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ABSTRACT This paper proposes a topological clustering algorithm by integrating topological structure
and information theoretic learning, i.e., correntropy, into adaptive resonance theory (ART). Specifically,
the proposed algorithm utilizes the correntropy induced metric (CIM) for defining a similarity measure,
a node insertion criterion, and an edge creation criterion. Other types of the ART-based topological
clustering algorithms have been developed, however, these algorithms have various drawbacks such as a large
number of parameters, sensitivity to noisy data. Moreover, generated topological networks cannot represent
the distribution of data. In contrast, the proposed algorithm realizes a stable computation and reduces the
number of parameters compared to existing algorithms. Furthermore, improving the ability to express
the data structure more appropriately by the topological network, a mechanism that adaptively controls the
node insertion criterion is introduced to the proposed algorithm. The experimental results showed that the
proposed algorithm has superior performance with respect to the self-organizing and the classification
abilities compared with the state-of-the-art topological clustering algorithms.

INDEX TERMS Adaptive resonance theory, correntropy, information theoretic learning, topological
clustering.

I. INTRODUCTION
With the growth of Internet of Things (IoT) technologies,
a massive amount of information (i.e., big data) can be
obtained easily from various sources. However, the obtained
data usually contain not only valuable information but also
irrelevant one. Thus, extracting useful information from data
is a significant task.

In general, cluster analysis is one of the widely applied
approaches to extract knowledge or hidden relation from data.
The k-means [1] and Expectation-Maximization (EM) [2] are

The associate editor coordinating the review of this manuscript and
approving it for publication was Bo Shen.

well-known unsupervised clustering algorithms. Although
the k-means and EM need to specify the number of clusters of
data in advance, they have beenwidely used in various studies
because of their simplicity and high applicability.

Self-Organizing Map (SOM) [3], Growing Cell Structure
(GCS) [4], and Growing Neural Gas (GNG) [5] are funda-
mental algorithms of topological clustering. A representative
topological clustering algorithm is Self-Organizing Incre-
mental Neural Network (SOINN) [6] which is successfully
integrated the features of SOM and GNG. These algorithms,
however, suffer from ‘‘plasticity-stability dilemma’’ [7].
In order to avoid the dilemma, Adaptive Resonance Theory
(ART) [8], which is inspired by the learning mechanism of
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the human brain, has been developed as an unsupervised
clustering algorithm. Fuzzy ART (FA) [9] is regarded as
a basic version of ART-based clustering. TopoART [10]
is an on-line self-organizing clustering algorithm which
combines two FAs in a hierarchical manner. One superior
ART-based algorithm is Kernel Bayesian ART (KBA) [11]
which applies Kernel Bayes’ Rule (KBR) [12] and Corren-
tropy Induced Metric (CIM) [13] to realize the fast and stable
self-organizing ability.

In regard to self-organizing clustering algorithms, SOINN
and TopoART suffer from instability that the quality of their
clustering results is highly dependent on the presentation
order of input data points. One of the state-of-the-art algo-
rithms that can deal with the above problem is Topological
Kernel Bayesian ART (TKBA) [14]. TKBA is an ART-based
topological clustering algorithm which inherits the advan-
tages of KBA. According to [14], TKBA achieves more sta-
ble self-organizing ability and higher noise reduction ability
than TopoART- and SOINN-based algorithms. The superior
performance of TKBA is based on the characteristics of KBR
and CIM. In TKBA, drawbacks caused by KBR and CIM also
exist. The major drawbacks of TKBA are two-fold: (i) the
number of parameters in TKBA is large, and one parameters
(i.e., a kernel bandwidth σ ) has a strong effect on its clustering
performance, and (ii) since the CIM-based node insertion cri-
terion is fixed during a cluster learning process, the generated
nodes tend to be uniformly distributed. The former problem
means the difficulty of appropriate parameter specification,
which reduces the applicability of the algorithm. The latter
problem means the difficulty of generating a topological
networkwhich appropriately reflects the characteristics of the
data such as density information.

In summary of the existing algorithms, classical algorithms
such as k-means, EM, and SOM require knowledge of data in
advance. Since GNG and SOINN suffer from the plasticity-
stability dilemma, it is difficult to perform stable continuous
learning required for clustering algorithms. TKBA success-
fully overcomes the problems of GNG and SOINN. However,
TKBA has several parameters that greatly affect its clustering
ability. In addition, it is difficult for the topological network
generated by TKBA to appropriately represent the features of
data such as density information.

The main purpose of this paper is to tackle the
above-mentioned problems of the existing clustering algo-
rithms. Specifically, we propose a Topological CIM-based
ART (TCA) which is inspired by TKBA, since TKBA
achieves the state-of-the-art performance among the topo-
logical clustering algorithms. In TKBA, CIM is used for the
similarity measurement whereas KBR is used for the nearest
neighbor node selection. However, in the proposed TCA,
CIM is used for both of them. As a result, the reduction in
the number of parameters is achieved. Furthermore, the node
insertion criterion (i.e., vigilance parameter) of an individual
node is adaptively regulated based on the distribution of data
points. Consequently, the insertion of nodes is suppressed in a
sparse data region and more nodes are inserted in a dense data

region, so that the topological network generated by TCA
can represent the distributions of data points appropriately.
TCA has less parameters and higher self-organizing ability
(to represent the distribution of data points) compared to
the state-of-the-art GNG-based and ART-based topological
clustering algorithms.

The paper is organized as follows: Section II presents a lit-
erature review for some representative unsupervised cluster-
ing algorithms. Section III describes details of the proposed
TCA algorithm. Section IV presents simulation experiments
to examine the self-organizing ability of TCA. Concluding
remarks are presented in Section V.

