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ABSTRACT Skin lesion segmentation in dermoscopic images is a challenging task in the domain of
medical images analysis because of the irregular and blurring edges of the lesion and the presence of various
artifacts. Inspired by the successful applications of the generative adversarial network (GAN), we propose a
new neural network for the segmentation of skin lesion. Different from the traditional adversarial network,
the segmentation network uses encoder—decoder with the dense-residual block which enables the network
to be trained more efficiently. It can also establish a direct relationship between adjacent pixels to improve
segmentation accuracy. A multi-scale objective loss function is used to utilize deep supervision in multiple
layers of the critic network. End point error and Jaccard distance are combined as the content loss function.
It can solve the problem of boundary ambiguity and solve the lesion-background imbalance in pixel-level
classification for skin lesion segmentation. We finally use a joint loss function including a multi-scale
objective loss function, end point error, and Jaccard distance content loss function. The experiment results
show that our algorithm is superior to other state-of-the-art algorithms on the ISBI2017 and PH2 datasets.

INDEX TERMS Adversarial learning, convolutional neural networks, dense-residual block, skin lesion,
dermoscopic image.

I. INTRODUCTION

Malignant melanoma is a common and one of fastest-growing
cancer in the world, and the number of deaths has increased
in recent decades. Although some advanced treatment tech-
niques are widely used, the survival rate of late melanoma
within five years is less than 15% while early melanin is
more than 6 times [1]. It is obvious that timely diagnosis and
treatment of melanin is essential for the survival of patients.
Dermatoscopy, also known as incident light microscopy, is a
skin microscopy that can be magnified dozens of times. It is
used to observe the skin pigmentation disease. Although the
microscopy can observe more image details, it is often time
consuming and complicated. To help dermatologists improve
their efficiency, computerized analytical methods have been
developed. The most advanced method up to 2012 is reviewed
in [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Kumaradevan Punithakumar.

It is an important step in computerized analysis of der-
moscopic images to automatically segment melanoma from
the surrounding skin [3], [4]. Clustering, thresholding, region
merging and splitting, active contour models and supervised
learning have been proposed by researchers in the past few
years. These algorithms have many different advantages and
drawbacks that have been compared and analyzed in [5], [6].
Many automatic algorithms, such as K-nearest neighbor [4],
support vector machine (SVM) [3], [7], AdaBoost [8] and
manifold learning methods [9], [10], have been proposed.
However, the above method can’t achieve very good results
due to the size, shape, color, and texture of melanoma vary
greatly among different types of skin. In addition, some arti-
ficial factors, such as hair on the skin, pigmentation incon-
sistency, blood vessels, air bubbles, etc. will increase the
difficulty of segmentation task. Some examples are shown
in Figure 1.

In recent years, convolutional neural networks (CNN)
has made significant progress in different computer vision
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FIGURE 1. Example images from the ISBI2017 melanin detection. These
samples represent the presence of typical factors such as (a) low contrast
between lesion and the surrounding skin, (b) hair on the skin, (c) irregular
and fuzzy borders, and (d) inconsistent pigmentation.

tasks such as image classification [11], object detection [12],
semantic image segmentation [13]. In addition to the suc-
cessful application on natural images, CNN algorithm is
increasingly applied to the processing of medical images,
such as the recognition of CT images [14], the registration of
images [15], segmentation in optical coherence tomography
images [7], [16], including a few works on skin lesion seg-
mentation in dermoscopic images [17] and the classification
of skin cancer [18].

Inspired by Long et al. [19] and Luc et al. [20], an adver-
sarial learning skin lesion segmentation method is proposed
in this paper. Generally, GAN produces fairly good output
through mutual game learning of two modules in the frame-
work: a generator G and a discriminator D. In the training
process, the goal of G is to generate an image looks as realistic
as possible to deceive the discriminator D. The goal of D is
to separate the G-generated image from the real image. Thus,
G and D constitute a dynamic “gaming process’. Different
from the traditional adversarial network, we propose a new
adversarial network model for skin lesions segmentation.

In this paper, we propose a novel end-to-end adversar-
ial network for skin lesion segmentation in which the seg-
mentation network uses encoder-decoder architecture with
Dense-Residual block. Densenet [21] achieves better results
with fewer parameters through the features reuse. Resnet [11]
accelerates network convergence and optimization. The seg-
mentation networks(S) and critic network(C) are trained in
an alternating manner that optimize the loss function. The
S network is designed to generate dense feature maps and
results in highly accurate lesion segmentation. In order to
speed up network training and learn both global and local
features, a multi-scale objective loss function is used in critic
network. Furthermore, the End Point Error (EPE) [22] content
loss function is utilized to precisely divide the boundaries
of the melanoma region. Jaccard distance content loss func-
tion can solve lesion-background imbalance in pixel-level
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classification for skin lesion segmentation. We combine
multi-scale loss function with EPE and Jaccard distance as
new loss function. Figure2 shows the flowchart of the pro-
posed framework.

The contributions of this paper include the following:

1. We propose a novel adversarial network for skin lesion
segmentation, in which S network uses encoder-decoder
architecture with our proposed Dense-Residual block. We set
up multiple skip connections between encoder-decoder in
segmentation network. This proposed network is designed
to generate dense feature maps and results in highly accu-
rate lesion segmentation. In addition, global convolution net-
work [23], [24] is added to critic network to acquire large
receptive field.

