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ABSTRACT This paper focuses on an integral sliding mode technique-based consensus control protocol
design for networked high order uncertain nonlinear systems. The nonlinear agents (nodes), which comprises
of a leader and followers are networked via a fixed topology with a directed graph. A consensus among the
leader and followers is achieved by first defining consensus error dynamics and then an integral manifold
based distributed control protocols are designed. These distributed protocols steer the respective consensus
error dynamics to equilibrium even in the presence of uncertainties. The robustness is achieved from the very
start of the process by enforcing sliding mode at the initial time instant. The sliding mode enforcement and
the closed loop stability analysis are presented in the form of a theorem. The theoretical results are verified
via the simulation results of a numerical example.

INDEX TERMS Networked control systems, nonlinear systems, robustness, sliding mode control, uncertain
systems.

I. INTRODUCTION
The applications of nonlinear control strategies, in the current
technological era, are very wide and far fascinating. Apart
from single system’s control, its applications can be found in
networked nonlinear systems [1]. To report a few, very fasci-
nating applications of networked systems, can be found in for-
mation control [2]–[4], rendezvous control of non-holonomic
agents [5], and [6], smart grids applications [7], [8] and sensor
networks [8]. Among such applications, the cooperative con-
trol protocol design is focused by big number of researchers.
In case of networked systems, the nodes (often called agents)
are either forced to follow a specific pattern of motion tra-
jectories or the agents are supposed to follow a leader which
is termed as consensus with theleader motion. In the leader
follower system, the leader remains quite independent of the
behaviour of the followers where as the followers are highly
influenced by the leader dynamics. In practice, very rare
and minimum information of the leader are available to the
followers which is most possibly be the position and velocity
information. It is also noted that the available information
may quite possibly be available to a small portion of the
network. Therefore, the investigation of control strategies for
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the consensus and formation of the networked systems, with
limited information, become more significant.

In the networked systems, the followers must be capable
enough to share the available information with the agents
which are not in direct contact with the leader. Based on the
available information, error dynamics can be defined which
are either termed as consensus error dynamics or synchro-
nization error dynamics. These kind of problems are also
referred, in the literature, as cooperative regulation problem
(consensus) and cooperative tracking problems (synchroniza-
tion) [9]–[11]. In consensus, the distributed control protocols
are designed to drive all the error dynamics of the networked
agents to a consensus equilibrium which mainly depend on
the initial conditions (see for instance; [11] and [12]).

The leader followers scenarios, for electro-mechanical
systems, are very much focused in the existing literature
(see for instance; [13]–[16). In [13] Neural Networks (NNs)
based uncertain dynamics estimations were performed for
a network of first order Multi-Input Multi-Output (MIMO)
uncertain systems. However, it suffered form unavoidable
ultimate boundedness. In [14] Terminal Sliding Mode Con-
trol (TSMC) strategy based distributed control was employed
to second order linear networked uncertain systems. How-
ever, the singularity existence in the manifold reduced its
significance. Das and Lewis [15] and [16] developed adaptive
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distributed laws for the networks of single and double
integrator uncertain systems. However, the requirement of
knowing the non zero Eigen value of the Laplacian matrix
limits its applications. In [17] a network of uncertain sec-
ond order MIMO systems, with an undirected graph and
fixed topology, was studied and Chebyshev Neural Net-
works (CNNs) based distributed TSMC was proposed to
compensate the uncertain dynamics and bounded external
disturbances. Recently, a network of second order linear
uncertain system was considered in [18] and second order
sliding mode based distributed laws were developed which
resulted in finite time error convergence. The results were
acceptable, however, this strategy was limited only to lin-
ear systems with matched uncertainties. In addition, this
strategy showed sensitivity to disturbances in the reaching
phase (a fundamental phase of conventional sliding mode
control). A network of second order linear systems, in the
presence of matched and mismatched uncertainties, was con-
sidered in [19]. An Integral Sliding Mode Control (ISMC)
based protocols were designed which invoked an extended
observers and NNs for the estimation and compensation of
the mismatched uncertainties. A network of second order
systems was targeted in [20] via a synthetic approach of
backstepping control and Fourier Series (FS). The developed
results are far interesting and worthy. However, this tech-
nique lacks in robustness against uncertainties. Moreover,
some interesting results via the synergy of ISMC and FS
could be extracted which will be more appealing and prac-
tical. An ISMC based distributed control protocols, subject
to directed graph and fixed topology, were developed for
networked uncertain nonlinear systems in the presence of
matched uncertainties [21]. This strategy eliminate reach-
ing phase which, consequently, resulted in enhanced robust-
ness. However, it was employable only to electro-mechanical
systems.

