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ABSTRACT In this paper, a new concept of the constant stiffness space (CSS) of cable-driven parallel
robots (CDPRs) is presented to meet the requirement for the constant stiffness plane of CDPRs in ground
simulation spacecraft landing addressing experiments. First, the previously studied stiffness model and cable
tension feasible region are reviewed. Then, the concept of the stiffness relative contribution coefficient is
proposed, which can directly reflect the influence of controllable stiffness on system stiffness and guide the
selection of driving cables and the setting of cable tension limiting values. Further, a method to calculate
the CSS is proposed. This method can effectively obtain the CSS of robots according to the target stiffness.
Next, an evaluation index for the local and global stability of the CSS is presented to analyze and evaluate the
stability of the CSS of CDPRs. The influences of the load and posture of the end-effector of a CDPR on the
volume and stability of the CSS are analyzed. The analysis results can serve as guidelines for determining
the CSS in practical applications. The correctness and efficacy of the proposed method are verified through
the experimental and theoretical analyses. The results show that the proposed method is computationally
efficient and can obtain the CSS of CDPRs within a given accuracy range.

INDEX TERMS Cable-driven parallel robots, constant stiffness space, redundant systems, stiffness.

I. INTRODUCTION
Cable-driven parallel robots (CDPRs) are used in many
industrial robotics applications, and their configurations are
typically similar to those of parallel manipulators. The
end-effectors of these robots are driven by cables instead
of rigid links [1]. The cables are almost massless and are
not hampered by motion limitations of rigid rotating joints.
This decreases the motion inertia of CDPRs and enables
end-effectors to reach high motion accelerations in a large
workspace. CDPRs have been extensively researched and are
highly preferred in academic and industrial fields because
of their excellent movement performance, high load capac-
ity, and large workspace [2]–[8]. Therefore, CDPRs have
attracted increasing interest for numerous applications such
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as material handling [9], [10] and rehabilitation [11]–[15].
However, CDPRs have certain drawbacks. As driving cables
can pull but not push, redundant actuation is required to
completely restrain robots, i.e., at least m = n + 1 cables
are required to completely control a CDPR with n degrees
of freedom (i.e., n-DOF CDPR). It should be noted that
if gravity plays the role of an additional virtual cable,
n-DOFCDPRs can be completely controlled by n cables [16].
Among the various types of CDPRs, redundantly actuated
CDPRs have more actuators than the DOFs of end-effectors,
with the degree of redundancy (DOR) given by r = m − n,
where m and n are the numbers of cables and DOFs,
respectively [8].

Owing to the redundant actuators, there may be numer-
ous cable tension groups that meet the driving condition
for end-effectors at a specific position. The tension of the
driving cables of CDPRs strongly affects the stiffness of
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FIGURE 1. TCPR-8 CDPR prototype.

robots. This provides a condition for controlling the system
stiffness of CDPRs by controlling the tension of the driv-
ing cables. Redundant actuators can improve the working
space, stiffness, load capacity, etc., of CDPRs; however, they
increase the number of actuators. In addition, they make the
determination of the tension of driving cables more diffi-
cult (the calculation complexity increases with the DOR),
and make CDPRs more complex and expensive because the
cables and environment are prone to collision or interfer-
ence. Considering the advantages, cost, and complexity of
redundant actuation, n-DOF CDPRs are generally driven by
n + 2 cables [17]–[20]. This study investigates the charac-
teristics of the constant stiffness space (CSS) of redundantly
actuated CDPRs with the aim of meeting the requirement
for the constant stiffness plane of CDPRs in ground sim-
ulation spacecraft landing addressing experiments. Experi-
ments were conducted on a 2-DOR, 8-cable CDPR prototype,
namely, the Tsinghua cable parallel robot (TCPR-8; refer to
Fig. 1). TCPR-8 is used as the a priori device for ground
simulation spacecraft Mars landing addressing experiments.

The stiffness problem is an important issue that must be
solved to improve the performance of robots. It is closely
related to the dynamic characteristics and positioning accu-
racy of robots. Consequently, numerous theoretical and prac-
tical studies have been conducted in this area. In [21],
the method of kinematic constraints was used to improve
the system stiffness of redundant CDPRs, and the proposed
approaches were experimentally tested on an actual ware-
housing robot. In [22], the static stiffness of the flexible-
cable-driven parallel mechanism was analyzed, and two
examples of static stiffness estimation were given for redun-
dantly restrained positioning mechanism and incompletely
restrained positioning mechanism (the cable-driven cabin
suspension of the 500-m aperture spherical telescope), and
a comparison between the analytical and simulation results
proved the validity of the calculationmodel. According to [8],
the system stiffness of redundant CDPRs could be effectively
controlled by cable tension based on the cable tension feasible
region (CTFR). The proposed methods were verified via the-
oretical analyses and experimental tests on an actual TCPR-8
robot for a simulated satellite launch. Reference [23] intro-
duced the concept of a wrench-closure workspace (WCW)

FIGURE 2. Ground simulation spacecraft Mars landing addressing
experiments.

by studying planar CDPRs with different configurations,
and presented the calculation method for the WCW. The
method provided a useful guide to study the WCW of
6-DOF parallel cable-driven mechanisms. Reference [24]
presented a hybrid analytical–numerical method to calculate
the WCW by combining the high accuracy of an analyti-
cal approach and the algorithmic versatility of a numerical
approach. In [25], a general approach was proposed to calcu-
late the force-closure workspace and the method was verified
through simulation. Most of the above studies attempted to
enhance or control the system stiffness of CDPRs at a specific
position or study the workspace of robots from the perspec-
tive of wrench/force closure.