II. LITERATURE REVIEW
Supervised learning algorithms have superior classification
performance such as support vector machine [15] and deep
learning [16]–[18]. In general, however, supervised learning
algorithms require well-structured labeled data to maximize
their classification ability. As mentioned earlier, different
types of huge information are generated at any moment based
on IoT technologies. In this situation, it is difficult to prepare
well-structured labeled data for each learning task.

On the other hand, unsupervised learning algorithms do
not require such well-structured labeled information during
learning. Especially, it is considered that the significance of
cluster analysis will further increase in the growing IoT soci-
ety, where huge data without structured labels are generated
day by day [19]. Therefore, the importance of unsupervised
learning algorithms become increasing, and related research
has become more active both in theoretical and practical
perspectives [20], [21].

Typical types of unsupervised clustering algorithms are the
EM [2] and the k-means [1]. The SOM [3] is a classical topo-
logical clustering algorithm which is mainly utilized for data
visualization. However, the k-means and EM generate only a
predefined number of clusters even if its number of clusters
is not appropriate. Moreover, SOM tries to generate multiple
separated clusters by a predefined single topological network
architecture. GCS [4] and GNG [5] have successfully solved
the problem of SOM by introducing a growing topological
network architecture. Due to superior performance of the
growing topological network architecture, GNG-based topo-
logical clustering algorithms have been integrated with other
learning algorithms such as semi-supervised learning [22]
and hierarchical clustering [23]. One well-known problem
of GNG is the excessive cluster creation process that inserts
a new node to the region with the maximum error until a
predefinedmaximumnumber of nodes are generated. In order
to handle this problem, Grow When Required (GWR) [24]
shows an effective solution. GWR inserts nodes whenever the
state of the current network does not sufficiently match the
input data. Another effective approach is integrating GNG
and CIM [25], which is called GNG-CIM [26]. CIM is
correntropy-based similarity measurement which is proposed
from the information theoretic learning perspective. CIM can
be considered as an alternative criterion realizing more stable
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computation than the Euclidean distance-based similarity
measurement.

SOINN [6] is one of the representative topological clus-
tering algorithms which successfully integrates the features
of SOM and GNG. SOINN can grow a topological network
incrementally based on the Euclidean distance-based similar-
ity measurement and an error-based node insertion criterion.
Several types of SOINN-based algorithms have also been
proposed in [27]–[29]. Enhanced SOINN (ESOINN) [27]
simplifies the structure of SOINN to a single-layer model and
reduces the number of parameters to be specified. In addi-
tion, ESOINN has the ability to separate overlapping clus-
ters based on their node distributions. Adjusted SOINN
(ASOINN) [28] further reduces the number of parameters
from SOINN, however, the overlap separation process in
ESOINN has omitted. To estimate density information by
ASOINN, SOINN combined with Kernel Density Estimation
(KDE) [29] (KDESOINN) is proposed in [30]. Although
these algorithms are computationally efficient, the learned
network distributions for high-dimensional data are unstable
because of their Euclidean distance-based network construc-
tion mechanisms [31].

The topological clustering algorithms have successfully
realized the ability to represent new knowledge into their
topological structure. However, since these algorithms per-
manently insert new nodes into their network for memorizing
new knowledge, they have a potential to forget learned knowl-
edge (i.e., catastrophic forgetting). This trade-off is called the
plasticity-stability dilemma. A typical successful approach to
solve the plasticity-stability dilemma is ART [8] inspired by
the human brain. FA [9] is considered to be a representative
of ART-based clustering algorithms. To improve the self-
organizing ability of FA, TopoART [10] has been devel-
oped. TopoART is an ART-based self-organizing incremental
clustering algorithm which hierarchically combines two FAs
(i.e., TopoARTa and TopoARTb). TopoARTa performs clus-
tering by FA using all data points, while TopoARTb generates
clusters using only the data points contributing to the cluster
generation in TopoARTa. TopoART has the same advantages
as FA which enables the match-based fast stable learning and
intrinsic self-organization. Although TopoART has various
advantages, it also has a major problem associated with the
FA learning process, i.e., high sensitivity to statistical over-
lapping between the generated categories [32]. This sensitiv-
ity problem results in category proliferation (i.e., disordered
generation of categories), which leads to a high computa-
tional cost, and deterioration in clustering ability.

To tackle the category proliferation problem, Bayesian
ART (BA) [33] has been proposed. BA successfully integrates
Bayes’ theorem to the ART architecture which selects the
nearest neighbor node for a data point. However, BA applies a
covariance-based similarity measurement when updating the
status of clusters (i.e., vigilance test). Thus, if BA attempts to
process a large number of data points in a high-dimensional
feature space, it is difficult to achieve (i) stable likelihood
calculation and (ii) high global convergence performance

within feasible computational time [34]. Kernel Bayesian
ART (KBA) [11] can handle the problems of BA by apply-
ing Kernel Bayes’ Rule (KBR) [12] for selecting the near-
est neighbor node instead of the general Bayes’ theorem
in BA, and a correntropy [25]-based alternative similarity
measurement called CIM [13]. As an extension of KBA,
Topological Kernel Bayesian ART (TKBA) [14] has been
proposed. In TKBA, KBR is utilized for selecting the nearest
neighbor node and CIM is utilized for the node insertion
criterion. Moreover, CIM is also utilized as a criterion to
construct topological networks, which contributes to their sta-
bility. Even though there are two major problems, namely the
number of parameters is large and the generated nodes tend
to be uniformly distributed, TKBA is a superior topological
clustering algorithm compared to SOINN, KDESOINN, and
TopoART from the viewpoint of the self-organizing ability.

III. TOPOLOGICAL CIM-BASED ART
In this section, first the theoretical background of CIM is
briefly described, then the learning algorithm of TCA is
presented in detail.