2. To learn both global and local features and realize deep
supervision, we use a multi-scale objective loss function.
Furthermore, EPE and Jaccard distance content loss functions
are used to divided the boundaries of the melanoma region
and solve lesion-background imbalance in pixel-level classi-
fication for skin lesion segmentation.

3. Our model is an end-to-end network architecture that
handles the entire image. Experimental results show that our
method achieves good segmentation results on ISBI2017 [25]
and PH2 datasets [26].

The structure of this paper is organized as follows: the
related work is presented in Section 2. Section 3 introduces
our method in detail. The experimental results and evaluation
are then presented in Section 4. Then discussions are given in
Section 5. Finally, we give the conclusion in the section 6.

Il. RELATED WORK

We overview some related work to our research in this
section, including semantic segmentation, GANs and skin
lesion segmentation techniques.

A. SEMANTIC SEGMENTATION

Semantic segmentation is regarded as a dense pixel classi-
fication task which assign a label to every pixel. Classifi-
cation and localization are generally regarded as two major
challenges in semantic segmentation. The model which is
insensitive to location information can improve classifica-
tion performance but degrade the segmentation performance.
Many deep learning methods using CNNs are proposed to
solve the contradiction problem in image segmentation. The
classification of image patch [27] is the first application
of deep learning in semantic segmentation. However, it is
time consuming in inference. The Fully convolutional net-
work (FCN) network [19] proposed by Long et al. is a typical
CNN model for image segmentation, which can greatly speed
up the segmentation. The FCN model replaces the fully con-
nected layer in traditional CNN with a convolutional layer to
obtain a rough label mapping, and then upsamples the label
mapping with a deconvolution to obtain a high-resolution
feature map. The upsampling operation is used to compen-
sate for the reduced resolution caused by pooling but it also
makes the final segmentation result fuzzy. Ronneberger et al.
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FIGURE 2. The flow chart of the network model (a), the segmentation network and critic network are optimized by minimization of Ls (S network
loss) and Lc (C network loss) during the training phase. (b) shows that a test image is input and the segmentation result is output in the test phase.

proposed U-Net [28] which is an end-to-end encoder-decoder
network architecture. The encoder gradually reduces the
spatial dimension with the pooling layer, and the decoder
gradually recover the details and spatial dimensions of the
image. There are skip connections between the encoder and
the decoder to help the decoder obtain image details from the
encoder part. This method is widely used in medical image
segmentation [29].

Recently, ResNets [11] has been incorporated into
FCNs [30], [31] to simplify the training of deep (hundreds of
layers) by introducing a residual block. The main feature of
ResNet is to sum up the nonlinear transformation of input and
its identity mapping to increases the number of connections in
the network. This method is helpful for network optimization,
improving segmentation accuracy and accelerating network
convergence [30]. Huang et al. [21] proposed DenseNet
that can be seen as an extension of ResNets [11]. Densenet
is built by dense block and pooling operation. In the dense
block, the feature maps in all the previous layers are used
as input for each layer, thus it can reuse all the previous
features. Through the feature reuse, it achieves better results
with fewer parameters. Inspired by their success, we proposed
Dense-Residual block in both the segmentation network and
critic network to utilize their advantages.

B. ADVERSARIAL LEARNING

GAN was proposed by Goodfellow et al. [32] and it consists
of a discriminator D and a generator G. The input of the
generator G is a random noise vector z, following a simple
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distribution (such as Gaussian distribution). The output of the
generator G is a synthesized image that is similar to the dis-
tribution py~p,,...x) of areal sample data x. The discriminator
D is a binary classifier used to estimate the probability of a
sample comes from training data px~p,,,.(x)- The loss function
in traditional GAN is defined as follows:

minmax V(D,G)= E

G D

) (log(D(x))]
X™~Pdata X
+ E [log(1 —D(G(@))N] (D)

~P(z
Adversarial learning was first used for semantic segmenta-
tion by Luc et al. [20]. In their work, an additional discrim-
inator is used to identify the real or fake of the entire input
image to improve the segmentation results. Adversarial learn-
ing has also been used in medical image segmentation [7].
A novel multi-scale loss function was proposed for both G
and D by Xue er al. [33] to directly and effectively enforce the
learning of hierarchical features. Different from [20] while
similar to [33], we also used a encoder-decoder architecture
and multi-scale loss function. Besides, we have incorporated
Dense-Residual block in encoder-decoder architecture. For
the loss function, we have also incorporated End Point Error

and Jaccard distance loss function.

C. SKIN LESION SEGMENTATION IN

DERMOSCOPIC IMAGES

In recent decades, skin lesion segmentation has been studied
and several methods have been proposed [34]-[38]. Here we
will briefly introduce some closely related CNN methods.
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Yuan and Lo [17] introduce an automatic method of skin
lesion segmentation using 19 layers deep FCN and is trained
in end-to-end. In order to simultaneously produce the seg-
mentation and the coarse classification result, two fully con-
volutional residual networks is proposed in [10]. A deep
ResNet was also utilized in [39] to enhance robust visual
features learning and representations. The deep ResNet has
50 layers for segmentation of skin lesions to obtain bet-
ter segmentation results and improve accuracy. Enhanced
Convolutional-Deconvolutional Networks [17] were used for
automatic segmentation of skin lesions. However, the pro-
posed methods can’t realize deep supervision, which lead to
loss of information details and can’t further enhance the per-
formance of segmentation on skin lesion. A novel multi-scale
loss function is used in [33] to enforce the learning of hierar-
chical feature maps.

lll. THE PROPOSED METHOD

Our goal is to separate the lesion in the skin image from
the surrounding normal tissue without manual intervention.
The proposed network architecture consists of two parts:
a segmentation network (S) and a critic network (C). Our
approach consists of a training and a testing phase, as shown
in Figure 2.