To the best of the authors’ knowledge, the workspace
of robots has not been investigated from the perspective of
constant stiffness until now. A spacecraft must move in a
plane when addressing a suitable landing site on the surface
of Mars. This plane must have a certain height with respect to
the surface of Mars, and the stiffness in the plane is constant.
To ensure safety, ground simulation landing experiments
must be conducted before a spacecraft is launched. Ground
simulation spacecraft Mars landing addressing experiments
must simulate the state of the spacecraft landing on Mars
as realistically as possible to ensure their validity. There-
fore, as shown in Fig. 2, a spacecraft requires CDPRs with
constant stiffness in the addressing plane during the experi-
ments. This work is dedicated to solving the problem that a
spacecraft must maintain constant stiffness when moving in
the addressing plane. In addition, the experimental analysis
is conducted using an a priori device to reduce experimen-
tal cost (see Fig. 1). The stiffness of parallel manipulators
is related to their configurations, and the working space is
relatively small. Thus, the requirements of ground simulation
spacecraft landing addressing experiments cannot be met
for a large constant-stiffness working plane. Nevertheless,
the system stiffness of CDPRs can be controlled via the ten-
sion of the driving cables, and the working space is relatively
large. Therefore, to meet the abovementioned requirements,
it is particularly important to study the CSS of robots for
continued developments in the aerospace industry.
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The characteristics of 2-DOR CDPRs and the stiffness
model and CTFR previously studied by the authors are
reviewed. On this basis, the CSS of the redundant CDPRs is
defined in this paper, and its calculationmethod is introduced.
Then, a new index is introduced to evaluate and analyze
the local and global stability of the CSS of CDPRs. The
influences of the load and posture of the end-effector of
CDPRs on the volume and stability of the CSS are analyzed.
Finally, the correctness and validity of the proposed method
are verified through theoretical analysis and two sets of exper-
iments. Accordingly, the major contributions of this study are
as follows.

(1) Based on the review of the authors’ previous work on
the stiffness model, the concept of the stiffness relative con-
tribution coefficient (SRCC) is proposed, which establishes
the exact relationship between controllable stiffness and its
contributions to system stiffness. In addition, it can directly
reflect the influence of controllable stiffness on system stiff-
ness and guide the selection of driving cables and the setting
of cable tension limiting values.

(2) According to the requirements of the ground simulation
spacecraft Mars landing addressing experiments, the concept
of the CSS is proposed and its detailed definition and cal-
culation method are introduced. Additionally, two evaluation
indexes, that is, the local stability factor and global stability
coefficient, are proposed to evaluate and analyze the quality
of the CSS.

(3) The influences of the end-effector’s load and posture
on the volume and stability of the CSS of CDPRs are com-
pared and analyzed, and the correctness and efficacy of the
proposed method are verified through experiments.

In addition, our findings can not only be used in the ground
simulation spacecraft Mars landing addressing experiments,
but also serve as a reference for researching other ground
simulation spacecraft landing addressing experiments, for
example, lunar or other planetary explorations.

The remainder of this paper is organized as follows.
Section II reviews the stiffness model [8], [26] and CTFR
previously studied by the authors [8], and introduces the con-
cept of the SRCC. Section III defines the CSS and proposes
its calculation method and evaluation index. Additionally,
the effects of the load and posture of the end-effector of
CDPRs on the volume and stability of the CSS are ana-
lyzed. Section IV presents the experimental verification per-
formed using two constant stiffness planes (a rectangle and
an ellipse). Finally, Section V concludes.

II. STIFFNESS MODEL
The schematic of a general CDPRmodel is depicted in Fig. 3.
The base and moving coordinate systems O and O

′

of a
CDPR are assigned, respectively. Here, Ai and Bi denote the
fixed exit point of a cable and the connection point between
the cable and the end-effector, respectively. By utilizing
the two abovementioned coordinate systems, the position of
the end-effector can be described via the position vector,
p = [xO′ , yO′ , zO′ ]

T (in meters), of the origin of O
′

in O, and

FIGURE 3. General model of CDPRs.

the posture can be described via the angular displacement,
2 = [α, β, γ ]T (in degrees), of O

′

relative to O. Thus, x =
[p;2] denotes the pose of the end-effector in O. According
to the vector loop equation, the relationship between the end-
effector’s pose and the cable length is as follows:

l i = ai − p− R · O
′

bi (1)

where l i denotes the cable vector from Bi to Ai, ai is the
position vector of Ai in O, O

′

bi is the position vector of Bi
inO

′

, R represents the rotation matrix ofO
′

relative toO, and
i = 1, 2, · · · ,m.

When target pose x is determined, the cable length, ‖l i‖
and the cable unit vector, ui = l i/ ‖l i‖ can be calculated
using (1). The relationship between the end-effector’s pose
and the cable length is also determined.