A. CORRENTROPY-INDUCED METRIC
1) DEFINITION
Correntropy [25], which is a generalized similarity measure
between two variables, is defined as follows:

Cσ (X,Y) = E [κσ (X − Y )] , (1)

where X = (x1, x2, . . . , xL) (xl ∈ <d ) and Y = (y1, y2,
. . . , yK ) (yk ∈ <d ) are arbitrary vectors. κσ is a kernel
function that satisfies the Mercer’s Theorem [15].

A nonlinear metric called CIM is derived from correntropy.
CIM quantifies the similarity between two probability distri-
butions as follows:

CIM (xi, yk , σ ) = [{κσ (0)− κσ (xi − yk )]
1
2 . (2)

Here, the kernel bandwidth σ affects the sensitivity of CIM,
which is discussed in Section IV-B.

2) KERNEL FUNCTION IN CIM
In general, correntropy frequently applies the Gaussian ker-
nel, which is desirable due to its smoothness and strict
positive-definiteness. Thanks to the features of the Gaussian
kernel, CIM is desirably defined as a nonlinear metric by
correntropy. CIM performs like an L2 norm if data points
are densely distributed compared to the kernel bandwidth
sigma, like an L1 norm if data points are widely distributed,
and like an L0 norm when data points are far away from the
κσ (0) in (2) [35]. In this study, because of the features of the
Gaussian kernel function, it is utilized as the kernel function
κσ in (2), i.e., exp(−‖x − y‖2/2σ 2).

B. LEARNING PROCEDURE OF TCA
The learning procedure of TCA is divided into five parts,
namely (i) winner node selection, (ii) vigilance test, (iii) node
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learning, (iv) topology construction, and (v) kernel bandwidth
adaptation. In the following, let us suppose data points X =
(x1, x2, . . . , xL) (xl ∈ <d ) are given to the TCA network
which generates nodes Y = (y1, y2, . . . , yK ) (yk ∈ <d ). Fur-
thermore, each node in Y has an individual kernel bandwidth
S = (σ1, σ2, . . . , σK ) for CIM.
In the beginning of the learning where the TCA has no

node, x1 becomes a new node, i.e., y1 = x1, which has a
predefined arbitrary kernel bandwidth σinit.

1) WINNER NODE SELECTION
Once data point xl is input to the network, a node which has
the similar state to data point xl is selected, i.e., a winner
node. As one option to reduce the computational cost, can-
didates of the winner node can be extracted from nodes Y .
Specifically, CIM between xl and Y is calculated, and nodes
having smaller values than the mean of kernel bandwidths
(i.e., mean(S)) of Y are extracted as Y extracted:

Y extracted =

{
yk |CIM

k∈K
(xl, yk ,mean(S)) ≤ mean(S)

}
. (3)

As a result, only the neighbor nodes in Y extracted around
xl are considered for the following learning process. Here-
after, for simplicity, the extracted nodes Y extracted are referred
to as Y .

The index k of winner node for xl is selected from Y based
on CIM which is calculated by (2) as follows:

k = argmin
k∈K

[CIM (xl,Y , S)] . (4)

2) VIGILANCE TEST
After determined the winning node, a vigilance test is per-
formed. The vigilance test evaluates whether xl belongs to yk ,
which is defined as follows:

Vk ≤ CIM (xl, yk ,max(S)) , (5)

where Vk denotes the similarity between xl and the winner
node yk , which is defined by CIM as follows:

Vk = κσk (0)− κσk (‖xl − yk‖) , (6)

where κ denotes a kernel function, and σk denotes an individ-
ual kernel bandwidth of yk . In this study, the Gaussian kernel
is utilized for CIM.

In case that the condition in (5) is not satisfied by yk ,
searching for the next candidate of the winning node. If the
vigilance test fails with all the existing nodes Y , a new node
is defined as yK+1 = xl .

The kernel bandwidth of the new node yK+1 should have a
similar state to its neighbors. In this study, therefore, the aver-
age of the kernel bandwidths of the three neighbor nodes is
utilized as σK+1 for the new node yK+1.

3) NODE LEARNING
Once the vigilance test is satisfied, the state of the winner
node yk is updated as follows:

yk =
Mk

Mk + 1
yk +

1
Mk + 1

xl, (7)

where Mk denotes the number of data points that have accu-
mulated by the node yk .
In addition, the number of data points that have accumu-

lated by the node yk is incremented as follows:

Mk ← Mk + 1, (8)

Nk ← Nk + 1. (9)

Mk is utilized for the node learning described in
Section III-B.3. Nk is utilized for the kernel bandwidth adap-
tation process described in Section III-B.5. Mk increases
continuously whereas Nk is initialized to zero during a kernel
bandwidth adaptation process, thus we need the two counters
Mk and Nk .

4) TOPOLOGY CONSTRUCTION
In general, the ideal topological network satisfies a Delaunay
diagram. However, similar to TKBA [14], a topology con-
struction process in TCA does not guarantee to generate the
Delaunay diagram. The topology construction process con-
sists of node deletion and edge creation/deletion as follows:

a: EDGE CREATION
Once the vigilance test succeeds and the 2ndwinner node also
satisfies the match criterion in (5), the 1st and 2nd winner
nodes are connected by an edge. The 1st and 2nd winner
nodes are determined by (4) during the winner node selection.
Unlike GNG, the edges in TCA do not have any age factor.