In the training stage (Figure 2(a)), the purpose of the S
network is to generate a posterior probability map similar to
ground truth label from the original input image. Multi-scale
objective loss function, EPE and Jaccard distance are cal-
culated with posterior probability map and corresponding
ground truth. The S network is a fully convolutional net-
work with encoder-decoder Dense-Residual block architec-
ture which is based on U-Net [28]. The C network has two
types of inputs: One is the pixel-level multiplication of the
predicted label map generated by the S network and the
original image, and the other is the pixel-level multiplication
of the ground truth label map and the original image. There is
a problem with adversarial segmentation method that discrete
label masks are contained in reference segmentations, while a
continuous probability value is produced by segmentator for
each class in each pixel. It may learn to discriminate between
discrete and continuous values to distinguish reference label
and outputs of segmentator. In order to solve the problem,
we used pixel-level multiplication of the segmentation mask
and the original image, ground truth label and the original
image [40] as the input of the critic network. By introducing
feedback from critics into the segmentation network, the seg-
mentation network can produce more accurate skin lesion
segmentation.

In the testing stage, we only use the segmentation network
to generate posterior probability map for the test image (Fig-
ure 2(b)). Due to the network is fully convolutional, images of
any size can be used as input and it can generate segmentation
results with the same size.

In the adversarial network, the S and C networks are trained
alternately by backpropagation in an adversarial manner.
We first fix the C network and use the gradient calculation in
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the loss function of the S network to train the S network. Then,
we fix the S network and use the gradient calculation in the
loss function of the C network to train it. After the training is
completed, both the S and C networks become very powerful.
The results prove that the final S network can produce a more
accurate segmentation probability map.

A. NETWORK ARCHITECTURE

1) SEGMENTATION NETWORK

We use encoder-decoder with Dense-Residual block which
is based on U-Net as our segmentation network, as shown
in Figure 3. The network framework is inspired by [41].
In order to obtain a deeper feature map of the input image
and ensure maximum information transmission between the
layers in the network, we use the Dense block [21]. Dense
block leverages the potency of the network through feature
reuse, resulting in a streamlined model that is easy to train and
is efficiently parameterized. In order to alleviate the difficulty
of training deep networks, we connected a residual block
network after each Dense block. In particular, the S network
consists of a compression path with five encoder blocks,
a bottom block and an extension path corresponding to five
decoder blocks, as listed in Table 1. In the encoder stage, skip
connection exists around dense blocks 1 and 2. It leads to
the linear growth of feature maps and enhance the reuse of
features. In the decoder stage, the upsampling path increases
the spatial resolution of feature maps, it will require too much
memory if skip connection is used [41]. In order to overcome
this limitation, the input of dense blocks is not connected with
its output. There is no skip connection skipping dense blocks
4 and 5 in the decoder stage, as shown in Figure 3.

In the encoder, we use 3 x 3 convolution firstly. Then,
five Dense-Residual blocks are used. Each of Dense-Residual
block contains Dense block, Concatenation, Residual block
and 2 x 2 max pooling as downsampling which reduce the
dimension of the image. Figure 4(a) illustrates the layout of
the Dense block, in which connect each layer directly to all
subsequent layers. It is used to enhance the flow of informa-
tion between layers. The [ layer receives the feature-maps
of all preceding layers. The formula is as follows:

S X—1]) )

H;(-) can represent Pooling, Convolution(conv), rectified lin-
ear units (ReLU) or batch standardization (BN) compos-
ite functions. The output of the [ layer is expressed as
x;.[x0, x1, . .., x;—1] represents the connection of the feature
map xg, Xi, - ..,x;—1 in layers. The number of feature map
outputted by each layer in each dense block is the same,
and we denote it with k. In order to limit the requirement of
memory, we use a small k value with 16. The k determines the
contribution of information in each new layer to the global
state. Once the global state is written, it can be accessed from
anywhere in the network. When the number of network layers
reaches a certain number, the performance of the network
may be saturated. This is due to the reason when the network
becomes deep, the network becomes difficult to train. It has

x; = Hi([xo, x1, ..
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of the Residual Block network is shown (b).

been observed that residual block can well deal with the diffi-
culty of training deep networks. The traditional convolutional
feed-forward neural network connects the output of layer / as
input to layer / 4 1. The Residual block add a skip connection
and bypass the nonlinear transformation through an identical
function:

3

Figure 4(b) illustrates the layout of the Residual network. Our
segmentation network has five Dense-Residual blocks, and
the architecture detail is listed in Table 1.

In the decoding phase, we use a bilinear interpolation
upsampling, Dense-Residual block and Skip Connection to
recover full image resolution. The Residual block we added
consists of a1 x 1 convolution, a 3 x 3 convolutionanda 1 x 1
convolution, as shown in Figure 4(b). A skip connection is

xp = Hj(xj—1) +x1-1
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x 1 conv. The model

added between the layers in the encoder and the correspond-
ing layers in the decoder. The last layer uses the softmax
activation function to output the segmentation probability
map. The architecture of the segmentation network S is shown
in Figure 3. More details about the segmentation network is
listed in supplementary table S1.

