19) is reduced
to O(k2N ) + O(kNT ) + O(k2T ) from original O(T 2N ) +
O(NT 2)+O(T 3), where T � k .

Thus, the demixing process can be defined in the feature
space as

ŝ(t) =W†9(x(t)). (20)

The above equation implies that the nonlinear problem can be
linearly separable in the feature space.

C. COEFFICIENT MATRIX IDENTIFICATION
Relying on the linear relation of (20), we have the correspond-
ing representation by using STFT,

D9 (t, ω) = W̃D̂si (t, ω). (21)

Based on Assumptions 1, we know that there exists only
one estimated source ŝi being active on the TF point (t, ω).
Then, we have

D9 (t, ω) = D̂si (t, ω)W̃i, (22)

where the TF feature matrix D9 (t, ω) can be represented by
the i-th column vector W̃i up to a multiplicative coefficient
Dŝi (t, ω). This implies that the target matrix W̃i can be a
linear combination of a few numbers of sample points from
the matrix D9 (t, ω) with the coefficient D̂si (t, ω).

Thus, estimating a column vector of the coefficient matrix
W̃i can be achieved by finding the solution of a sparse
representation D9 (t, ω) with low-dimensional subspace.
To remove the effect of noise, we use the criterion for all the
frequency points belonging to this time-slice

if
‖D9 (tp, ωk )‖

maxω{‖D9 (tp, ω)‖}
> ε, then keep (tp, ωk ), (23)

where ε is a small threshold, e.x., the threshold ε = 0.05 is
given in [8].

We next formulate the problem of (22) by using a sparse
direction for TF representation of the mixture TF matrix
D9 (t, ω). Let π1,π2, · · · ,πL be the reshaped vector of all
the mixture TF matrix D9 , and L is the number of TF points

(t, ω). We can define a one row vector D5
4
= [π1, · · · ,πL]

that is row-wise stacked together to be generated by the
mixture TF matrix D9 at all (t, ω).

The further solution of (24) is the sparse representation
of the TF feature vector D5, that will later construct the
estimation of the coefficient matrix in the TF domain.

J (ci, η) =
1
2
‖π i −D5ci‖22 + η‖ci‖1, s.t., cii = 0, (24)

where η > 0 is a scalar parameter to balance the trade-off
between the sparsity and reconstruction error. ci is the corre-
sponding sparse coefficient for π i. The maximum value in ci
indicates the estimated element of W that is corresponding
to D5. Once a sparse coding problem is built, the solution
can be obtained by solving the convex optimization problem.
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Here, we use l1-Homotopy method in [31] to calculate the
redundant dictionary ci of (24). The procedure obtains a
sparse solution withO(q3+L) orders, where q is the number
of non-zero elements.

D. SOURCE RECOVERY
Since the mixing matrix is not irreversible in the underde-
termined BSS [32], the recovered sources also need to be
estimated even though the mixing matrix has been known.
To obtain a sparse TF representation of the recovered sources,
we use the process proposed by [2] with the definition of
sub-matrixW on the following assumption.
Assumption 2: At most N − 1 sources among M sources

are active at each TF point forM > N [8].
Definition 4: Given a matrix W of size N × M , for any

sub-matrices W i composed of size N × (N − 1), there are( M
N−1

)
possible combinations included in the setW , that is

W = {W i|W i = [wλ1 , · · · ,wλN−1]}. (25)

Assumption 2 indicates the number of columns of the
sub-matrixW i to be derived, so that for each TF point (t, ω)
we have a correspondingW∗, which satisfies

W∗ = arg min
W i∈W

∥∥∥D9 (t, ω)−W iW†
iD9 (t, ω)

∥∥∥
2
, (26)

where W†
i is the pseudo-inverse of W i, which is defined as

W†
i = (W>

i W i)−1W>
i .

For a matrixW of size N ×M (M > N ), we want to derive
the sub-matrices W i of size N ×M ′, where its columns are
excerpted to be independent. Thus, if M ′ is more than N ,
the columns of the sub-matrices must be non-independent.
There will be exist at least one column vector that can be lin-
early expressed by other column vectors. Therefore,M ′ needs
to be less than or equal toN . Similar with reference [8], we set
the number of columns of sub-matrices as N − 1, i.e. each
W i composed of size N × (N − 1), where M ′ = N − 1
pick up from total M columns that allow us to compose an
optimal sub-matrixW∗ from all possible combinations of the
candidate setW , so that (26) is satisfied.
Thus, each source in the TF domain can be estimated by

D̂sj (t, ω) =

{
W†
∗D9 (t, ω), if j = λi,

0, otherwise,
(27)

where λi is the index number of the sub-matrix that implies
the non-zero element of D̃sj at each TF point. The source
estimator s̃i(t) is then obtained by converting D̂si (t, ω) to the
time domain using the inverse STFT.