For a stable topology construction, node deletion and edge
deletion processes are performed by a predefined cycle λ
(i.e., every λ iterations).

b: NODE DELETION
As a node deletion criterion, the similarity between yk which
satisfies the vigilance test (i.e., Vk ≤ mean(S)) and xl is
defined by CIM as an error ECIM ([0, 1]) corresponding to yk .
For the error ECIM, the initial value of the error ECIM = 1
is given to a newly generated node, and ECIM becomes zero
when Vk = 0. The error ECIM is updated by the following rule
during the vigilance test:

EykCIM = min
(
EykCIM,Vk

)
, (10)

where Vk is calculated by CIM.
If the error ECIM is large, it means that there is no data

point near the node. In TCA, the node deletion is executed if
the node has an error ECIM larger than the square of mean(S),
namely:

ECIM > mean(S)2. (11)

Here, all nodes that satisfy the above condition are deleted
from Y . In addition, isolated nodes, which do not have an
emanating edge, are also removed from Y .

c: EDGE DELETION
The TCA does not have an age factor for each edge, thus,
the edge deletion is performed only when an edge inter-
section is detected. Intersections are detected by the cross
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product-based detection algorithm [36], which is applied to
all the nodes that have emanating edges. If an intersection is
detected, the edge which has the maximum CIM is removed.

5) KERNEL BANDWIDTH ADAPTATION
The kernel bandwidth σ of CIM in TCA is adaptively
changed based on a frequency of data point input, i.e., the
nodes in a region with frequent input tend to have a small
kernel bandwidth value, and the nodes in a region with infre-
quent input tend to have a large kernel bandwidth value.
Here, the ‘‘region’’ is defined by nodes connected by edges,
that is, a cluster. This means that the kernel bandwidth value
of the node is separately adjusted within each cluster. As a
result, it is possible to adjust the kernel bandwidth value
appropriately taking into consideration the individual local
distribution of data points corresponding to each cluster.

Let us suppose that a set of clusters Z = (z1, z2, . . . , zR)
has been generated in TCA, and each cluster zr consists of
connected nodes yk ∈ Y . The adaptation process is executed
when a new node (i.e., yK+1) has not been generated in Y
during a period J = argmink∈K [Nk ] × 10, where Nk is the
number of data points that have been accumulated by yk ∈ Y
as defined in (9). In the following, the adaptation process
for yk ∈ zr , which hold the kernel bandwidth σk and the
counter Nk , is considered.
First of all, the uniform degree αzr of the cluster zr is

calculated based on the counters N of each node in the cluster
zr as follows:

αzr =
median (N )

median (N )+mean (N )
. (12)

Here, αzr = 0.5 means that the data points are normally
distributed. In other words, the nodes in the cluster zr should
also be normally distributed.

The kernel bandwidth σk of yk ∈ zr is updated as follows:
[Case 1] When 0.05 < (0.5− αzr ),
(i) Nk ≥ mean(N )

σk =

σk −
1
10
‖αzr ‖ ·mean(N ), if σk ≤ 0.5 · σinit

0.5 · σinit, else.
(13)

(ii) Nk < mean(N )

σk =

σk +
1
10
‖αzr ‖ ·mean(N ), if σk ≥ 1.5 · σinit

1.5 · σinit, else.
(14)

[Case 2] When (0.5− αzr ) < −0.05,
(i) Nk ≥ mean(N )

σk =

σk +
1
10
‖αzr ‖ ·mean(N ), if σk ≥ 1.5 · σinit

1.5 · σinit, else.
(15)

(ii) Nk < mean(N )

σk =

σk −
1
10
‖αzr ‖ ·mean(Nk ), if σk ≤ 0.5 · σinit

0.5 · σinit, else.
(16)

Here, σinit denotes a predefined arbitrary kernel bandwidth
value for the first generated node. Once the above adaptation
has occurred, the counters N of each node in the cluster zr are
initialized to zero.

In order to avoid excessive contraction and expansion of
the kernel bandwidth, upper and lower limits are defined.
Although there are several conditional branches, the updating
rules of the kernel bandwidth are quite simple. The summary
of the learning procedure of TCA is presented in Algorithm 1.

As described above, the learning algorithm of TCA is
divided into five parts, namely (i) winner node selection,
(ii) vigilance test, (iii) node learning, (iv) topology construc-
tion, and (v) kernel bandwidth adaptation, which are indicated
in line 7, line 9, lines 10-12, lines 21-27, and lines 28-33 of
Algorithm 1, respectively.

C. COMPUTATIONAL COMPLEXITY
The complexity of an algorithm is one of the significant
factors to compare learning algorithms. In general, the com-
plexity of an algorithm can generally be evaluated from
two aspects, i.e., (i) the computational complexity which
shows how long the algorithm is executed, and (ii) the space
complexity which shows how much memory is used by the
algorithm. In this study, we consider the computational com-
plexity which is typically represented by a Big-O notation.
In the following, the symbols N , D, C , I , and L denote
the number of data points, the dimension of the data points,
the number of nodes, the number of iterations, and the size of
batch data points, respectively.

In [14], we discussed the computational complexity of
TKBA, ASOINN, and TopoART as O(NC2I ) + O(NDCI ),
O(NC2I ), and O(NDC3I ) + O(ND2C2I ), respectively.
In TKBA, O(NC2I ) is needed for the winner node selection
process, andO(NDCI ) is needed for the recursive calculation
in the vigilance test process.

The learning procedure of TCA is similar to TKBA,
i.e., O(NC2I ) is needed for the winner node selection pro-
cess, and O(NDCI ) is needed for the recursive calculation
in the vigilance test process. The complexity of the ker-
nel bandwidth adaptation process is lower than the winner
node selection and the recursive calculation processes. As a
result, the computational complexity of TCA is derived as
O(NC2I )+O(NDCI ), which is the same as TKBA.

The computational complexity of each algorithm is sum-
marized in Table 1.