The relationship between the velocity vectors of the cables
and end-effector via the differentiation of (1) with respect to
time can be obtained as follows:

l̇ = −ST · ẋ (2)

where l̇ = [l̇1, l̇2, · · · , l̇m]T is the velocity vector of the
cables, S ∈ Rn×m is the structure matrix of CDPRs at a pose,
and ẋ =

[
Ṗ, 2̇

]T
denotes the velocity vector of the end-

effector, where

S(x) =

[
u1 · · · um

(R · O
′

b1)× u1 · · · (R · O
′

bm)× um

]
.

According to the principle of virtual work, the static equi-
librium equation of CDPRs can be written as follows:

ST +W = 0 (3)

where T = [t1, t2, · · · , tm]T , ti is the value of the ith cable
tension, W =

[
f e,me

]T , and f e and me represent the
resultant force (N) and torque (N · m) (including the end-
effector’s weight) of the external environment acting on the
end-effector, respectively.
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Studying the stiffness of redundant CDPRs is the basis
for investigating the CSS of robots. The anti-deformation
ability of the end-effector under the action of external force
is one of the criteria to measure system stiffness. Therefore,
the relationship between the small external force, δW , acting
on the end-effector, and the small variation, δx, in the end-
effector’s pose can be obtained as follows:

δW = K · δx (4)

where K denotes the system stiffness matrix.
Using (3) and (4), the expression of the stiffness matrix is

given by

K =
∂W
∂x
= −(

∂S
∂x

T + S
∂T
∂x

) = K1 + K2 (5)

As seen from (5), the system stiffness matrix consists of
two parts. K1 is related to the structure matrix transformation
and cable tension. It can be controlled by altering the cable
tension at a certain pose, and it is referred to as controllable
stiffness. K2 is related to the system structure and the end-
effector’s pose. It is referred to as inherent stiffness.

A. CONTROLLABLE STIFFNESS
Controllable stiffness is the key to controlling system stiffness
and obtaining the CSS of CDPRs. This section deduces the
matrix of controllable stiffness by introducing a line vector
and differential transformation. From (5), K1 is written as
follows:

K1 = −HT (6)

where H =
[
H1,H2, · · · ,Hn]

∈ Rn×n×m represents the
three-dimensional Hessian matrix, H j

∈ Rn×m is the jth

subarray of H , and

H j
=
∂S
∂xj
=


∂u1
∂xj
· · ·

∂um
∂xj

∂

[
(R·O

′

b1)×u1

]
∂xj

· · ·

∂

[
(R·O

′

bm)×um

]
∂xj

 (7)

To simplify the derivation process of H , the cable unit
vector, ui, is written with the direction cosine as follows:

ui= [cαi, cβi, cγi]T (8)

where αi, βi, and γi denote the angle of ui about the Cartesian
axis x, y, and z, respectively.
(Note: To simplify the expression, we use cθ and sθ instead

of cosθ and sinθ , respectively, in this paper.)
From (7) and (8), the partial derivatives of ui and (R·o

′

bi)×
ui with respect to xj can be obtained as follows:

∂ui
∂xj
=
∂ui
∂αi

∂αi

∂xj
+
∂ui
∂β i

∂β i

∂xj
+
∂ui
∂γ i

∂γ i

∂xj
(9)

∂
[
(R · O

′

bi)× ui
]

∂xj
=
∂(R · O

′

bi)
∂xj

× ui + (R · O
′

bi)×
∂ui
∂xj
(10)

As R
′

= ω×R, using (1), the following expression can be
obtained:

l̇ i · ui + li · u̇i = −ṗ− ω × (R · O
′

bi)

=

[
−I

(
R · O

′

bi
)× ]

ẋ = Giẋ (11)

where Gi ∈ R3×6 denotes the algebraic matrix.
From (2), we obtain the following:

l̇ i = −STi ẋ (12)

where STi is the i th row vector of ST .
Using (12), we obtain the following:

l̇iui = −

 cαi · STicβi · STi
cγi · STi

 ẋ = Qiẋ (13)

where Qi ∈ R
3×6 represents the algebraic matrix.

Substituting (13) into (11), we obtain the following:
∂αi

∂xj
= −

1
li · sαi

[
Gi − Qi

]
1,j

∂βi

∂xj
= −

1
li · sβi

[
Gi − Qi

]
2,j

(14)

where
[
Gi − Qi

]
1,j and

[
Gi − Qi

]
2,j are the elements of the

first row and j th column and the second row and j th column
of matrix

[
Gi − Qi

]
, respectively.

Through the derivatives of R · O
′

bi with respect to time,
we obtain the following:

∂
(
R · O

′

bi
)

∂xj
= M i,j (15)

where M i ∈ R3×6 is the algebraic matrix and M i,j denotes
the j th column vector ofM i.
H can be obtained by substituting (14) and (15) into (9),

(10), and (7). The stiffness matrix K1 can be calculated
using (6) and the cable tension vector T .

B. INHERENT STIFFNESS
Even though inherent stiffness is not controlled by cable
tension, it has a significant impact on system stiffness. There-
fore, this section presents the process of deducing the matrix
of inherent stiffness. Using (5), we obtain the following:

K2 = −S
∂T
∂l
∂l
∂x

(16)

The relationship between the deformation and tension of
the cables is expressed as follows:

∂T
∂l
= diag(

E1 · A1

lo1
, · · · ,

Em · Am

lom
) (17)

where Ei, Ai, and loi are the elastic modulus, cross-sectional
area, and static length of a cable, respectively.