In the context of applications, a class of non-holonomic
mobile robots was considered and adaptive formation control
laws were developed in [22]. The aforementioned strategies
were mainly focused on the networks of second order linear
and nonlinear agents with bounded uncertainties and dis-
turbances. The cooperative control protocols of networked
higher order uncertain systems, in Brunovsky form [23],
were an extension of [15], and [16]. A strategy of NNs was
used to estimate the drift terms and uncertain input chan-
nels to compensate the uncertainties. However, this method
resulted in the asymptotic convergence of the error dynamics
to a bounded vicinity of the origin. In [24] higher order
MIMO networked systems were studied for the synchro-
nization purpose. These MIMO agents were operated under
unknown disturbances and NNs based non-singular controls
were developed. It was found that by adjusting the control
parameter, the bounds of the tracking errors may not easily
be reduced. The control parameters must be chosen carefully
to ensure asymptotic convergence. The strategy of [23] was
extended in [25] while using neuro-adaptive sliding mode
strategy. Unfortunately, it resulted in some shortcoming like:

the boundedness of the estimated weights of the NNs can not
be guaranteed with the given tuning laws always. In addi-
tion, it is some what difficult to guarantee the boundedness
of the control inputs in remark 1. A second order sliding
mode strategy for the consensus of networked higher order
nonlinear system was proposed in [26]. The results are good,
however, the devised distributed laws were designed subject
to bounded disturbances affected by the states and inputs,
which theoretically became questionable.

In this article, the ISMC control protocol design [21] is
extended to a class of networked higher order uncertain
nonlinear systems. It inherits the features like sliding mode
enforcement from the very start which, consequently, devel-
ops robustness against (results in invariance to) parametric
variations and disturbances from the very start. This strat-
egy also provides the ease of finite time stabilization of the
consensus error dynamics by choosing the first component
to be finite time stabilizing law. One may also suppress the
adverse effects of mismatched data loss by designing a time
domain H∞ control component. Thus, this strategy is more
significant in application to networked systems as compared
to the conventional SMC techniques as well as TSMC tech-
niques which very often resulted in high frequency vibra-
tions and singular sliding surfaces, respectively. In the main
work, consensus (synchronization) errors based dynamics are
developed which operates under matched disturbances and
states dependent uncertainties. The uncertainties are rejected
by the discontinuous control components of the Integral
Sliding Mode Control Protocol (ISMCP) (which is designed
to enforce sliding mode along an integral manifold) and
the uncertainties free linear system is driven by the Linear
Quadratic Regulator (LQR). The (closed loop) stability of the
overall consensus error dynamics is rigorously presented in
a theorem and are also verified via the simulation results of
a network of one leader and four followers. The remaining
paper is managed as follows.

The problem formulation along with some relevant pre-
liminaries is presented in Section II. The ISMC based dis-
tributed control protocols design and the closed loop-stability
is presented in Section III. An illustrative example is given
in Section IV to verify the theoretical results. Section V is
based on the discussion of the simulation results. The paper
is concluded in Section VI.

II. PROBLEM FORMULATION
A. DEFINITIONS
A network of n + 1 agents is considered in this work.
The leader’s dynamics have a subscript 0 which makes
its dynamic equations different from the dynamics of the
n followers. The leader and followers share information
through a directed graph. The governing dynamics of an
ith follower are represented via the following state space
equations

ẋij = xij + 1 i = 1, 2, . . . , n j = 1, 2, . . . , n− 1

ẋin = fi(xi)+ gi(xi)ui +1i(xi, t) (1)
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where xi = [xi1, xi2, . . . , xin]T ∈ <n is a measurable states
vector of the ith follower, 1i(xi, t) represents the uncertainty
which affects the follower i and ui is the applied control
protocol. Furthermore, it is important to note that fi(x), gi(x)
are sufficiently smooth vector fields.