IV. SIMULATION EXPERIMENTS
This section presents simulation experiments to evaluate
the ability of TCA. First, the effectiveness of the kernel
bandwidth adaptation is demonstrated. Next, the effect of
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Algorithm 1 Learning Algorithm of TCA
Input:
the data points: X = (x1, x2, . . . , xL) (xl ∈ <d ),
the existing nodes: Y = (y1, y2, . . . , yK ) (yk ∈ <d ,K ≥ 0),
the kernel bandwidth of Y : S = (σ1, σ2, . . . , σK ),
and the number of data points that have accumulated by the node yk :M = (M1,M2, . . . ,MK ), and N = (N1,N2, . . . ,NK ).
Output:
the updated nodes: Y
the updated kernel bandwidth of Y : S,
and the updated number of data points that have accumulated by the node yk : M , and N .

1 function LearnTCA(X , Y , S, M , N )
2 Input a data point xl to network.
3 if There is no node in TCA network then
4 Create the new node as yK+1 = xl .
5 Assign the kernel bandwidth σK+1 = σinit for yK+1.
6 else
7 Compute the 1st and 2nd winner nodes by (4).
8 Compute the similarity Vk of the winner node as (6).

9 if The 1st winner node satisfies Vk ≤ mean(S) as (5) then
10 Update the state of yk by (7).
11 Update countersMk and Nk by (8) and (9).
12 Update the error EykCIM by (10).
13 if The 2nd winner node satisfies Vk ≤ mean(S) as (5) then
14 Create a new edge between 1st and 2nd winner nodes.

15 else
16 if All the nodes are failed with the vigilance test then
17 Create the new node as yK+1 = xl .
18 Assigne the average of the kernel bandwidth of the three neighbor nodes to σK+1 for yK+1.
19 else
20 Remove the 1st winner node yk from the winner node selection, and continue from step 9 with the next

candidate node.

21 if The instant l is multiple of a topology construction cycle λ then
22 forall the k ∈ 1, . . . ,K do
23 if yk does not have an emanating edge then
24 Remove yk from Y .

25 if yk satisfies E
yk
CIM > mean(S)2 as (11) then

26 Remove yk from Y .

27 Remove the longest edge from yk which makes an intersection.

28 if A new node has not been generated during a period J = argmink∈K [Nk ]× 10 then
29 Compute the uniform degree αzr by (12).
30 if Satisfy 0.05 < (0.5− αzr ) then
31 Update the kernel bandwidth σk by (13) and (14).

32 else if Satisfy (0.5− αzr ) < −0.05 then
33 Update the kernel bandwidth σk by (15) and (16).

34 if l < L then
35 Continue from step 2 with l ← l + 1.

36 return Y , S, M, and N .

parameters in TCA is investigated. Then, the self-organizing
and classification abilities are evaluated in comparison with
TKBA [14], ASOINN [28], and TopoART [10].

A. ADAPTATION OF KERNEL BANDWIDTH IN CIM
To visualize the effectiveness of the kernel bandwidth adap-
tation, a 2D synthetic dataset is utilized. The dataset consists
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TABLE 1. Comparison of computational complexity. N , D, C , I , and L
denote the number of data points, the dimension of data points,
the number of clusters, the number of iterations, and the size of batches,
respectively.

FIGURE 1. 2D synthetic dataset with 10% uniform random noise for
kernel bandwidth adaptation. The dataset is divided into 3 parts as two
Gaussian distributions (A and B), and a rectangle uniform distribution (C).
Each distribution consists of 15k data points without noise. (a): entire
data points, and (b): density estimation results utilizing data points by
kernel density estimation.

of 45k data points which are generated from two Gaussian
distributions (15k data points in each distribution), and a rect-
angle uniform distribution (15k data points). Furthermore,
10% random uniform noise is added to each distribution
(i.e., 1.5k data points). Fig. 1a shows the entire data points.
Fig. 1b shows a density estimation result from the data points
in Fig. 1a by Kernel Density Estimation (KDE) [37].

During experiment, the entire data points are given to
the network five times. In addition, our simulation exper-
iments are conducted in two environments, i.e., stationary
and non-stationary environments. In the stationary environ-
ment, the data points are randomly selected from the entire
dataset (49.5k data points). In the non-stationary environ-
ment, the data points are randomly selected from a specific
distribution with 10% noise (16.5k data points), and the dis-
tribution is sequentially shifted from A to C. In this section,

TABLE 2. Parameter settings for kernel bandwidth adaptation
experiment.

the parameters of each algorithm are set as in Table 2. The
parameters are selected to generate a similar number of nodes
in the network of each algorithm.

Figures 2 and 3 show self-organizing results, and
Figs. 4 and 5 show density estimation results generated by
KDE [37] utilizing nodes in the obtained topological network
of each algorithm. In Figs. 2 and 3, a circle (or a rectangle)
plot represents a node and a black line denotes an edge of the
topological network.

Focusing on Figs. 2 and 3, it is clearly observed that
TopoART is sensitive to the random noise data points.
In addition, the generated topological network in ASOINN
is quite different in the stationary and the non-stationary
environments. Since ASOINN tends to generate a different
network structure depending on the environment of the input
sequence, a reproducibility of topological network formation
is low. In contrast, TCA and TKBA can stably generate
similar topological network regardless of the input order of
data points and noisy environment.

The results in Figs. 2 and 3 further emphasize the supe-
riority of TCA. Although TKBA shows an excellent self-
organization ability, it can be seen that the characteristics of

FIGURE 2. Effect of kernel bandwidth adaptation in the stationary environment (Self-organizing results). (a) TCA. (b) TKBA. (c) ASOINN. (d) TopoART.
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FIGURE 3. Effect of kernel bandwidth adaptation in the non-stationary environment (Self-organizing results). (a) TCA. (b) TKBA. (c) ASOINN. (d) TopoART.