2) CRITIC NETWORK

In the critic network, we use pixel-level multiplication of
the segmentation mask and the original image, multiplication
of ground truth and the original image as the input of the
critic network. We used convolution and global convolutional
interaction substitution to obtain a larger perceptual field. The
kernels of convolution and global convolution [10] are 7 x 7
and 13 x 13,5 x5and 11 x 11,4 x4 and 9 x 9,4 x 4 and
7 x 7,4 x4 and 5 x 5 respectively, as shown in Figure 5.
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TABLE 1. The structure details of the segmentation network.

3x3 Convolution

block(layers=15)

first step second step third step
Dense . .
_ Residual block Downsampling
Encoder 1 block(layers'—4), (1x1,3%3,1x Iconv) (2x2 Max pool)
Concatenation i
Dense . .
_ Residual block Downsampling
Encoder2 | block(layers=3), | = 1, ) 3.3 1 xjconv) | (2x2 Max pool)
Concatenation e
Dense Residual block i
_ Downsampling
Encoder3 | block(layers=7), (1x1.3x3,1xIconv) | (22 Max pool)
Concatenation -
Dense Residual block ;
_ Downsampling
Encoder 4 block(layersflo), (1x1,3%3,1x1conv) (2x2 Max pool)
Concatenation -
Dense Residual block ;
- Downsampling
Encoder 5 block(layerstZ), (1x1,3%3,1x1conv) (2x2 Max pool)
Concatenation -
Bottleneck Dense

Concatenation

Upsampling Residual block Skip Connection
Decoder 1 (22 stride) (1x1,3x3,1x1conv), Dense block
Concatenation (layers=12)
Upsampling Residual block Skip Connection
Decoder 2 (22 stride) (1x1,3x3,1x1conv), Dense block
Concatenation (layers=10)
Upsampling Residual block Skip Connection
Decoder 3 (2% stride) (1x1,3x3,1x1conv), Dense block
Concatenation (layers=7)
Upsampling Residual block Skip Connection
Decoder 4 (2% stride) (1x1,3x3,1x1conv), Dense block
Concatenation (layers=5)
Upsamplin Residual block Skip Connection
Decoder 5 psampung (1x1,3x3,1x1conv), Dense bloc
(22 stride)

k(layers=4)

3x3 Convolution

The convolution blocks in our network architecture use batch

Softmax

normalization and ReLU activation.

It is worth noting that whether it is segmentation or critic
network, all blocks after convolution use batch normalization
and RELU activation functions.

B. LOSS FUNCTION

We use multiple levels of loss functions to capture the
long-term and short-term spatial relationships of pixels.
A loss value is calculated for each downsampling, and
finally the average of all the loss values will be used as
the multi-layer loss. More details can be found in Figure 5.
In our proposed method, a dataset containing N training
images x and corresponding ground truth value T is given.
The multi-scale objective loss function is defined as [33].

Liyutti—scale

N L

) 11

= minmax 2; Zl 1Citn % T) = Cilxn % Sl (4)
n= =

where x and T represent original image and ground truth label

respectively, S(x) is the segmentation probability map of the

input image x generated by S network and ground truth T
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multiply at the pixel level. L is the number of downsamplings
in critic network.
The end-point error is defined as [22].

Lowe = JS@s — T2 + Sy — T2 ()

It is used for preserving the melanoma boundaries to maxi-
mize Peak Signal-to-Noise Ratio. In EPE, the size and ori-
entation of the predicted mask edges is compared with those
of ground truth label. (S(x),, S(x),) and (T, Ty) are the first
derivatives of S(x) and T in x and y directions, respectively.

Skin tumors typically only account for a small frac-
tion of the entire dermoscopic image in dermoscopy. Since
pixel-level classification tends to favor the background, this
increases the probability that the tumor will be partially seg-
mented or even missed. So we use the Jaccard distance loss
function which is defined as follows [17]:

N
> ST
i=1

Ljac =1- (6)

N N N
DS+ D Ti— > ST
i=1 i=1 i=1

The final loss functions of the S model and C model are as
follows:

Ly = Lywiti—scale + )\Lepe + IBLjac @)
Le = Liulri—scale (8)

where lambda and beta are user specified weight parameters.
It is noted that both Segmentation and Critic networks
use Limuli—scale Objective loss component, which is also done
by SEGAN [33]. The Lyuiti—scale i used in Segmentation
network for deep supervision, which enforces the segmenta-
tion result to be similar to the ground truth. The final loss
functions of the Segmentation model and Critic model are
shown in equation (7) and (8). We first fix the Critic network
and use the gradient information of the loss function (7) of
the Segmentation network to train the Segmentation network.
Then, we fix the Segmentation network and use the gradient
information of loss function (8) of the Critic network to train
the Critic network. After the training is completed, both the
Segmentation and Critic networks will perform well.

IV. EXPERIMENTATION AND RESULTS

In this Section, we investigate the performance of the pro-
posed segmented network. The detailed design of the exper-
iment and the results of the experiment will be presented.
The proposed method will be compared with several state-
of-the-art segmentation methods. The code is available at
https://github.com/tuwenli/skin-lesion.