Now referring to (1), it is suitable to consider some realistic
assumptions.
Assumption 1: To ensure the controllability of each agent,

let’s assume that gi(xi) 6= 0 for xi ∈ <n.
Assumption 2: The uncertainties terms are considered

bounded i.e.,

||1i(xi, t)|| ≤ Ci, i = 1, 2, . . . , n (2)

where Ci are positive constants and ||.|| refers to the
Euclidean norm.
The leader, which is supposed to be followed, is represented
by the following equations

ẋ0r = x0r+1 for r = 1, 2, . . . , n− 1

ẋ0n = f0(t, x0) (3)

where x0 = [x01, x02, . . . , x0n]T ∈ <n is the states vector of
the leader system, f0(t, x0) is continuous and bounded in t and
x0 with f0(t, 0) = 0 [25]. In the literature, a graph is expressed
by G = {V, E} with a non empty set of leader and followers
(n + 1 nodes) V = {V0,V1, . . . ,Vn} and a non empty set of
edges/arcs E . It should be noted that the considered graph is
directed which means that the node i can share information
with node j but the reverse may not necessarily be true.
However, in an undirected graph the communication in both
way remains true and possible. A weighted adjacency matrix
related to a fixed topology can be expressed mathematically
as follows

A =


0 0 . . . 0
a10 a11 . . . a1n
a20 a21 . . . a2n
... . . .

. . .
...

an0 an1 . . . ann


The other relevant notions contain the sub-graph which is
expressed as Ḡ = {V̄, Ē}. The followers topology is expressed
as follows

Ā =


a11 a12 . . . a1n
a21 a22 . . . a2n

. . . . . .
. . .

...

an1 an2 . . . ann


In addition, let d̄i =

∑n
j=1 aij, D̄ = diag[d̄1, d̄2, . . . , d̄n] and

the Laplacian is defined to be L̄ = D̄ − Ā ∈ <n×n for the
followers topology. Furthermore, aij = 1 if (Vj,Vi) ∈ E and
aij = 0, otherwise. The leader and followers connectivity is
expressed in the form of a matrix B̄ = diag[b1, b2, . . . , bn]
with bi = 0 if an agent have no connection with the leader and
bi = 1 in case of suitable and proper connection. Regarding
the leader, the following assumptions are defined.

Assumption 3: The leader driving force f0(t, x0) is
bounded and its boundedness is enough information for the
distributed control protocols of the followers.
Assumption 4: The position and velocity measurements of

the leader are available to the connected followers.
The main control objective is that the followers must have

a consensus with the leader’s states i.e., the followers should
track the leader in the presence of uncertainties. This task
can be achieved by defining the following consensus errors
equations

eik =
n∑
j=1

aij(xik − xjk )+ bi(xik − x0k ), k = 1, 2, . . . , n

(4)

By following (4) along the leader and followers dynamics
(1) and (3), the error dynamics (for an agent i) can be obtained
as follows

ėi1= ei2
ėi2= ei3

...

ėin=

 n∑
j=1,j 6=i

aij + bi

(fi(x)+ gi(x)ui)

−

n∑
j=1,j 6=i

aij
(
fj(x)+gj(x)uj

)
−bif0(x, t)+hi(x, t) (5)

where hi(x, t) =

(∑n
j=1,j 6=i aij + bi

)
1i(x, t) −∑n

j=1,j 6=i aij1j(x, t) is a lumped uncertain term which
depends only the states of the networked agents. This lumped
uncertain term hi(x, t) is bounded by the virtues of Assump-
tion 2. Regarding the consensus error dynamics (5), it is
suitable to re-assume the following.
Assumption 5: The error dynamics in (5) are assumed

fully controllable i.e.,( n∑
j=1,j 6=i

aij + bi
)
gi(x) 6= 0, for j = 1, 2, . . . , n.