FIGURE 4. Effect of kernel bandwidth adaptation in the stationary environment (Density estimation results). (a) TCA. (b) TKBA. (c) ASOINN. (d) TopoART.

FIGURE 5. Effect of kernel bandwidth adaptation in the non-stationary environment (Density estimation results). (a) TCA. (b) TKBA. (c) ASOINN.
(d) TopoART.

the data points cannot be represented by the generated topo-
logical networks. On the other hand, the density estimation
results by the nodes in TCA clearly show the two Gaussian
distributions and the uniform distribution compared to the
results of TKBA.

B. EFFECT OF PARAMETERS IN TCA
It is essential to examine the influence of parameters in an
algorithm for understanding its characteristics. This subsec-
tion further examines the characteristics of TCA, i.e., the
effect of the topology construction cycle λ and the initial
kernel bandwidth for CIM σinit on the generated network.

The dataset utilized in this subsection consists of a 2D syn-
thetic dataset as shown in Fig. 6. The dataset is divided into
six distributions as A, B, C, D, E and F, which consists of 90k
data points in total (15k data points in each distribution).
Here, A and B satisfy the 2D Gaussian distribution. C and D
are concentric-ring distributions. E and F are sinusoidal dis-
tributions. In this experiment, the dataset shown in Fig. 6b
(10% of uniform random noise is added to Fig. 6a) is utilized
under the stationary environment where each data point is
selected in a random order from the entire dataset only once.
In regard to the parameter settings, we examine 25 combi-
nations of five specifications of the topology construction
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FIGURE 6. 2D synthetic dataset for self-organizing experiments. The
dataset is divided into six parts as two Gaussian distributions (A and B),
two concentric-ring distributions (C and D), and two sinusoidal
distributions (E and F). Each distribution consists of 15k data points
without noise. (a)-(d): different levels of additive noise. (a) Noise 0%.
(b) Noise 10%. (c) Noise 20%. (d) Noise 30%.

cycle λ = {100, 200, 400, 600, 1, 000} and the initial kernel
bandwidths for CIM as σinit = {0.025, 0.050, 0.075, 0.100,
0.125}.

Figures 7-11 show topological networks generated by TCA
with the 25 settings of the two parameters. Red circle denotes
generated nodes and black line represents edges between
nodes. As an overall trend, with the increase in the topol-
ogy construction cycle λ increases, the number of nodes

also increases. On the other hand, with the increase in the
initial kernel bandwidth for CIM σinit, the number of nodes
in the topological network decreases, the node distribution
becomes more uniformly, and nodes are more easily to be
connected by edges. From Figs. 7-11, we can see that σinit
has stronger effects than λ on the obtained topological net-
works. Changing the value of λ does not significantly change
the obtained networks in Figs. 7-11 (except for the case of
σinit = 0.025).

From the above discussions, it can be concluded that σinit
has a greater influence than λ on the self-organizing ability
of TCA.

C. SELF-ORGANIZING ABILITY
This section evaluates the performance of the self-organizing
ability from subjective and quantitative perspectives.
In regard to the subjective perspective, the generated topolog-
ical networks are graphically presented, and visually evaluate
whether the six distributions in the dataset can properly be
represented by the topological network. Subjective evalu-
ation results are presented in Sections IV-C.1 and IV-C.2.
With respect to the quantitative perspective, the generated
topological networks are assessed by Normalized Mutual
Information (NMI) [38], Micro and Macro F-measures [39],
and Adjusted Rand Index (ARI) [40]. Quantitative evaluation
results are presented in Section IV-C.3.

Throughout this subsection, the parameters of TCA are set
as in Table 3. According to the results in Figs. 7-11, TCA
with these parameter settings can organize the topological
network that properly represents each distribution without
excessive nodes, and also without being affected by noise.

FIGURE 7. Effect of parameters in TCA (Topology construction cycle λ = 100). (a) σinit = 0.025. (b) σinit = 0.050. (c) σinit = 0.075. (d) σinit = 0.100.
(e) σinit = 0.125.

FIGURE 8. Effect of parameters in TCA (Topology construction cycle λ = 200). (a) σinit = 0.025. (b) σinit = 0.050. (c) σinit = 0.075. (d) σinit = 0.100.
(e) σinit = 0.125.
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FIGURE 9. Effect of parameters in TCA (Topology construction cycle λ = 400). (a) σinit = 0.025. (b) σinit = 0.050. (c) σinit = 0.075. (d) σinit = 0.100.
(e) σinit = 0.125.

FIGURE 10. Effect of parameters in TCA (Topology construction cycle λ = 600). (a) σinit = 0.025. (b) σinit = 0.050. (c) σinit = 0.075. (d) σinit = 0.100.
(e) σinit = 0.125.

FIGURE 11. Effect of parameters in TCA (Topology construction cycle λ = 1,000). (a) σinit = 0.025. (b) σinit = 0.050. (c) σinit = 0.075. (d) σinit = 0.100.
(e) σinit = 0.125.

TABLE 3. Parameter settings for self-organizing ability experiment. The
rest of parameters in TKBA, and the parameters of ASOINN and TopoART
are the same as in Table 2.

Moreover, the kernel bandwidth σCIM for CIM in TKBA is
set as in Table 3, which is the same setting as in [14]. The
other parameters in TKBA, and the parameters in ASOINN
and TopoART are the same as in Table 2.
The self-organizing ability is evaluated with the same 2D

synthetic dataset as Fig. 6. In the experimental setting in [14],
the data points are given to the topological network only
once. However, since the ability of continuous learning is
one of the significant factors in growing network algorithms,
thus, in this experiment, the entire data points with noise are
given to the network five times during the self-organizing,

i.e., (90k+ noise)× 5 data points in total. In this experiment,
both the stationary and non-stationary environments are con-
sidered. As explained, the data points are randomly selected
from thewhole dataset in the stationary environment, whereas
the data points in distributions of A to F are sequentially
shown to the non-stationary environment.