Using (2), we obtain the following:

∂l
∂x
= −ST (18)
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FIGURE 4. CTFR of TCPR-8 at pose x = [0,0,0.83,0,0,0]T , and the load
of its end-effector is zero. tmin = 10 N and tmax = 400 N .

Substituting (17) and (18) into (16), we obtain

K2 = S · diag(
E1 · A1

lo1
, · · · ,

Em · Am

lom
) · ST (19)

The stiffness matrix of controllable stiffness K1 and inher-
ent stiffness K2 can be calculated using the above equations,
and system stiffness K can be obtained.

C. CABLE TENSION FEASIBLE REGION
From Section II.A, it is clear that the controllable stiffness
of CDPRs can be adjusted by altering the cable tension.
Therefore, the CSS of CDPRs is studied based on the CTFR.
Taking 2-DOR CDPRs as an example, when the external
load of the end-effector is constant, the CTFR is obtained
while satisfying system balance and preventing cable slack
or overload.

As this work focuses on the problem of the CSS for
2-DOR CDPRs (r = m − n = 2), S is a nonsquare matrix.
When S is a full-rankmatrix, (3) is equivalent to the following
well-known equation:

T = S+(−W )+ Nϕ= tp + tn (20)

where S+ = ST (SST )−1 is the pseudo-inverse of matrix
S, N = null(S) denotes a full-rank m × r matrix, the two
columns of N form an orthonormal basis of the null-space
of S, ϕ= [ϕ1 ϕ2]T is an arbitrary 2D vector representing
one point,ϕ1 ∈ R, ϕ2 ∈ R, S+ (−W ) represents the
minimum-norm solution of (3),Nϕ is the homogeneous gen-
eral solution of (3), tp = S+(−W ), and tn = Nϕ.
φ denotes the set of tension solutions, T , for (3), satisfying

the inequalities tmin ≤ ti ≤ tmax, which can be defined via
the following set of 2m linear inequalities:

tmin − tp ≤ Nm×2ϕ ≤ tmax − tp (21)

where tmin and tmax are the minimum and maximum lim-
iting values of cable tension, respectively. When tmin and
tmax are determined, each inequality defines a half plane
through a boundary line with ϕ changes. The intersection
of 2m half planes given by (21) forms a closed region,
which is the CTFR. An example of the CTFR is shown
in Fig. 4.

FIGURE 5. Variation curves of the stiffness relative contribution
coefficient.

D. STIFFNESS RELATIONSHIP AND MEASUREMENT
METHOD
The system stiffness of redundant CDPRs can be controlled
by cable tension, and it is positively correlated with the same.
At a specific pose, inherent stiffness and its contribution
to system stiffness are constant, and controllable stiffness
and its contribution to system stiffness change with cable
tension. The SRCC, ψ , used to measure the contribution
of controllable stiffness to system stiffness, is expressed as
follows:

ψ =
‖K1‖2

‖K‖2
(22)

where ‖K1‖2 and ‖K‖2 represent the 2-norms of K1 and K ,
respectively.

Considering the pose of the end-effector of TCPR-8, x =
[0, 0, 0.83, 0, 0, 0]T as an example, the robot is controlled by
the cable tension at the centroid of the CTFR. The variations
inψ , ‖K1‖2, and ‖K2‖2 with tmax are illustrated in Fig. 5. The
figure indicates thatψ is a monotonically increasing function
greater than 0, because inherent stiffness is constant and
controllable stiffness increases with cable tension. ψ tends
to 0 when tmax is relatively small. At this time, controllable
stiffness contributes negligibly to system stiffness, and sys-
tem stiffness is approximately equal to inherent stiffness. The
figure also shows that (22) establishes the exact relationship
between controllable stiffness and its contributions to system
stiffness. In practical applications, (22) can be used to select
the corresponding tmax according to the requirement for the
stiffness adjustment range, and then, the appropriate driving
cable can be selected according to tmax.
Therefore, to improve the influence of controllable stiff-

ness on system stiffness and increase the control range of
cable tension to controllable stiffness, this study selects
ψ= 0.362 based on the load conditions of the cables and
drivers and the corresponding cable tension limiting value is
tmax = 400N , as shown in Fig. 5.
To effectively measure the variation in system stiffness and

analyze the CSS of CDPRs, this study adopts the method
involving ‘‘the relationship between external force and the
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FIGURE 6. Configuration of TCPR-8.

TABLE 1. Dimensions of TCPR-8 (in meters).

change in the pose of the end-effector’’ proposed by the
authors in [8]. Under the same external force, the larger the
changes in the pose of the end-effector, the smaller the system
stiffness at a certain pose, and vice versa.

From (4), we obtain the following:

1x = K− ·W (23)

where1x =
[
1xO′ ,1yO′ ,1zO′ ,1α,1β,1γ

]T denotes the

value of the change in pose, and K− =
(
KTK

)−1
· KT is the

generalized inverse matrix of K .
According to the external load of the end-effector,

the change in the pose of the end-effector at a certain pose can
be calculated using (23), following which the CSS of CDPRs
can be examined.