Now the problem (5) is the reformulated problem. The
regulation of the states of (5) to origin leads to the consensus
among the leader and the connected followers. Hence a reg-
ulation problem becomes the main task. Now, the consensus
protocol design can be presented in the next section.
Remark 1: The errors dynamics in (5) can be expressed in

a compact form as follows

Ẏ1 = Y2
Ẏ2 = Y3

...

Ẏn =
(
L̄ + B̄

)(
f (x)+ g(x)u+1(x, t)− 1̄f0(t, x)

)
(6)

where

Y1 = [e11, e21, e31, . . . , en1],
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Y2 = [e12, e22, e32, . . . , en2],
...

Yn = [e1n, e2n, e3n, . . . , enn],

f (x) = [f1(x1), f2(x2), . . . , fn(xn)]T ,

g(x) = diag[g1(x1), g2(x2), . . . , gn(xn)],

u = [u1, u2, . . . , un]T ,

and

1(t, x) = [11(t, x1),12(t, x2), . . . ,1n(t, xn)].

This kind of compact presentation remains helpful when one
deals with the overall stability analysis.

III. CONTROL PROTOCOL DESIGN
In this section, the ISMCP design for the above mentioned
system is presented in a comprehensive manner. Generally,
the ISMC appears as an algebraic sum of two control compo-
nents [26] i.e.,

ui = uai + ubi (7)

where uai is the control input which regulates the system
in sliding mode and ubi is the control input which effec-
tively diminishes the effects of matched disturbances and
compensate the nonlinear terms. In the following study, the
design of both the components will be outlined. To proceed
to the design of uai the system defined in (5), without any
disturbances, is expressed as follows

ėi1 = ei2
ėi2 = ei3

...

ėin = ψi(ei1, ei2, . . . , ein, uj)+ ui (8)

where ψi =
∑n

j=1,j 6=i(aij + bi)fi(xi) + (
∑n

j=1,j 6=i(aij + bi)

gi(x) − 1)ui −
∑n

j=1,j 6=i aij
(
fj(x) + gj(x)uj

)
− bif0(x, t). For

the sake of simplification the following assumption is made.
Assumption 6: It is assumed that in the very beginning the

system (8) behaves linearly i.e., ψ(Y1,Y2, . . . ,Yn, u) = 0.
Remark 2: The validity of this assumption depends on

the fact that at time t0 the sliding mode occurs. Therefore,
the nonlinearities and disturbances are compensated exactly
at the very start by ubi. Consequently, the system operates
under the action of the component uai in sliding mode from
the initial time instant (for more details please follow the sec-
ond half of the theorem 1 in the stability analysis).

Now, subject to Assumption 6 and Remark 2, the sys-
tem (8) becomes

ėi1 = ei2
ėi2 = ei3

...

ėin = uai (9)

Here the main focus is the design of the control protocol
component uai. For the sake of completion, the LQR based
design is presented. The detailed expression of the control
component uai appears as follows

uai = −ki1ei1 − ki2ei2 − . . .− kinein = −kiEi

where ki = [ki1, ki2, . . . , kin] is the gain’s vector designed via
the LQR procedure and Ei = [ei1 ei2 . . . ein]T represents
a vector of the errors of an ith agent. This part of the control
protocol minimizes the Quadratic Cost Function

Ji =
1
2

∫
∞

0

(
EiQiETi + u

T
aiRiuai

)
dt

subject to the dynamics reported in (9). Note that, the designer
parameters of the aforesaid system can be computed by solv-
ing the following algebraic Riccati equation

ATi Pi + PiAi − PiBiR
−1
i BTi Pi + Qi = 0

and

ki = RTi BiPi

where Pi and Qi are symmetric and positive definite matrices
and

Ai =


0 1 0 . . . 0
0 0 1 . . . 0
... . . . . . .

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 Bi =


0
0
...

1

 .
This control component will steer the error dynamics to

zero asymptotically after the enforcement of sliding mode.
Remark 3: The aforementioned control design of uai

always confirms the asymptotic convergence of the system’s
states. This asymptotic convergence can be replaced with
finite time convergence (to improve precision) if one design
the said component via some finite time stabilizing laws
e.g., [26], and [27].
Remark 4: If the agents are operating under uncertainties

of both matched and mismatched kind, then the matched
uncertainties can be nullified and the mismatched uncertain-
ties can be suppressed to a tolerable band via the design
of an H∞ based ISMC controller [29], and [30]. On the
other hand, both kind of uncertainties can also be handled
by following the integral manifold design strategy [31]. For
states dependent matched and mismatched uncertainties one
may follow the strategy outlined in [32].