E. SELECTING FROM THE EXTRACTED COMPONENTS
Due to the multiple subspaces representation, the proposed
method forms k extracted components. Therefore, one more
thing needs to be considered that is selecting n outputs from k
components as the estimator of original sources. We thus use
the column-wise singular value decomposition (SVD) to form

Algorithm 1 Generate Polynomials of Degree 1 by
Gram-Schmidt Procedure
Input: N -dimensional observed signals x(t) =

[x1(t), · · · , xN (t)]>.
Output: The recovered signals ŝ(t) = [s1(t), · · · , sM (t)]>

for t = 1, · · · ,T .
1: Stage 1:
2: for t = 1 : T do
3: Mapping the observed signals into multiple spaces

9(x(t)) = 4>8(x(t)).
4: end for
5: Stage 2:
6: for i = 1 : k do
7: Transform 9(t) from the time domain into TF

domain D9i (τ, ω) =
∞∑

t=−∞

9i(t)h(t − τ )e−jωt .

8: end for
9: To remove the effect of noise, we do

‖D9 (tp, ωk )‖
maxω{‖D9 (tp, ω)‖}

> ε, where ε = 0.05 in [8].

10: Minimizing (24) to derive a candidate matrixW
J (ci, η) = 1

2‖π i −D5ci‖22 + η‖ci‖1,
where W is formed by the element of D5 that corre-
sponding to the maximum value in ci.

11: The optimal sub-matrixW can be derived by (26).
12: Convert the estimated source in the TF domain back to

the time domain in (27).
13: Stage 3:
14: for t = 1 : T do
15: Apply SVD on matrix F = [s̃1(:, t), · · · , s̃k (:, t)].
16: The dominant left singular vector is the estimate of

the t-th column of ŝ, i.e., ŝ(:, t)← U(:, 1), where
F = U6V>.

17: end for

each column of the original sources s, where the estimator
forms all possible k subspaces.
The major steps of the proposed algorithm for multiple

subspaces representation are summarized in Algorithm 1.
In stage 1: By parameterizing such subspaces, we can map
the observed signals in the feature space with the coefficient
matrix from the parameter space. In stage 2: We then exploit
the linear mixture in the feature space that corresponds to the
nonlinear mixture in the input space. Thus, by allowing mul-
tiple sources to be presented at any point in the TF domain,
we can figure out the target matrix in a sparse mixture of TF
vectors. Final stage: Multiple subspaces produce k extracted
components s̃, we need to select n outputs as the estima-
tor of the original sources ŝ. Thus, the recovered sources
formed from each dominant left singular vector U(:, 1) in the
column-wise SVD.

V. EXPERIMENTS AND DISCUSSIONS
To evaluate the proposed algorithm, we performed the sim-
ulation on both synthetic data and real audio data over the
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underdetermined mixtures. First, using the synthetically gen-
erated data, the proposed algorithm is applied to show that the
subspace matches the nonlinearity of mixing function in the
time domain. Then the nonlinear problem can be separated in
the feature space. Next, the recovered sources are tested on
two kinds of environment.

A. METHODS AND EVALUATION METRIC
To evaluate the efficiency of the proposed algorithm, we per-
form a comparison with some developed conventional algo-
rithms, such as the underdetermined BSS (UBSS) method
based on the TF non-disjoint assumption [2], the underde-
termined convolutive BSS (UCBSS) method1 based on the
subspace representation [33].

The performance of the recovered sources is evaluated by
using three kinds of error measure. One is the Pearson corre-
lation coefficient (PCC), which can evaluate the performance
for each signal on the definition of

PCC(si, ŝi) =
cov(si, ŝi)
σsiσŝi

, (28)

where the recovered source and original source are denoted
as ŝi and si, respectively. cov(·, ·) is the covariance between
two variables and the standard deviation is denoted as σ .