III. CALCULATION AND ANALYSIS OF CONSTANT
STIFFNESS SPACE
A prototype of TCPR-8 is utilized in this study to verify
the correctness and validity of the proposed concepts and
methods. Fig. 1 illustrates the prototype of the studied 6-DOF
CDPR designed for a simulated satellite launch. The cable
layout and dimensions of the fixed and end-effector of the
CDPR are shown in Fig. 6 and Table 1, respectively. Table 2
summarizes the mechanical properties of the robot.

A. DEFINITION AND CALCULATION OF CONSTANT
STIFFNESS SPACE
When designing a CDPR system, the corresponding require-
ments for vibration and stability during the movement of the
end-effector are typically proposed. One such requirement is
that robots must have constant stiffness, particularly in the

TABLE 2. Mechanical properties and Rope Cross-section Diameter of
TCPR-8.

context of the ground simulation spacecraft landing address-
ing experimental platform system. As the cable tension and
poses of redundant CDPRs are coupled to each other, and
redundant CDPRs have an infinite number of feasible cable
tensions at a specific position, the system stiffness of robots
can bemaintained as constant by controlling the cable tension
based on the CTFR, which is the main focus of this work.
The closed area with constant stiffness formed by the set of
poses with cable tension belonging to the CTFR is referred to
as the constant stiffness space (CSS), and it is expressed as
follows:

find V (x)

subject to K (xi) = kc (24a)

ϕ x ∈ CTFR(xi) (24b)

where V (x) denotes the CSS, x is the set of poses of the
CDPRs, K (xi) is the system stiffness of CDPRs at pose xi, xi
is any pose in set x, kc represents a constant matrix, CTFR(xi)
denotes the CTFR of CDPRs at pose xi, and ϕ x is an arbitrary
point in the plane of CTFR(xi).
The calculation method for the CSS of the CDPRs is intro-

duced based on the CTFR to quickly and effectively deter-
mine the CSS. The calculation process is shown in Fig. 7.
The steps are as follows:

Step 1: Input the mechanism design parameters and
required accuracy ε.

Step 2: The envelope space, So, formed by the fixed exit
point of the cable is meshed with a reasonable step size,
sl , in the x, y, and z directions. n grid points are obtained,
and the pose, xi, of the end-effector at any grid point can be
determined according to the angular displacement of the end-
effector.

Step 3: The stiffness matrix, kc, of the CSS is calculated
according to the requirements.

Step 4: Let i = 1.
Step 5: Search for point ϕ x in the plane where the

CTFR(xi) is located such that
∣∣k (T (ϕ x)

)
− kc

∣∣ /kc ≤ ε,
where k

(
T (ϕ x)

)
is the system stiffness matrix of the robots

controlled by cable tension T (ϕ x).
Step 6: If ϕ x ∈ CTFR(xi), xi is added to set V (x); other-

wise, the next step is executed.
Step 7: If i < n, then i = i + 1 and Step 5 is executed;

otherwise, V (x) is output.
Step 8: End.
In this work, accuracy ε = 5% and step size sl= 1mm.
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FIGURE 7. Flowchart of the CSS algorithm.

After obtaining the CSS of the CDPRs using the above-
mentioned method, any pose in the CSS corresponds to a set
of driving cable tensions. The CDPRs can maintain constant
stiffness when controlled by the driving cable tension. There-
fore, CDPRs can maintain constant stiffness when working
in the CSS by controlling the cable tension of the driving
cables.

B. QUALITY EVALUATION INDEX FOR CONSTANT
STIFFNESS SPACE
The volume and stability of the CSS of the CDPRs are
important indexes for measuring its quality. Undesirable
motion characteristics, such as vibration, may occur during
the movement of robots in a large CSS. Therefore, studying
the stability distribution of the CSS plays an important role in
investigating the trajectory planning of robots. The stability of
cable tension directly affects the stability of the CDPRs. If the
tension of the driving cables is less than theminimum limiting
value, then the driving cables are prone to pseudo-drag or
vibration. If the tension of the driving cables is more than the
maximum limiting value, then the motors or driving cables
are prone to overload. Therefore, the cable tensions that
are far from the limiting values are considered to be stable
and safe. Thus, the local stability factor, µi, and the global
stability coefficient, U, are used as the evaluation indexes for
the stability and safety of the CSS of CDPRs, and they are
expressed as follows:

µi =
1
m

m∑
k=1

∣∣tik − t̄∣∣
t̄

(25a)

TABLE 3. Cable tension at the centroid of the CTFR (in newton).

U =

∫
v µidv∫
v dv

(25b)

where T i = [ti1, · · · , tik , · · · , tim]T , tik represents the value
of the k th cable tension at pose xi, t̄ = (tmax − tmin)/2 is the
median of the cable tension limiting values, and v denotes
the volume of the CSS. µi is the stability evaluation index
of robots at pose xi, which reflects the local stability of a
pose within the CSS, and U reflects the global stability of the
CSS. From (25a), we can conclude that µi is a nonnegative
real number not greater than 1. At pose xi, the smaller the
value of µi, the farther the cable tension of CDPRs from the
limiting values of cable tension and the higher the stability
of the CDPRs. The larger the value of µi, the closer the
cable tension of the CDPRs from the limiting values of cable
tension, and the lower the stability of the CDPRs. Moreover,
the driving cable is more prone to pseudo-drag or overload.
0 ≤ µi ≤ 1 ⇒ 0 ≤

∫
v µidv ≤

∫
v dv ⇒ 0 ≤ U ≤ 1.