At this stage, the uncertainty rejecting and sliding mode
enforcement control component will be presented.

For the ith system, with dynamics in (5), the integral sliding
manifold can be defined as follows

σi =

n∑
j=1

λijeij + zi (10)

where λij (with λin = 1) are the performance parameters
which are chosen positive and zi is an integral term which
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helps in the elimination of the reaching phase. By taking
the time derivative of the integral manifold along the errors
dynamics described in (8), one has

σ̇i =

n−1∑
j=1

λijeij+1 +

 n∑
j=1,j 6=i

aij + bi

 fi(xi)

+

 n∑
j=1,j 6=i

aij + bi

 gi(xi)− 1

 uai + uai

+

 n∑
j=1,j 6=i

aij + bi

 gi(xi)

 ubi −
n∑

j=1,j 6=i

aij
(
fj(x)

+ gj(x)uj
)
− bif0(x, t)+ hi(x, t)+ żi (11)

By choosing

żi = −
n∑
j=1

λijeij+1 − uai (12)

Equation(11) becomes

σ̇i =

 n∑
j=1,j 6=i

aij + bi

 fi(xi)+

 n∑
j=1,j 6=i

aij + bi


(gi(xi)− 1)uai)+

 n∑
j=1,j 6=i

aij + bi

 gi(xi)

 ubi

−

n∑
j=1,j 6=i

aij
(
fj(x)+ gj(x)uj

)
− bif0(x, t)+ hi(x, t)

)
(13)

Now, by comparing the following reachability law [33]
with (13)

σ̇i = −ki(x, t)sign(σi)

the expression for the control component ubi , for the i
th agent,

can be obtained as follows

ubi = −

(
n∑

j=1,j 6=i

aij + bi)gi(xi)

−1 ×
 n∑
j=1,j 6=i

aij + bi


fi(xi)+

 n∑
j=1,j 6=i

aij + bi

 gi(xi)− 1

 uai −
n∑

j=1,j 6=i

aij(fj(x)+gj(x)uj)−bif0(x, t)+ki(x, t)sign(σi)
)

(14)

Now, both the components of the control protocol (7) are
suitably presented for an ith agent. The finite time enforce-
ment of sliding mode, in closed loop, will be presented in the
following study.

IV. STABILITY ANALYSIS
The sliding mode enforcement stability for an ith networked
agent, in closed loop, can be proved by stating the following
theorem.

Theorem 1: Consider that Assumptions 1, 2, 5, and 6 are
satisfied. The sliding mode can be enforced in finite time by
the control component (14) along an integral sliding surface
(10) if the gains of the control component ubi are chosen
according to (15).

ki(x, t) ≥ ηi + |hi(x, t)| (15)

In addition, the dynamics of the overall system, in sliding
mode, are governed by the control component uai.

Proof: This theorem can be proved by considering a
Lyapunov candidate function as follows

vi =
1
2
σ 2
i (16)

Computing the time derivative of (16) along (11) and then
utilizing the expression of żi from (12), one has

v̇i= σi

 n∑
j=1,j 6=i

aij + bi

 fi(xi)+

 n∑
j=1,j 6=i

aij + bi


gi(xi)− 1) uai +

 n∑
j=1,j 6=i

aij + bi

 gi(xi)

 ubi

−

n∑
j=1,j 6=i

aij
(
fj(x)+gj(x)uj

)
−bif0(x, t)+hi(x, t)

)
(17)

Substituting the values of ubi from (15) (subject to
Assumption 5 and 6), one gets

v̇i = σiσ̇i = σi (hi(x, t)− ki(x, t)sign(σi))

Now, making use of Assumption 2 and the inherent bounded-
ness property of hi(x, t), one may have

v̇i ≤| σi || hi(x, t) | −ki(x, t) | σi |

or

v̇i ≤ − | σi | (ki(x, t)− | hi(x, t) |) (18)