A. DATASET

We evaluated the performance of our network on a dataset
published by ISBI 2017 [25]. The dataset contains 2000 train-
ing dermoscopic images and their corresponding lesion
masks, validation set contains 300 skin mirror images and
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their corresponding segmentation masks and the test set con-
tains 600 skin mirror images and their corresponding seg-
mentation masks. The sizes of these images are different, but
they have a height to width ratio of 4/3. We scale them to
a length in the range of 180 to 135, and randomly cut them
into 128 x 128 squares during the training. The reason for
this size is to take into account the memory usage and the
speed of training. In order to augment the data, we also flip
the training image horizontally and vertically. We have also
evaluated our method on PH2 dataset [26] that comes from
Dermatology Service of Hospital Pedro Hispano, Matosin-
hos, Portugal Mendong a et al. with Tuebinger Mole Analyzer
system. It contains 200 skin lesion dermoscopic images with
the resolution of 768 x 560 pixels.

B. PERFORMANCE EVALUATION

The output of trained Dense-Residual segmentation network
model is binarized to a lesion mask to compare with the
ground truth provided by clinicians. We use Jaccard Coef-
ficient (JAC), Dice Similarity Coefficient (DSC), accuracy
(ACCQC), sensitivity (SE), specificity (SP) to evaluate the per-
formance of the network. The evaluation metrics are defined
as follows:

TP
AC= — )
TP 4+ FN + FP
2 x TP
DSC = (10)
2x TP+ FN + FP
TP + TN
ACC = + (11)
TP + FP + TN + FN
TP
SE= —— (12)
TP + FEN
TN
SP=_ (13)
TN + FP
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where TP, FP, FN denote the number of true positives, false
positives and false negatives respectively.

C. IMPLEMENTATION DETAILS

We use the Adam optimizer with a batch size of 10 to train
the Segmentation and Critic network. The initial learning rate
is set to 0.0002. The number of iterations is set to 500, and
after every 25 epoch learning rates is decreased at a decay
rate of 0.5 until le x 1079 is reached. The values of A and
B in (7) are set as 0.5. We set a threshold to produce the
final binary mask. We evaluated and compared our proposed
approach with the 600 skin images test set. The entire network
architecture is implemented with pytorch. We use Nvidia
GeForce GTX 1080Ti GPU with 11 GB GDDR5X memory
for the training.

D. ABLATION EXPERIMENTS

The segmentation results of our proposed method on some
test images of the ISBI2017 are shown in Figure 6.
These columns represent the segmentation results of skin
images with different lesion conditions, such as benign and
melanoma. We analyzed the effects of some key factors in the
proposed the adversarial network on skin lesion segmenta-
tion performance. The factor includes Dense- Residual block
encoder-decoder architecture in segmentation network. For
the loss function, the factors include Multi-scale objective
Loss function (Liulti—scale)» EPE (Lepe) and Jaccard distance
(Ljac) content Loss function. We denote the encoder-decoder
architecture with only DenseNet block in segmentation net-
work with Lyuiti—scale as baseline 1. The baseline 2 is the
baseline 1 integrated with Lepe and Ljac. The baseline 3 is
Dense-Residual block encoder-decoder architecture in seg-
mentation network with Lyyiti—scale. Our proposed method is
the baseline 3 integrated with Lepe and Lj,c. We replace one
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Baseline 2

Original image

Baseline 1

(a) (b) (©)

Ground Truth

Baseline 3 Ours

(d) (e) ®

FIGURE 6. Results on ISBI 2017 (a) Original image, (b) Baseline 1, (c) Baseline 2, (d) Baseline 3, (e) Ours and (f) Ground Truth. First two rows
of skin lesion images are benign while last two rows of skin lesion images are melanoma.

TABLE 2. Ablation experimentation results of the proposed method on
ISBI2017 dataset.

Dtl:)rll(s)illjet Dense—%(la(s)ziual Lottiscae Lepeand Ly
Baseline 1 Yes No Yes No
Baseline 2 Yes No Yes Yes
Baseline 3 No Yes Yes No
(our proposed) No Yes Yes Yes

TABLE 3. The experimental results of Baseline 1, Baseline 2, Baseline 3
and Ours. The mean (standard deviation) values are reported.

Model JAC DSC ACC
Baseline 1 0.726 0.824 0.910
(0.184) (0.154) (0.181)

Baseline 2 0.734 0.835 0.921
(0.191) (0.152) (0.176)

Baseline 3 0.751 0.846 0.937
(0.182) (0.161) (0.167)

Ours 0.768 0.862 0.945
(0.176) (0.149) (0.178)

component with another, while leaving the others unchanged.
A summary can be seen in Table 2. The experimental results
are listed in Table 3, and some of the segmentation probability
are shown in Figure 6.

It can be seen from the table 3 that the JAC, DSC and
ACC indexes of ours improve 0.042,0.038 and 0.035 than
those of Baseline 1 respectively, indicating that the added
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residual blocks, EPE and Jaccard distance content loss func-
tion improve the accuracy and efficiency of the model. The
detailed analysis is as follows 1) and 2).

1) COMPARE WITH OR WITHOUT RESIDUAL

BLOCK NETWORK

We used Dense-Residual blocks in our model, and we have
also investigated the performance without Residual structure
(Baseline 2). Densenet can obtain a deeper feature map of the
input image and ensure maximum information transmission
between the layers in the network. However, the experimen-
tal results are not good. We found that when the number
of network layers reaches some level, the performance of
the network will be saturated. If the number of layers of
the network is increased further, its performance will begin
to degenerate. This shows that when the network becomes
deep, the deep network becomes difficult to train. In order
to prevent the degeneration of segmentation performance,
we add a residual block after each dense block. The exper-
imental results have been greatly improved. the results on
ISBI2017 are shown in Figure 7. The confidence interval for
each indicator in 600 test images are also shown.