Therefore, the smaller the value of U , the better the global
stability of the CSS, and vice versa.

C. INFLUENCE OF LOAD ON CONSTANT STIFFNESS SPACE
Robots are used in different work situations, and end-
effectors must bear different loads. A robot’s load is closely
related to its CSS. Therefore, to meet the requirement for
the CSS when robots experience different external loads, this
study investigates the influence of the load of a CDPR (con-
sidering TCPR-8 as an example) on its CSS. To analyze the
CSS of the CDPR under different loads, the system stiffness
matrix of TCPR-8, which is controlled by the cable tension
(the tension of each driving cable is shown in Table 3) at the
centroid of the CTFR, is considered as the stiffness matrix
of the CSS when the end-effector of TCPR-8 is at pose x =
[0, 0, 0.83, 0, 0, 0]T and its external load is zero. Using (5),
etc., the system stiffness matrix of TCPR-8 can be obtained
as follows:

k =



6055.06 0.0 0.0 0.0 −267.81 0.0
0.0 3226.71 0.0 137.46 0.0 0.0
0.0 0.0 8379.21 0.0 0.0 0.0
0.0 137.46 0.0 150.83 0.0 0.0

−267.81 0.0 0.0 0.0 177.17 0.0
0.0 0.0 0.0 0.0 0.0 162.21


(26)

To study the influence of the end-effector with differ-
ent loads on the volume and stability of the CSS of the
CDPR, the system stiffness of the CSS is considered as k .
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FIGURE 8. Change in volume and stability of CSS with forces in different
directions. (a) Curves of CSS volume. (b) Curves of CSS stability.

FIGURE 9. Change in volume and stability of CSS with torques in different
directions. (a) Curves of CSS volume. (b) Curves of CSS stability.

TABLE 4. Four cases of different loads.

FIGURE 10. Constant stiffness space.

Then, the variation in the volume and stability of the CSS
with the load force or torque in a particular direction (the
load force or torque in the remaining directions are zero) are
obtained using the idea of control variables. The variation
curves are illustrated in Figs. 8 and 9. A section of the CSS
is considered as an example to analyze the influence of the
end-effector with different loads on the local stability of the
CSS. Then, the stability of the CSS is compared for four
different cases, as presented in Table 4. Among them, taking
case 1 in Table 4 as an example, the shape of the CSS is shown
in Fig. 10. The distribution of the local stability factor of the
CSS on section z= 0.89 for all four cases is shown in Fig. 11.
The volumes and global stability coefficients of the CSS for
all four cases are provided in Table 5.

The results shown in Figs. 8 and 9 and Table 5 indicate
that as the end-effector’s load increases, the volume of the
CSS of the CDPR decreases gradually until it becomes zero
and the stability of the CSS gradually deteriorates. There-

FIGURE 11. Local stability factor distribution in the CSS section for all
cases in table 4.

TABLE 5. Volumes and global stability coefficients of the CSS for all cases
in table IV.

fore, the appropriate CSS can be determined according to
the robots’ requirements for load and stability. It is worth
noting that as the load in the z and α directions increases,
the volume of the CSS of the CDPR first increases and then
decreases. In addition, as the load in the z direction increases,
the stability of the CSS first increases and then decreases.
This is mainly caused by the anisotropy of the mechanical
properties of the CDPR. Therefore, within a certain range,
we can utilize the characteristics of CDPRs to increase the
volume and stability of the CSS by increasing the load of the
robots in the z or α direction.

The results shown in Fig. 11 indicate that the volume of
the CSS decreases with the increase in load. It can also be
concluded that the local stability factor gradually increases
from the center to the edge of the CSS, which indicates
that the stability at the center of the CSS is better than that
at the edges. To ensure the stability of robots in practical
applications, the center area of the CSS located away from
the boundary must be selected as a priority.

D. INFLUENCE OF POSTURE ON CONSTANT STIFFNESS
SPACE
Similar to loads, different work situations require end-
effectors with different postures. The postures of the
end-effectors of robots are closely related to their CSS.
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TABLE 6. Cable tension at the Centroid of the CTFR (in newton).

TABLE 7. Four cases of different postures.

Therefore, to meet the requirement for the CSS when robots
have different postures, research on the influence of the pos-
ture of the end-effector of a CDPR (considering TCPR-8 as
an example) on its CSS is conducted. To analyze the CSS
of the CDPR under different postures, the system stiffness
matrix of TCPR-8, which is controlled by the cable tension
(the tension of each driving cable is shown in Table 6) at the
centroid of the CTFR, is considered as the stiffness matrix
of the CSS when the end-effector of TCPR-8 is at pose
x = [0, 0, 0.83, 0, 0, 0]T and its external load is W =

[5, 5, 5, 0.5, 0.5, 0.5]T . From (5), etc., the system stiffness
matrix of TCPR-8 can be obtained as follows:

k =



6052.17 −4.94 −7.19 −0.11 −269.58 0.90
−4.94 3224.07 0.83 139.10 0.17 −0.71
−7.19 0.83 8379.79 −0.57 0.84 −0.06
−0.11 139.10 −0.57 151.72 −0.97 −1.29
−269.58 0.17 0.84 −1.47 178.01 0.32
0.30 −0.71 −0.06 −0.79 −0.18 161.93