The normalized mean squared error (NMSE) is another
evaluation criterion used to measure the performance on the
overall signals, which is defined by

NMSE(s, ŝ) = 10 log10

(
1
M

M∑
i=1

min
δ

‖si − δŝi‖22
‖si‖22

)
. (29)

The scalar δ is used for controlling the scalar ambiguity.
During the separation process, the signals may be dis-

torted especially when the sources are overlapped in their
TF domain. Hence, it is necessary to measure the distor-
tion and the artifacts introduced by the algorithm to assess
the quality of separation. The BSSEVAL toolbox [34] is
available online.2 Then the source-to-distortion ratio (SDR),
the source-to-interference ration (SIR), and the source-to-
artifacts ratio (SAR) of an estimated source ŝij as

SDRj = 10 log10

∑M
i=1

∑
t sij(t)

2∑M
i=1

∑
t [e

spat
ij (t)+ einterfij (t)+ eartifij (t)]2

,

SIRj = 10 log10

∑M
i=1

∑
t [sij(t)

2
+ espatij (t)]2∑M

i=1
∑

t e
interf
ij (t)2

,

SARj = 10 log10

∑M
i=1

∑
t [sij(t)+ e

spat
ij (t)+ einterfij (t)]2∑M

i=1
∑

t e
artif
ij (t)2

,

where ŝij(t) = sij(t) + espatij (t) + einterfij (t) + eartifij (t), sij is
the target source with allowed deformation such as filtering
or gain, espatij (t) distinct error components representing spa-
tial distortion, einterfij (t) accounts for the interference due to

1https://slsp.kaist.ac.kr/xe/index.php?mid=software
2http://bass-db.gforge.inria.fr/bss_eval

unwanted sources, and eartifij (t) corresponds to the artifacts
introduced by the separation algorithm.

B. THE EFFECT OF MULTI-SUBSPACE REPRESENTATION
To see the effect of multi-subspace representation, we need
to show that the subspace is extracted to approximate the
varieties of nonlinearity or distortion. First, let us consider
the case where the mixture signals x plotted in Fig. 2(b) are a
nonlinear mixture from two sinusoidal signals, which is also
used in [19] and [35] with the form of

x1(t) = exp(s1(t))− exp(s2(t)),

x2(t) = exp(−s1(t))+ exp(−s2(t)), (30)

FIGURE 2. An illustration of nonlinear mapping. (a) Original signals
generated from two sinusoidal functions. (b) Mixture signals are modeled
nonlinearly from (30).

where s1(t) = sin(0.05π t) and s2(t) = sin(0.021π t) with
the different frequencies. Each source has 1, 000 data points.
We indicate the polynomial function of the degree 9 as a
kernel function, i.e.,K(s1, s2) = (s>1 s2+ 1)9. Without loss of
generality, we further discuss the effect of the different kernel
functions. The dimensionality of subspace is set as 20.

FIGURE 3. The nonlinear mixing x1 and the subspace constructed by
approximation function. The black points illustrate the observed signal x1
in nonlinear mixing. The red points structure the subspace of
best-matching. By using a coefficient matrix, the subspace can be rotated
and scaled to match the nonlinear transformation.

As shown in Fig. 3, the nonlinearity of the mixed signals
x1 is comparatively strong that is plotted by black points. The
observed data x1 is first implicitly mapped into feature space,
and the effective subspace plotted by red points. Using the
coefficient matrix, we can rotate and scale the subspace to
match the nonlinear transformation. Relying on this effective
subspace, the nonlinear problem can be linearly separable in
the feature space, i.e., the original sources can be estimated
linearly in the feature space by (20).
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One of the keys in the algorithm is to find a set of orthog-
onal basis to study the parameterized signals in multiple
subspaces. Some techniques can help that are roughly analo-
gous in [36]–[38]. To perform the comparison, we employed
some classical methods to extract a set of basis in the pro-
posed algorithm, such as kernel principle component analysis
(KPCA) [39], k-means [40], and random sampling. To reduce
the random effect, 40 times of Monte Carlo simulations are
performed.

FIGURE 4. The averaged NMSEs of estimators using the different method
to form a set of basis.

As we can see in Fig. 4, using N -FINDR to extract a
set of basis provides the smaller construction error in the
nonlinear approximation. Either KPCA or k-means clustering
is considered to obtain some vectors, which is expected to be
independent. However, themethodmay not be appropriate for
mixture data. This is due to the independence of the vectors,
which can not be guaranteed the mutually orthogonal vectors
among the basis. For further work, a set of orthonormal
subspaces produced by these k vectors can represent the
nonlinearity of mixing functions in the reduced data.

C. SEPARATION OF SPEECH AND AUDIO SIGNALS
To show the separation of speech and audio signals over the
underterminedmixtures, the experiments are designed on two
kinds of environment. Both cases use the audio data from
real-world that are available in the literature [2] and online
repositories.3 The simulation is performed on the following
parameter setup, where the proposed method considers the
case where some examples of vector dot-product kernel.
The dimensionality of subspace is set as 20. The parameter
η of scalar regularization is taken as 0.001. Assume that
the noise is generated from white and Gaussian with some
uncorrelated data points whose variance is usually assumed
to be uniform. To reduce the random effect, the simulation is
repeated 20 times. The experimental conditions are summa-
rized in TABLE 1.