It can be seen in Table 3 and Figure 7 that after adding
the residual layers, performance can be improved signifi-
cantly (from 73.4% to 76.8% for JAC). In the proposed
method, the number of layers and the number of features
is gradually increasing in Dense block. We add residual
block with identity mapping, and the skip connection of the
residual network enables gradients to be propagated directly
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FIGURE 7. Results of the segmentation network with (ours) or without
(Baseline 2) residual block on the SP, SE, ACC, JAC and DSC
measurements. The confidence interval for each indicator is also shown.

in the network. It avoids exploding gradient problem or the
vanishing gradient problem [11]. In addition, we have also
appropriately reduced the number of feature maps through
the residual block. It greatly reduces the difficulty of training.
Please refer to the supplementary table S1. This shows that
when the network layer is deeper and the network training is
difficult, adding the residual network can alleviate this prob-
lem and improve the accuracy of skin lesion segmentation.

2) COMPARE WITH OR WITHOUT CONTENT LOSS
FUNCTION Lepe and Liac

In order to investigate the effectiveness of our loss function
and solve the various challenges in skin lesion segmentation,
we compared with or without Lepe and L, used in Generative
Adversarial Network. One has only objective loss function
Linulti—scale(Baseline 3), while the other has Liuiti—scate, Lepe
and Ljac(Ours).

The results are shown in Figure 8 and Table 3. By inte-
grating the Lepe and Lj,c content loss function, the results
are improved on DSC, JAC, ACC, SE and SP respectively.
The confidence interval for each evaluation metric in 600 test
images are also shown in the Figure 8. The main reason
is that our loss function not only implements deep supervi-
sion in multiple layers, but also uses Lepe function, which
is conducive to establishing a direct relationship between
adjacent pixels and solving the problem of boundary ambi-
guity. Moreover, most of our segmented skin lesion only
account for a portion of the entire picture, and the Jaccard
distance is more relevant to the segmentation task of the
image. The traditional cross-entropy loss function cannot deal
with the imbalance problem of foreground and background
pixel, while the Jaccard distance is primarily concerned with
the foreground pixels. The segmentation results of skin lesion
show that we can obtain more promising semantics and
more accurate segmentation results by integrating content
loss function Lepe and L.
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FIGURE 8. Results with (Ours) and without (Baseline 3) content loss
function Lepe and Ljac on the SP, SE, ACC, JAC, and DSC evaluation
metrics. The confidence interval for each indicator is also shown.

TABLE 4. Averaged JAC results of the proposed Method with different
weights for segmentation network loss function.

A
0.1 0.5 1 10
b
0.1 0.732 0.741 0.734 0.726
0.5 0.756 0.770 0.753 0.737
1 0.747 0.762 0.752 0.729
10 0.738 0.745 0.734 0.716

3) EFFECTS OF WEIGHT PARAMETERS ON LOSS FUNCTION
The loss function of the segmentation network in Equa-
tion (7) consists of three components. The final loss function
is obtained by integrating the three components with the
corresponding weight parameters. Although in theory, they
have different value ranges (Liulti—scale, 18 in [0, +00). Ljac is
in [0, 1], Lepe isin [0, 2\/5], we find their values are in similar
scales. We get the experimental results on the validation set.
The investigated value of weights A and B for Lepe and Ljac
are [0.1,0.5,1,10], and the results are listed in Table 4. From
the table, we can see that when their values are in a reasonable
range, the influence on the results is small. The best result is
obtained when XA and g are set as 0.5, 0.5.

4) COMPARE DIFFERENT NUMBERS OF

DENSE-RESIDUAL BLOCK

In order to investigate the influence of the number of lay-
ers on the performance, we conducted experiments to com-
pare the different number of cascade Dense-Residual blocks.
Table 5 summarizes several configurations, we have con-
ducted experiments with 2-6 Dense-residual-blocks, respec-
tively. As can be seen from Table 5, the segmentation results
have improved as increasing the number of layers in the Seg-
mentation network at the beginning. But when we increase
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TABLE 5. Result of different numbers of Dense-Residual block. The mean
(standard deviation) values are reported.

Model JAC DSC ACC SE SP
Two Dense- | 0.704 | 0.810 0.901 0.920 0912
residual-blocks | (0,196) | (0.152) | (0.181) | (0.194) (0.181)
three Dense- | 0.731 0.821 0.910 0.931 0.923
residual-blocks | (0.198)| (0.169) | (0.187) | (0.173) (0.187)
four Dense- | 0.742 | 0.846 0.923 0.932 0.934
residual-blocks | (0.182)| (0.158) | (0.167) | (0.190) (0.175)
five Dense- | 0.768 | 0.862 0.945 0.901 0.974
residual-blocks | (0.176) | (0.149) | (0.178) | (0.181) (0.184)
six Dense- 0.751 0.840 0.930 0.927 0.943
residual-blocks | (0.202) | (0.179) | (0.186) | (0.196) (0.197)

TABLE 6. Performance comparison between proposed segmentation
methods and other state-of-the-art methods in the ISBI 2017 Challenge.
Note that SMCP AND DDCA are not deep learning based methods.