(27)

To study the influence of the different postures of the end-
effector on the volume and stability of the CSS of the CDPR,
the variation in the volume and stability of the CSSwith angu-
lar displacement of posture in a specific direction (the angular
displacement in the remaining directions is zero) is obtained
by using methods similar to those described in Section III.C.
The variation curves are shown in Fig. 12. The stability of
a section of the CSS is considered as an example to analyze
the influence of the different postures of the end-effector on
the local stability of the CSS, and four different cases are
considered, as shown in Table 7. Among them, taking case 1
in Table 7 as an example, the shape of the CSS is illustrated
in Fig. 14. The distribution of the local stability factor of the
CSS on section z = 0.89 for all four cases is presented in
Fig. 13. The volumes and global stability coefficients of the
CSS for all four cases are provided in Table 8.

The results shown in Fig. 12 and Table 8 indicate that
as the angular displacement of the end-effector’s posture
increases, the volume of the CSS of the CDPR decreases
gradually until it becomes zero and the stability of the CSS
gradually deteriorates. Therefore, to ensure the stability of

FIGURE 12. Variation in volume and stability of CSS with angular
displacement in different directions. (a) Curves of CSS volume. (b) Curves
of CSS stability.

TABLE 8. Volumes and global stability coefficients of the CSS for all cases
in table VII.

FIGURE 13. Local stability factor distribution in the CSS section for all
cases in table 7.

robots within the CSS, large angular displacement of the end-
effector’s posture should be avoided as much as possible.
Note that as the angular displacement in the β and γ direc-
tions increases, the volume of the CSS of the CDPR first
increases and then decreases. This is mainly caused by the
anisotropy of the mechanical properties of the CDPR. Simi-
larly, within a certain range, we can utilize the characteristics
of CDPRs to increase the volume of the CSS by increasing
the angular displacement of the end-effector’s posture in the
β and γ directions. Similar to Section III.C, the results shown
in Fig. 13 indicate that the volume of the CSS decreases with
the increase in the angular displacement of the end-effector’s
posture. It can also be concluded that the local stability factor
gradually increases from the center to the edge of the CSS,
which indicates that the stability at the center of the CSS is
better than that at the edges.

The results described in Sections III.C and III.D are sum-
marized below.
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FIGURE 14. Constant stiffness space.

FIGURE 15. Constant stiffness planes. (a) Rectangle. (b) Ellipse.

(1) In general, as the load and angular displacement of
the end-effector’s posture increase, the volume of the CSS
of CDPRs decreases and the stability gradually deteriorates.
However, the volume of the CSS of CDPRs can be increased
by increasing load or the angular displacement of the end-
effector’s posture within a certain range.

(2) The stability of the CSS gradually deteriorates from the
center to the edge.

IV. EXPERIMENTAL VERIFICATION AND DISCUSSION
The proposed concepts and methods are verified experimen-
tally. For this purpose, two planes are selected in the CSS of
TCPR-8 when the angular displacement of the end-effector’s
posture is2 = [0, 0, 0]T . The position and dimensions of the
planes are shown in Fig. 15 and Table 9. In each experiment,
a Leica AT901-B laser tracker measurement system, whose
precision is 0.001 mm, is used to measure the change in
the end-effector’s pose. Heavy objects are hung on the end-
effector to provide a constant external load of 10 N. The
driving cable tension is recorded using a DJSX-44-100KG
S-type pull pressure sensor. Figs. 16 and 1 show the details of
the measurement systems and hanging objects.

In the first experiment, the end-effector is at position O1
and its external load is 10 N in the x direction. The system
stiffness matrix of TCPR-8, which is controlled by the cable
tension at the centroid of the CTFR, is considered as the
stiffness matrix of constant stiffness plane Sc1(ACQO), which
is a rectangle with center O1, as illustrated in Fig. 15(a).
To make the stiffness of Sc1 constant, TCPR-8 is con-

trolled via suitable cable tension in the CTFR, which
can be obtained by utilizing the methods described in

TABLE 9. Position and dimensions of constant stiffness planes (in
meters).

FIGURE 16. (a) Leica AT901-B laser tracker. (b) Hanging heavy objects.

FIGURE 17. Change surface of cable tension: 1st experiment. (a) First
cable. (b) Eighth cable.

Section III.A. As the cable tension surface information of
each cable is similar, the cable tension surface of the first
and eighth cables is considered as an example for illus-
tration, as shown in Fig. 17. As illustrated in Fig. 15(a),
17 points (A, B, · · · , I , · · · , P , Q etc.) are selected in
Sc1 for experimental verification, and 17 sets of experi-
mental cable tension values for controlling TCPR-8 are
obtained, as shown in Fig. 17. The pose change values (1xA,
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FIGURE 18. Comparison curves between calculated, experimental, and
targeted 1xO′ .

TABLE 10. Comparison of calculated, experimental, and targeted values
of pose change in x direction (in millimeters).

1xB, . . . ,1xI , . . . ,1xP, and 1xQ) in the x direction are
recorded using the laser tracker under the control of the
17 sets of cable tension. The calculated, experimental, and
targeted values (the targeted change value is 1.9809 in the
x direction) of pose change are compared, as illustrated
in Fig. 18 and Table 10.