Since the objective is to confirm sliding mode enforcement
which can be ensured by proving (18) negative definite.
Therefore, if one chooses ki(x, t) ≥ ηi + |hi(x, t)| then it
will remain negative definite. Consequently, one can write the
above inequality as follows

v̇i ≤ −ηi | σi |

v̇i ≤ −
√
2ηiv1/2

where ηi is a small positive real constant to maintain the nega-
tive definiteness of (18). This differential inequality confirms
that σi → 0 in finite time tσi ≤

√
2η−1i
√
vi(σi(0))(see for

details [34]). Since, the integral manifold (10) is designed in
such a way that σi(0) = 0 holds. Hence, the sliding mode
enforcement time is almost 0, i.e., sliding mode occurs from
the time t0 = 0.
The second part of the theorem can be proved by con-

sidering the (13). Posing σi = 0 and then calculating the
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FIGURE 1. Topology of the network of four followers and a leader.

expression of the equivalent control protocol [33], one may
get

ueqi = −

 n∑
j=1,j 6=i

aij + bi

 gi(xi)

−1

×

 n∑
j=1,j 6=i

aij + bi

 fi(xi)+

 n∑
j=1,j 6=i

aij + bi


(gi(xi)− 1)uai)

−

n∑
j=1,j 6=i

aij
(
fj(x)+ gj(x)uj

)
− bif0(x, t)+ hi(x, t)

)
(19)

Using the expression (19) in (5), one gets (9). This confirms
that the dynamics of an ith agent are governed by the control
component uai in sliding mode. This proves the theorem.
Remark 5: In practice, all the physical systems are avail-

able onlywith outputs. Therefore, the output feedback control
strategy will be needed which will utilize the higher deriva-
tives of the outputs. Thus, these derivatives are estimated via
either higher order sliding mode differentiator [35] or high
gain observers [36].

V. ILLUSTRATIVE EXAMPLE
In this section, the distributed ISMC protocols are designed
for the network of third order leader and followers. The
related network topology is shown in FIG.1. Note that all
the followers are operated under the effect of matched uncer-
tainties. In the forthcoming study, the descriptions of these
systems are given.

A. SYSTEMS DESCRIPTION
The dynamics of the leader and followers are expressed via
the following mathematical equations

ẋ01 = x02
ẋ02 = x03
ẋ03 = −x02 − 2x03 + 1+ 3sin(2t)+ 2cos(2t),

ẋ13 = x12 sin(x11)+ cos2(x13)+ (0.1+ x212)u1 + ξ1,

ẋ23 = −x21x22 + 0.01x21
− 0.01x221 + (1+ sin2(x21))u2 + ξ2,

ẋ33 = x32 + sin(x33)+ (1+ cos2(x32))u3 + ξ3

and

ẋ43 = −3(x41 + x42 − 1)2(x41 + x42 + x43 − 1)− x42 − x43
+ 0.5 sin(2t)+ cos(2t)+ (1+ 0.5x242)u4 + ξ4.

Note that, the terms ξi = 0.5sin(3t), i = 1, 2, 3, 4 represents
the matched uncertain terms which affects the input channels.
The graph in this study is directed in nature. The adjacency,
the Laplacian and the interconnection matrices are expressed
as follows

A=


0 0 0 0 0
0 0 1 1 1
0 0 0 1 0
1 0 1 0 0
1 0 0 0 0

 L̄=


3 −1 −1 −1
0 1 −1 0
0 −1 1 0
0 0 0 0


and

B̄ = diag[0, 0, 1, 1].

All the agents are controllable and the main task is the
establishment of consensus with the leader’s trajectories. This
job is done via the following control protocols which are
explicitly designed in the previous section.