Method JAC DSC ACC | no. parameter

DDCA[43] 0.718 0.810 0.922 NA

FCN[19] 0.721 0.827 0.923 18.7M

UNET[28] 0.731 0.834 0.928 9.9M

SMCP[42] 0.749 0.839 0.930 NA

RESNET[39] 0.758 0.842 0.934 17.8M

SEGAN[33] 0.762 0.851 0.941 103.2M

ECDNJ17] 0.765 0.849 0.934 23.8M

Our proposed method | 0.768 0.862 0.945 69.8M

the number of Dense-Residual block up to 6, the performance
starts to decreases. This may be because too many layers
lead to overfitting. We found that Dense-Residual block
has the best result when its number is 5. According to the
experimental results, we set the number of Dense-Residual
blocks to 5.

E. COMPARISON WITH OTHER METHODS

The proposed skin lesion segmentation method was com-
pared to other methods on the ISIB2017 dataset. We report
three related indicators JAC, DSC and ACC. Table 6 and
Figure 9 show the segmentation results of different methods.
The proposed segmentation method obtained 76.8% in JAC
and 86.2% in DSC. It is superior to other existing segmenta-
tion methods, and the Jaccard score is increased from 76.2%
to 76.8%. This is mainly due to the proposed Dense-Residual
blocks in segmentation network and the novel loss function.
Its feed-forward method connects each layer with each sub-
sequent layer, and allows subsequent layers to bypass the
feature layer that enhance the propagation of features. Our
loss function can strengthen the deep supervision, make the
fuzzy boundary clearer and focus more on foreground pixel.
Therefore, the proposed method can obtain high precision in
pixel classification and accurate segmentation results, and is
better than other segmentation methods. The segmentation
results of our method and other methods on several typical
images are shown in Figure 10.
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our method compares with others
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FIGURE 9. It compares our method result with others method on the ACC,
JAC, and DSC evaluation indicators.

F. EVALUATION ON PH2 DATABASE

To further evaluate the performance of our proposed model,
we performed the following experiment on the separate der-
moscopic image PH2 database [26], which is widely used
in algorithm validation and benchmarking. We finetuned the
weights of our model by further training the network with
PH2 data. The setting of experiments is similar to [44],
the PH2 database was randomly divided into two groups
(A and B). Each group includes 100 images. In group A,
we trained our method with 50 images and then validated
with the rest 50 images. We set the total number of epochs to
200. The model with the best performance of the validation
image in group A is selected and used to perform image
segmentation in group B. The segmentation results in group B
as shown in Figure 11.

We compared the performance of our proposed method
with other state-of-the-art methods on the PH2 dataset. The
results are listed in Table 7. It can be seen from the exper-
imental results that our method achieved best performance
in dataset PH2 and is superior to the existing segmentation
methods in the literature. Our JAC index is also higher than
the results on ISBI2017. One reason is that the PH2 dataset
is not as complex as the ISBI2017 dataset. It has not so
much size, shape, color, and texture of melanoma vary greatly
among different types of skin. Another reason is that in our
method, different from the traditional adversarial network
model, we not only used Dense-Residual block Network in
the encoder-decoder segmentation model, but also used a
novel loss function which can strengthen the deep supervi-
sion, make the fuzzy boundary clearer and focus more on
foreground pixel. Figure 11 shows some typical segmentation
results on PH2.

G. STATISTICAL SIGNIFICANCE ANALYSIS OF
EXPERIMENTAL RESULTS

Statistical significance of the differences was determined
using 2-tailed paired t-test for which p value of 0.05 is consid-
ered significant. On the ISBI2017 dataset, the mean (standard
deviation) of JAC and DSC of our method is 0.768 (0.176) and
0.862 (0.149), respectively, while SEGAN is 0.762 (0.203)
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FIGURE 10. Segmentation results by Original image, UNET, RESIDUAL, SEGAN, proposed method, and Ground Truth. First four rows of skin
lesion images are benign while last four rows of skin lesion images are melanoma.

and 0.851 (0.176). Due to the relatively large standard devia-
tion, paired t-test analysis shows that the differences between
our proposed method and the SEGAN for JAC and DSC are
not statistically significant (p > 0.05).

The main reason for the large standard deviation in
our analysis is the particularity of the dataset. In the
ISBI2017 dataset, there are some images with very low
contrast between lesion and the surrounding skin, some
with irregular and fuzzy borders, and some with great hairs
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artifact. The segmentation results on some of these images
are not optimal, resulting in lower JAC and DSC values.
On other images, the proposed method can achieve great
results. Figure 12 shows the results on several typical images.
The standard deviations on the JAC and DSC of both the pro-
posed our method and SEGAN are relatively large. It is very
challenging to segment accurately all the difficult images.
Meanwhile, we also performed the statistical analysis on
the PH2 dataset. The mean (standard deviation) of JAC
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FIGURE 11. Original image, segmentation results our method and Ground Truth on PH2 dataset from the left column to the right

column. Each row has two sample case.

TABLE 7. Performance comparison between the proposed segmentation
and other state-of-the-art methods on PH2 dataset.