In the second experiment, the end-effector is at posi-
tion O2 and its external load is 10 N in the y direction.
The system stiffness matrix of TCPR-8, which is controlled
by the cable tension at the centroid of the CTFR, is con-
sidered as the stiffness matrix of constant stiffness plane
Sk2(AIME), which is an ellipse with center O2, as illustrated
in Fig. 15(b).

To make the stiffness of Sk2 constant, TCPR-8 is con-
trolled via suitable cable tension within the CTFR, which
can be accomplished by employing the methods described
in Section III.A. This experiment also considers the cable
tension surface of the first and eighth cables as an exam-
ple for illustration, as shown in Fig. 19. As illustrated
in Fig. 15(b), 13 points (A, B, · · · , G, · · · , L, M , etc.) are
selected in Sk2 for experimental verification, and 13 sets of

FIGURE 19. Change surface of cable tension: 2nd experiment. (a) First
cable. (b) Eighth cable.

FIGURE 20. Comparison curves between calculated, experimental, and
targeted 1y

O′ .

experimental cable tension values for controlling TCPR-8 are
obtained, as shown in Fig. 19. The pose change values (1yA,
1yB, . . . ,1yG, . . . ,1yL , and 1yM ) in the y direction are
recorded by utilizing the laser tracker under the control of the
13 sets of cable tension. The calculated, experimental, and
targeted values (the targeted pose change value is 3.9706 in
the y direction) of pose change are compared, as presented
in Fig. 20 and Table 11.

Similar methods can be used to verify the CSS in the
remaining directions. Note: As shown in (3), as gravity is
a part of the external force acting on the end-effector, it is
necessary to apply a load of F+ 20 N (the mass of the
end-effector is 2 kg, as shown in Table 2) in the z direc-
tion to ensure that the external load, W , is constant in the
z direction.
The calculated and experimental curves for 1xO′ and

1yO′ have good coherence to the targeted curves, as shown

VOLUME 7, 2019 75417



Z. Cui et al.: Calculation and Analysis of Constant Stiffness Space for Redundant Cable-Driven Parallel Robots

TABLE 11. Comparison of calculated, experimental, and targeted values
of pose change in y direction (in millimeters).

in Figs. 18 and 20, respectively. Considering the results
provided in Tables 10 and 11, it is clear that the max-
imum relative errors between the calculated and targeted
values of 1xO′ and 1yO′ are 2.27% and 1.17%, respec-
tively, and the maximum relative errors between the exper-
imental and targeted values of 1xO′ and 1yO′ are 3.60%
and 2.21%, respectively. These values meet the engineer-
ing requirement of less than 5% error. These results ver-
ify that the proposed concepts and methods are correct and
effective.

V. CONCLUSION
The concept of the CSS of CDPRs is introduced and defined
based on the CTFR, and its calculation method is presented.
Considering two constant stiffness planes of a 2-DOR CDPR
as an example for calculation and analysis, it is found that
the maximum relative errors between the calculated and
targeted values are 2.27% and 1.17%, respectively. These
values meet the requirement of ground simulation space-
craft landing addressing experiments, which require a con-
stant stiffness working plane with a stiffness error of less
than 5%.

Then, an evaluation method for the local and global stabil-
ity of the CSS is proposed. The method is used to evaluate
and analyze the quality of the CSS of the CDPR. Next,
the influences of the load and posture of the end-effector of
the CDPR on its CSS are analyzed, and the following results
are obtained:

(1) As the load increases, the volume of the CSS of the
CDPR decreases gradually until it becomes zero and its sta-
bility gradually deteriorates.

(2) It is worth noting that as the load in the z and α
directions increases, the volume of the CSS of the CDPR first
increases and then decreases. In addition, as the load in the z
direction increases, the stability of the CSS first improves and
then deteriorates.

(3) As the angular displacement of the end-effector’s pos-
ture increases, the volume of the CSS of the CDPR decreases
gradually until it becomes zero, and the stability of the CSS
gradually deteriorates.

(4) Similar to the results for the load, as the angular dis-
placement in the β and γ directions increases, the volume of
the CSS of the CDPR first increases and then decreases.

(5) The stability of the CSS gradually deteriorates from the
center to the edge.

The above analysis results indicate that to ensure the sta-
bility of robots in practical applications, the center area of
the CSS that is located away from the boundary should be
selected as a priority. The volume and stability of the CSS of
CDPRs can be improved by increasing the load or angular
displacement of the end-effector’s posture within a certain
range. Additionally, it is necessary to avoid the robot working
with a large load and large angular displacement of the end-
effector’s posture as much as possible.

Finally, two planes (a rectangle and an ellipse) are selected
in the CSS of TCPR-8 for experimental verification. The
results indicate that in the constant stiffness planes, the max-
imum relative errors between the experimental and targeted
values of1xO′ and1yO′ are 3.60% and 2.21%. These values
meet the engineering requirement that stiffness error must be
less than 5%. These results verify that the proposed concepts
and methods are correct and effective.

In future research, we will focus on how to quickly deter-
mine the appropriate working area in the CSS according to
application requirements.

This study considers a 2-DOR CDPR as an example for
analysis and experimental verification. Even though such
CDPRs are widely used, they do not encompass all possible
CDPR designs. Nevertheless, our findings can serve as a
reference for analyzing the CSS of other types of redundant
CDPRs.
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