The first example assumes that the mixture signals are
mixed nonlinearly. The mixing functions are employed to
transform m = 4 independent speech signals for n = 3
observations that are available from the literature [2], where

3http://bass-db.gforge.inria.fr/BASS-dB/

TABLE 1. The experimental conditions.

each observation is a linear mixture of nonlinear distorted
sources, i.e., x(t) = A exp(s(t)). Here, the exponential trans-
formation provides a nonlinear distortion and the matrix A
randomly generated from a uniform distribution U [−1, 1].
Since there is no good path to choose a kernel function, unless
we have some prior information about the data that might
be helpful to determine a proper kernel function [41]. Here,
we only consider the kernel function with 3 classical types,
where polynomial kernel of degree 9 is given by K(x, y) =
(x>y+ 1)9, Radial-basis function (RBF) of uniform variance
has the definition of K(x, y) = exp(− ‖x−y‖

2

2 ), and sigmoid
function is formed as K(x, y) = tanh(x>y), respectively. The
results are given under the signal-to-noise power ratio (SNR)
in the range of 5 dB to 45 dB. The experiments are repeated
20 times.

FIGURE 5. The averaged NMSEs on the different SNR levels. Here the
number of sources M = 4 and that of observations N = 3.

In Fig. 5, the separation accuracy is compared with some
conventional algorithms on the different SNR levels. We can
see that the proposed kernel-based underdetermined blind
source separation (KUBSS) algorithm consistently provides
a higher accuracy over the whole SNR range. When the
SNR reaches 25 dB, NMSEs decrease linearly with further
increasing of SNR. Benefiting from a multi-subspace repre-
sentation, the effective subspace can extract the nonlinearity
or distortion caused by nonlinear mixing in kernel feature
space. Moreover, this is because both UBSS and UCBSS
methods are based on single source detection, which is built
on the assumption that there exists only a single source or
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FIGURE 6. The averaged NMSEs on the number of sources increases from
M = 4 to 7.

FIGURE 7. The virtual room environment for synthetic mixtures.

dominant energy of its corresponding single source at the TF
points.

Experiment 2 shows NMSEs of the proposed algorithm
where the observations are generated from the enhancement
of the undetermined level, i.e., the number of sources is
increased from 4 to 7 while that of observations is kept
as 3. In general, a larger number of observations leads to
better separation accuracy. The NMSE improvements for
different combinations of sources and observations are shown
in Fig. 6, where a set of basis is extracted using the N -FINDR
approach. The kernel function also works on 3 types and 20
experiments are repeated.

Fig. 6 illustrates the averaged NMSEs when the num-
ber of sources increases from M = 4 to 7. The pro-
posed algorithm with the ‘‘RBF’’ function achieved about
1.5 dB higher NMSEs against other algorithms over the
whole range. In addition, 3.2 dB higher NMSEs are shown
than the other algorithms when we use ‘‘Sigmoid’’ func-
tion. However, the performance degraded as the number of
the underlying sources increased. In practice, this is due
to the fact that the sources are not perfectly disjoint in
the TF domain [42], which leads to the estimation error of

FIGURE 8. The spectrogram of signals with three channels. (a) The three
subfigures represent the original sources of s1, s2, and s3iijŇ
respectively. (b) The three subfigures correspond to the recovered sources
of ŝ1, ŝ2, and ŝ3, respectively.

FIGURE 9. The mixture is achieved by transforming 3 original sources to
2 observations. The mixed signals x1 and x2 are shown in the (a) and (b),
respectively.

recovered signals. As the number of sources increases,
the overlap will occur in the spectra as well as the estimation
error also increase.

D. EXPERIMENTS USING REAL ROOM
IMPULSE RESPONSES
The experiments were designed on speech data with impulse
responses in an office room. The observations are col-
lected from this room with 187 ms reverberation time. The
effect of the impulse response is measured in the face of
using ‘‘Sample Champion’’ software that is available online.4

4http://www.purebits.com
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FIGURE 10. Separation of the speech data with impulse responses. The first column (a)(d) are the results from the collinear mixture of
s1 and s2. The results of the non-collinear mixture are shown, respectively, in the middle column (b)(e) of s1 and s3 mixture, and the third
column (c)(f) of s2 and s3 mixture. The first row (a)-(c) are PCCs of the estimated signal ŝ1. The second row (d)-(f) are PCCs of the estimated
signal ŝ2.