1) SELF-ORGANIZING ABILITY IN
STATIONARY ENVIRONMENT
Figures 12-15 show generated topological networks in TCA,
TKBA, ASOINN, and TopoART in the stationary environ-
ment, respectively.

As shown in Figs. 14 and 15, ASOINN and TopoART
tend to generate useless nodes in the topological networks
from the noise data. As a result, their topological networks
cannot express data structures correctly. Focusing on Fig. 13,
TKBA has better noise reduction ability than ASOINN and
TopoART. However, as the noise ratio increases, the topo-
logical network in TKBA collapses. In [14], TKBA has
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FIGURE 12. Topology construction of TCA with the stationary environment. (a) Noise 0%. (b) Noise 10%. (c) Noise 20%. (d) Noise 30%.

FIGURE 13. Topology construction of TKBA with the stationary environment. (a) Noise 0%. (b) Noise 10%. (c) Noise 20%. (d) Noise 30%.

FIGURE 14. Topology construction of ASOINN with the stationary environment. (a) Noise 0%. (b) Noise 10%. (c) Noise 20%. (d) Noise 30%.

FIGURE 15. Topology construction of TopoART with the stationary environment. (a) Noise 0%. (b) Noise 10%. (c) Noise 20%. (d) Noise 30%.

successfully generated a well-organized topological network
even in the environment with 30% noise. As mentioned ear-
lier, the data points were given to the topological network

only once during the experiment in [14]. In this paper,
the whole data points are given five times during the exper-
iment. As a result, TKBA generates excessive nodes from
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FIGURE 16. Topology construction of TCA with the non-stationary environment. (a) Noise 0%. (b) Noise 10%. (c) Noise 20%. (d) Noise 30%.

FIGURE 17. Topology construction of TKBA with the non-stationary environment. (a) Noise 0%. (b) Noise 10%. (c) Noise 20%. (d) Noise 30%.

FIGURE 18. Topology construction of ASOINN with the non-stationary environment. (a) Noise 0%. (b) Noise 10%. (c) Noise 20%. (d) Noise 30%.

FIGURE 19. Topology construction of TopoART with the non-stationary environment. (a) Noise 0%. (b) Noise 10%. (c) Noise 20%. (d) Noise 30%.

noise information. This is one of the drawbacks of TKBA
which has not discussed in [14]. On the other hand, the topo-
logical network in TCA still maintains the six distributions

without serious collapses even if there are similar character-
istics (e.g., generates excessive nodes) to TBKA in the noised
environment.
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TABLE 4. Quantitative analysis of self-organizing ability on the 2D synthetic dataset. The best value in each metric are indicated by bold. A symbol †
represents that TCA has a statistically significant difference (p < 0.05) by the Wilcoxon signed-rank test on NMI, Micro-/Macro- F-measure, and ARI.

2) SELF-ORGANIZING ABILITY IN NON-STATIONARY
ENVIRONMENT
Figures 16-19 show generated topological networks in TCA,
TKBA, ASOINN, and TopoART in the non-stationary envi-
ronment, respectively.

The overall trends of self-organizing results by each algo-
rithm are the same as the one in the stationary environment,
i.e., TKBA tends to generate excessive nodes in the noised
environment, and ASOINN and TopoART suffer from their
sensitivity to noise information. In regard to TCA, similar
results to the case of the stationary environment are obtained.

From the comparison of the generated topological net-
works between the stationary environment (Figs. 12-15) and
the non-stationary environment (Figs. 16-19), we can see
large differences in the density of nodes in the generated
networks by AOINN (i.e., Figs. 14 and 18).

The results in Figs. 14 and 18 show high sensitivity to the
self-organizing ability of ASOINN to the input order of data
points. In general, high sensitivity of the input order to data
points is one of a well-known problems [41]. In contrast to
ASOINN, TCA and TKBA can generate similar topologi-
cal networks in both environments. High reproducibility of
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self-organizing results is one of the significant advantages of
TCA and TKBA.

3) QUANTITATIVE ANALYSIS
The quantitative analysis of self-organizing ability is assessed
by NMI [38], Micro and Macro F-measures [39], and
ARI [40]. In order to calculate the above metrics, topological
networks are utilized as classifiers to realize classification
tasks. Specifically, the label information is assigned to data
points of each distribution A to F in Fig. 6 as class 1 to 6.
Then, 90% of the data points in Fig. 6 are randomly selected
to generate the topological network and perform the classifi-
cation task for the remaining 10% of data points. The label
information of each cluster is determined by the majority
vote from the labeled data points assigned to the nodes in
the cluster. To reduce the bias resulting from the random
sampling of data points, 10-fold cross-validation is utilized.
Moreover, all the experiments are conducted five times to
obtain the consistent averaging results (i.e., five times of the
10-fold cross-validation procedure). Finally, to confirm the
validity of the obtained results, the Wilcoxon signed-rank
test [42] is employed to validate whether the performance
of TCA has a statistically significant difference from that of
the following algorithms: TKBA, ASOINN, and TopoART.
Here, the null hypothesis is rejected at the significant
level of 0.05.