Method JAC DSC
Adaptive Thresholding in 72.4% 80.4%
Silveira et al.[5]
Level Set Active Contours in 76.3% 83.5%
Li et al. [45]
Multi-Scale Segmentation in 76.0% 86.1%
Bozorgtabar et al. [46]
Deep FCN in Yuan et al. [44] 81.5% 91.5%
Densely Linked CNN in 85.3% 91.5%
Bagher et al. [47]
Step-wise integration in Bi et 85.9% 92.1%
al.[48]
SEGAN [33] 85.1% 92.4%
Ours 86.3% 93.2%

and DSC of SEGAN on the PH2 dataset is 0.851(0.096)
and 0.924(0.082), respectively. The mean (standard devi-
ation) of JAC and DSC of our method is 0.863(0.079)
and 0.932(0.054), respectively. Paired t-test analysis shows
that the differences between our proposed method and the
SEGAN are statistically significant for JAC and DSC (p <
0.05) on PH2 dataset. The reason is that the PH2 dataset is
not as complex as the ISBI2017 dataset. It has not so much
size, shape, color, or texture variation among different types
of skin.

V. DISCUSSION
One of the key steps in computerized recognition of
melanoma on dermoscopic images is to depict lesions from
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surrounding skin areas. However, this step is very challenging
because the size, shape, color, and texture of melanoma vary
greatly among different types of skin. Some artificial factors,
such as hair on the skin, pigmentation inconsistency, blood
vessels, air bubbles, etc., will further increase the difficulty
of segmentation tasks.

In this work, we proposed a novel adversarial network
architecture for the segmentation of skin lesions, which per-
formed better than other methods on both the ISBI2017 and
the PH2 dataset. Although traditional GANs have been suc-
cessfully applied in unsupervised and semi-supervised learn-
ing tasks, the application of semantic segmentation is few.
We proposed Dense-Residual block which is a key compo-
nent in our method for segmentation tasks. When informa-
tion about an input or gradient pass through many network
layers, problems like the vanishing gradient and explod-
ing may become more prominent. To solve the problem,
the segmentation network uses Dense-Residual block which
can strengthen feature propagation, encourage feature reuse
and help multi-scale feature mapping from different layers.
GAN is generally difficult to train and training is unstable.
Although Wasserstein GAN (WGAN) [49] has made progress
by clipping weight in this regard. But the generated samples
are poor or not suitable for segmentation. We use multi-scale
loss to solve the problem. EPE is used to establish a direct
relationship between adjacent pixels and solving the prob-
lem of boundary ambiguity. In addition, we add the Jaccard
distance into the loss function of the segmentation network
to distinguish foreground and background pixel. Compared
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FIGURE 12. Segmentation results by Original image, SEGAN, proposed
method and Ground Truth. First two rows of skin lesion images are

(a) low contrast between lesion and the surrounding skin and (b) hair on
the skin. They get failure segmentation results. Last two rows (c) and

(d) of skin lesion images do not have these conditions and get better
segmentation results.

Original image

with the cross entropy, it is more related to the task of image
segmentation and improves the segmentation performance.
To further verify the generalization ability of our model,
we test it in the PH2 database which only has 200 skin lesion
images. The performance of our proposed method is also
better than other state-of-the-art methods. Our method uses
the original image as input, the neural network can directly
learn the features. Due to the affection of several images
with very low contrast and great artifact in ISBI2017 dataset,
the standard deviation of performance criterion is large, and
the difference between results of our method and SEGAN are
not statistically significant. The difference between results of
our method and SEGAN are statistically significant on the
PH2 dataset.

In most of the two independent databases, our model
achieved good segmentation accuracy. But under some
conditions of image acquisition, our model needs further
improvement. Figure 13 shows some failure cases of the
proposed method. the segmentation performance of our pro-
posed method needs further improvement. Better network
architecture and more effective training strategies require
further research in future work. Moreover, the deep learn-
ing model is combined with traditional image segmentation
methods active contours, and the recently hot Recurrent Neu-
ral Networks (RNNs) model is applied to capture context
information.
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(d

FIGURE 13. A few failure cases of our proposed method. The left column
is the original image, the middle column is the segmentation probability
image of our proposed method and the rightmost column is ground truth.
(a) the skin lesion is surrounded by a lot of hair, (b) the contrast between
the lesion area and surrounding skin is too low, (c) the skin boundary of
the lesion is very blurred, and (d) the surrounding skin lesion is full of air
bubbles.

VI. CONCLUSIONS

We propose a Dense-Residual block and adversarial learning
based on deep convolutional neural network for skin lesion
segmentation on dermoscopic images in this paper. Dense
block obtains a deeper feature map of the input image and
ensure maximum information transmission between the lay-
ers in the network. When increasing the number of layers
of the network, its performance will begin to degenerate
and lead to overfitting. Residual block is used to solve the
problem. We add a multi-scale loss and EPE loss for deep
supervision and make the fuzzy boundary clearer to further
boost the segmentation performance and stability. At the
same time, we added a Jaccard distance to the loss function of
segmentation network. Our loss function directly maximizes
the overlap between the foreground of ground truth and the
foreground of the prediction partition mask, and it can elim-
inate the need for background rebalancing when the number
of foregrounds is not well balanced. Compared with the tradi-
tional cross entropy loss, our loss function not only improves
segmentation accuracy, but improves the stability of network.
The experiment results on ISBI2017 and PH2 datasets show
that the proposed method outperforms the state-of-the-art
skin lesion on dermoscopic images segmentation methods.
The differences between results of our method and SEGAN
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are not statistically significant on the ISBI2017 dataset, while
they are statistically significant on the PH2 dataset.

In our future work, we try to apply other advanced seg-
mentation network architectures [50], [51] for skin lesion
segmentation. We also try to investigate the extension of
proposed method to other medical image segmentation tasks.
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