Fig. 8 shows the original sources s(t) of 3 channels. With-
out loss of generality, the microphone, and loud speaker
transfer function is neglected in the measurements [42]. The
virtual room environment is illustrated in Fig. 7. A two-
element microphone array was used for recording speech
signals, which arrived in two different directions, such as
35◦ and −32◦. It is worth noting that the source s1 and s2
are collinear that provides a challenging task using indepen-
dent component analysis. The underdetermined mixture is
achieved by transforming 3 original sources x(t) to 2 obser-
vations that are given in Fig. 9.

The experiments involve three scenarios, where the first
case is a collinear mixture, i.e., mixed signals generated
from sources s1 and s2. The second case is considered by a
non-collinear mixture from s1 and s3, or s2 and s3. The third
case is underdetermined mixture using all the three sources,
i.e., s1, s2, and s3 in Fig. 7. Also, 3 classical kernel func-
tions are used for comparison, such as ‘‘polynomial kernel’’,

‘‘RBF kernel’’, and ‘‘Sigmoid kernel’’. In the legend of the
figure, they are denoted as ‘‘KUBSS_1’’, ‘‘KUBSS_2’’, and
‘‘KUBSS_3’’, respectively, for convenience. The Pearson
correlation coefficient (PCC) is used to evaluate the perfor-
mance of each signal.

From Fig. 10, it can be seen that the algorithms can recover
the original sources in all the 3 cases.We further show PCC of
each channel between the original source and the recovered
source using the PCC (28) measure. As shown in the figures,
the proposed approach exhibits the promising results. This is
due to the fact that the UBSS algorithm is lack of analysis
of nonlinearity. In addition, the average SDR, SIR, and SAR
are adopted as a performance measure of the source recovery.
The performance shown in TABLE 2 are mean performances
of 20 experiments. As we can see, the proposed algorithm
performed better in terms of average SDR, SIR, and SAR
compared with that of the UBSS methods. One can notice
that the collinear mixture provides a lower accuracy than
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FIGURE 11. Separation of the speech data on the underdetermined mixture with the impulse response. (a) is the performance of estimated
signal ŝ1, (b) is the performance of estimated signal ŝ2, and (c) corresponds to the estimated signal ŝ3.

TABLE 2. Performance comparison of the proposed algorithm, where the algorithm UCBSS [33] only works on the underdetermined mixture.

non-collinear mixture on speech sources. Therefore, a large
enough angle between two sources is a crucial condition to
obtain good separation performance. Some discussions have
been studied in [43]. The limitation is not only for our study,
but also the limitation of the separation filter obtained by ICA
that forms spatial directivity [44].

Furthermore, Fig. 11 shows the averaged PCC on the
underdetermined mixture with the impulse response. As we
can see, despite adopting a similar assumption to extract
sources, the proposedmethod exhibits a high separation accu-
racy compared with that of the UCBSS and UBSS methods.
The main reason is that subspaces can extract the nonlinear-
ity caused by the mixing function. As shown in TABLE 2,
the proposed algorithm performs better in terms of average
SDR, SIR, and SAR for situations tested. The coefficient
matrix is estimated by minimizing the cost function, which
is directly related to the evaluation criterion. In addition,
the compared methods always require the sparsity of the

sources to some extent, while the assumption may not be
satisfied in reality.

VI. CONCLUSIONS
In this paper, we propose a multi-subspace representa-
tion based separation approach that tackles the scenario of
the nonlinear and underdetermined mixture. The separa-
tion system is constructed using the kernel methods with a
multi-subspace structure. One of the keys in that algorithm is
to find a set of orthogonal basis to study the parameterized
signals in multiple feature spaces. We attempt to use the geo-
metric vertices of the convex hull as the basis, which parame-
terizes the multi-subspace that contains the reduced vectors
in the feature space. Relying on a set of an orthonormal
basis, the spanned subspaces can represent the nonlinearity
of mixing function in the minimum number.

Another contribution is to derive the coefficient matrix
by solving an optimization problem on the coding
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coefficient vector. Once such subspaces are built, by allowing
multiple sources to be presented at any point in the TF
domain, we can figure out the target matrix in sparse mixture
TF vectors with less computational cost. Finally, using this
coefficient matrix, the original sources in underdetermined
scenarios can be estimated. The experiments are designed
on two kinds of environment, such as the signals perform
nonlinear mixing, or mixing with some direction angles in a
virtual room environment. The proposed approach exhibits
a higher separation accuracy than that of the conventional
algorithms.
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