The results of the quantitative analysis are summarized
in Table 4. Since TKBA has the ability to generate consid-
erably stable topological networks, TKBA shows remarkable
results in NMI, Micro/Macro F-measure, and ARI when no
noise is added in the environment. As shown in Figs. 12 to 19,
however, TKBA, ASOINN, and TopoART cannot gener-
ate appropriate topological networks when the noise rate is
high. As a result, the performance of these algorithms is
dramatically dropped. Focusing on TCA, TCA also shows
comparable performance to TKBA in the stationary and
non-stationary environments with 0% noise although the sta-
tistical test shows that TKBA is significantly better than TCA.
It is noteworthy that TCA shows outstanding performance
when a large amount of noise is added in the environments.

With respect to the number of nodes constituting the
topological network of each algorithm, as the noise rate
increases, the frequency of node generation due to noise
also increases. As a result, the total number of nodes in
the network increases. Even though the noise rate is 0%,
TCA tends to generate a large number of nodes. However,
the number of added nodes, due to the increase of the noise
rate, is much smaller than TKBA, ASOINN, and TopoART.
This observation clearly indicates the superior stability and
reproducibility of TCA.

In our self-organizing ability experiments, TCA realized
better noise reduction ability while reducing the number of
parameters compared to the representative topological clus-
tering algorithms. Moreover, TCA successfully shows the
ability to express density information of data.

TABLE 5. Configurations of UCI dataset.

TABLE 6. Parameter settings for classification experiment on UCI
datasets. The rest of parameters of each algorithm are the same as
Table 2.

D. CLASSIFICATION ABILITY
This subsection presents the classification performance of
TCA, TKBA, ASOINN, and TopoART by utilizing seven
real-world datasets from theUCI repository ofmachine learn-
ing databases [43]. The datasets in this experiment are listed
in Table 5.

The parameters of each algorithm are summarized in
Table 6. The rest of the parameters are the same as
those in Table 2. The parameters of TKBA, ASOINN, and
TopoART in Table 6 are the same settings in [14]. In regards
to TCA, the parameters are tuned by preliminary experiments
utilizing 50% of samples in each dataset. We repeatedly cal-
culate with different parameter settings and adopt the param-
eters that obtained the highest NMI. This procedure is exactly
the same manner as [14]. However, the parameter settings
are changed in an arbitrarily fixed range when changing
the parameter condition, there is a possibility of finding an
even better parameter setting by sophisticated optimization
algorithms.

Similar to the self-organizing ability assessment, the label
information of each cluster is determined by the majority
vote from the labeled data points assigned to the nodes in
the cluster, and 10-fold cross-validation method is utilized
with 20 trials for obtaining consistent averaging results.
In addition, during the learning sequence, each data point
is shown 100 times to each algorithm. Although the several
datasets provide training and test data independently, both
data are integrated randomly and cross-validation applied
to the entire data. Furthermore, the Wilcoxon signed-rank
test [42] is employed to validate whether the performance of
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TABLE 7. Classification performance of TCA, TKBA, ASOINN, and TopoART on the UCI datasets. The best value in each metric are indicated by bold.
A symbol † represents that TCA has a statistically significant difference (p < 0.05) by the Wilcoxon signed-rank test on NMI, Micro-/Macro- F-measure,
and ARI.

TCAhas a statistically significant difference from that of each
comparison algorithms. Here, the null hypothesis is rejected
at the significant level of 0.05.

Table 7 shows the results of classification performance.
As an overall trend, TCA and TKBA show better perfor-
mance than ASOINN and TopoART. Compared to TKBA,
TCA shows an equivalent classification performance with
respect to Iris, Wine, and Sonar datasets. TCA shows superior
classification performance to Shuttle dataset, and that of Skin
and Letter datasets are inferior to TKBA with the statistically
significant difference. Thus, we can regard that TCA and
TKBA have comparable classification ability.

V. CONCLUSION
This paper introduced a new ART-based topological clus-
tering algorithm with the information theoretic learning in

order to tackle the several problems of the existing clustering
algorithms. The proposed algorithm, i.e., TCA, utilized CIM
for defining a similarity measure, a node insertion criterion,
and an edge creation criterion. As a result, TCA successfully
reduced the number of parameters. The experimental results
of the self-organizing ability showed that TCA has high noise
reduction ability and stable topological network creation abil-
ity. In summary, TCA not only overcame the weakness of the
state-of-the-art topological clustering algorithm TKBA, but
also improved its self-organizing ability (especially the noise
reduction ability). Although the classification ability of TCA
for real-world data is not clearly better than TKBA, TCA is
a more useful and highly applicable algorithm because of the
number of parameters in TCA is much less than TKBA as
shown in Table 2 (i.e., two parameters in TCA and seven
parameters in TKBA).
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In summary, the contributions of TCA are as follows;
1) TCA acquired the high noise reduction ability and suc-

cessfully reduced the number of parameters compared
to existing algorithms.

2) The topological network by TCA can properly repre-
sent the structure of data such as density information
based on the mechanism that adaptively controls the
node insertion criterion.

3) The above-mentioned features are achieved with main-
taining the superior self-organizing and classification
abilities compared to existing algorithms.

With the above contributions, the typical problems of the
self-organizing growing network algorithms can be dealt
with.

One future research direction is to examine the use of
a hierarchical structure in TCA for improving its self-
organizing ability and for extending its functionality from a
structural perspective. Another future research direction is to
examine an alternative kernel bandwidth adaptation mecha-
nism to further reduce the number of parameters in TCA to
be pre-specified. In regards to further improvement of CIM,
a generalized CIM is one of the successful approaches. The
generalized CIM [44] is induced from correntropy defined by
a generalized Gaussian density function [45] (instead of the
Gaussian kernel function). It is worth noting that in the gen-
eralized CIM, the kernel function does not necessarily satisfy
the Mercer’s condition. Thus, there is a possibility to improve
the performance of TCA by utilizing the generalized CIM.
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