B. CONTROLLER DESIGN
The proposed design strategy can be employed by defining
the consensus errors as follows

ei1 =
4∑
j=1

aij(xi1 − xj1)+ bi(xi1 − x01)

ei2 =
4∑
j=1

aij(xi2 − xj2)+ bi(xi2 − x02)

...

ei4 =
4∑
j=1

aij(xi4 − xj4)+ bi(xi4 − x04)

The integral manifold for an ith agent is defined as follows

σi =

3∑
j=1

λijeij + zi

where λij with λi3 = 1 are the performance parameters of the
control components which establish sliding modes from the
initial time instant. The final expressions of the controllers,
used in these simulations, are given below.

ui= uai −

(
4∑

j=1,j 6=i

aij + bi)gi(xi)

−1 ×
 4∑

j=1,j 6=i

aij

+ bi) fi(xi)+

 4∑
j=1,j 6=i

aij+bi

 gi(xi)−1

 uai−
4∑

j=1,j 6=i

aij(fj(x)+ gj(x)uj)− bif0(x, t)+ ki(x, t)sign(σi)
)

(20)
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TABLE 1. Parameters of the controllers used in this experiment.

FIGURE 2. Position Tracking of the leader by four followers.

FIGURE 3. Velocity Tracking of the leader by four followers.

where ki = [ki1 ki2 ki3] and Ei = [ei1 ei2 ei3]T . The gains of
the control protocols, used in this simulation, are reported in
TABLE 1.

C. SIMULATION RESULTS
The proposed control protocol (as reported in (18)) are
employed to a network of five agents which include one
leader and four followers. The control protocol’s robust-
ness and performances are examined against the matched
disturbances 0.5sin(3t) and states dependent uncertainties.
The leader’s position trajectory is closely followed tracked
by the four followers as depicted in FIG. 2. It is evident
that in a very short time of almost 3 seconds consensus
among the leader and followers is established. Similarly, the

FIGURE 4. Acceleration Tracking of the leader by four followers.

FIGURE 5. Position error convergence of four followers.

FIGURE 6. Velocity error convergence of four followers.

consensus in velocities and accelerations of the networked
agents are shown in FIG. 3, and FIG. 4, respectively. The con-
vergence of the consensus errors (in positions, velocities and
accelerations) are shown in FIG. 5, FIG. 6, and FIG. 7,
respectively. The integral manifolds are shown in FIG. 8.
The manifolds convergence show that the integral sliding
modes are enforced with alleviated chattering of magnitude
0.1. In addition, the sliding surfaces stay at zero from time
t0 which confirmed the theoretical claim made in the control

85316 VOLUME 7, 2019



M. Munir et al.: Integral Sliding Mode Strategy for Robust Consensus of Networked Higher Order Uncertain Non Linear Systems

FIGURE 7. Acceleration error convergence of four followers.

FIGURE 8. Integral manifolds of the four followers.

FIGURE 9. Control efforts for the consensus establishment.

design section. This also confirms very robust nature of the
proposed ISMCP from the very start of the process. The
applied controlled efforts for the consensus establishment
among the positions, velocities and accelerations are dis-
played in FIG. 9. It is evident that the control efforts evolve
with suppressed chattering. Having looked at these Figures,
one may easily note that the sliding modes are enforced from
the very start which ensures invariance to matched distur-
bances and states depending uncertainties from the very start
of the process. In addition, the control inputs exhibits with
suppressed chattering and the consensus errors are driven to

zero by the linear control components (uai) asymptotically.
On the other hand, the disturbances are rejected via the
discontinuous control component ubi. The systems evolve
with far appealing benefits like suppressed chattering and
enhanced robustness as compared to the conventional sliding
mode technique.

VI. CONCLUSION
In this paper, the integral slidingmode control protocol design
technique is generalized for a class of networked higher order
nonlinear systems. The nonlinear dynamics of the agents are
assumed to be in controllable canonical form whereas the
leader is assumed to be driven by a nonlinear bounded smooth
function. Distributed control protocols, for the consensus
among the leader and followers, are designed by first defining
proper consensus errors dynamics and then integralmanifolds
are designed. Discontinuous control laws are designed which
ensure the sliding mode enforcement (along the integral man-
ifolds) from the start and the consensus among all the agents
is established asymptotically by the control component. The
overall closed loop analysis is presented in the form of a
comprehensive theorem and the claims (made in theoretical
results) are verified by the simulation results for a network
of one leader and four followers which communicated with a
fixed topology and a directed graph.

In future, these networked agents will be studied with
varying topologies, communication delays (in term of time)
and data loss which may give birth to mismatch uncertainties.
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