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ABSTRACT This paper primarily discusses the measurement of partial discharge (PD) phenomena and
clustering in the defect pattern of a cross-linked polyethylene power cable joint. First, a high-speed data
acquisition and pretreatment were performed for PD electrical signals at a sampling rate of 20 MS/s. The
crucial characteristic signals were reversed to reduce the calculated amount of noise. A characteristic matrix
was created according to the resulting dynamic error of chaos synchronization. The characteristic parameters
were extracted using the fractal theory. Finally, the extension theory was used to develop a diagnostic system
and anti-interference test. A comparison with the existing Hilbert–Huang transform (HHT) method revealed
that the two characteristics extracted from the chaos synchronization results using the fractal theory were
recognized at a higher pattern recognition rate by employing the extension theory. The proposed method can
extract crucial information concerning PD as a defect in power cable joints.

INDEX TERMS Chaos synchronization, extension, fractal, Hilbert–Huang transform, partial discharge.

I. INTRODUCTION
Power equipment comprises electrically conducting, magnet-
ically conducting, and insulating materials. Insulating mate-
rials are critical for maintaining the quality of the power
supply mechanism. If the equipment is always in a hos-
tile environment or has been used for many years, then the
equipment’s insulation will deteriorate. Human error in the
construction process or failure to meet working standards can
destroy the insulation in equipment. According to statistics
in the literature, most accidents that occur during the use of
power equipment are caused by the deterioration of insulating
materials or faults [1]–[4]. Various industrial systems other
than power equipment also exhibit fault clustering, and the
clustering of such faults has been closely investigated in
recent years. Accurate clustering of fault type can improve
the accuracy of fault diagnosis in industrial systems [5], [6].

The literature [7], [8] reveals that the universal character-
istics of the partial discharge of power equipment include
partial discharge phase, mean number of discharges, mean
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discharge, and discharge frequency. Common methods for
analyzing frequency are the Fourier transform, discrete
Fourier transform, and Hilbert–Huang transform [9], [10].
These are typically used to analyze defects in power equip-
ment. Although these methods can directly capture char-
acteristics from partial discharge signals, a large database
is required to analyze the partial discharge characteristics,
and determining long-term partial discharge characteristics
is complex and time consuming. Moreover, fault types are
not always completely classified. Partial discharge has been
identified from the characteristics of the partial discharge
signals on an elliptical locus. With advancements in science
and technology, commercial partial discharge detectors are
now capable of accurately measuring partial discharge phe-
nomena [11]–[13]. These detectors identify partial discharge
signals originating from the insulation of power equipment
and analyze the partial discharge characteristics and gradual
dielectric breakdown to provide equipment maintenance–
related information to prevent severe accidents. However,
the required commercial instruments generally cost between
US$20,000 and US$50,000, and most of the detection instru-
ments capture signals that have been pretreated by the
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front-end circuit; thus, the analyzed partial discharge signals
would lose some of their physical significance. Therefore,
the aim of this studywas to analyze and automatically identify
signals measured using basic sensors.

Chaos is a peculiar characteristic of nonlinear systems in
which a deterministic mathematical system exhibits random-
like dynamic behavior. Chaos has been extensively stud-
ied in many engineering applications [14], [15], including
adaptive control systems, signal processing, fluid mechan-
ics, and communication secrecy. Its characteristics are high
sensitivity to the initial value, fractal dimensionality, pseudo-
randomness,, and unpredictability. This study analyzed par-
tial discharge signals by applying the chaos synchronization
concept. Appropriate parameters were used to enable the
slave system to track the master system automatically, and
the error dynamic between normal and defect signals were
extracted [16]. Additionally, original defective signals were
pretreated in the present study to extract characteristics effec-
tively, reduce the computing time, reduce the amount of noise,
and reverse the partial discharge characteristics.

This study was also conducted to diagnose defects in the
insulation in a power cable and discuss latent insulation
faults. Artificially defective power cables were measured.
The defects were evaluated using four power cable models:
a scratched insulating layer, an outer semi-conductive layer
that exceeds the standard length, an outer semi-conductive
layer that is much shorter than the standard length, and
a healthy power cable. Commercial high-frequency current
transformers were used to measure the partial discharge sig-
nals in the power cable at a sampling rate of 20 MS/s. Differ-
ent defective power cables typically yield differently formed
partial discharges. The position and partial discharge can be
determined by the fact that the basic reference voltage (60Hz)
phase has different characteristics. In this study, the duration
of one cycle (60 Hz) of the defect signals was considered the
data sample period. In an ideal normal signal state, the defect
signal has zero amplitude. The defect signals and normal
signals were input into a master–slave chaos synchronization
system in this study. The master–slave system tracked the
differences between the trajectories of the defect signals and
normal signals as characteristics. The same defect partial dis-
charge was self-similar; therefore, each difference between
trajectories was not considerable and exhibited unique char-
acteristics. A characteristic matrix was determined from the
difference between trajectories, and fractal theory was used
to extract two crucial characteristics: fractal dimension and
lacunarity [17]–[19]. Pattern recognition based on extension
theory was applied to select the first 20 data points of various
defects for training, and the remaining 20 data were used in
testing. Comparing this scheme with the HHT method veri-
fied that the proposed clusteringmethod uses fewer character-
istics for clustering and can identify defects effectively. Chaos
synchronization–based characteristic extraction is proven to
be capable of obtaining crucial information from various
defect signals.

II. ERROR DYNAMICS OF CHAOS SYSTEMS
The partial discharge characteristics of power cables are tran-
sient in nature. Consequently, recording and analyzing these
characteristics in real time poses a considerable challenge
to conventional clustering methods based on large databases
of historical data. Accordingly, the present study modeled
the power cable as a master–slave chaos system in which
the slave is controlled such that the master can be tracked
within a cycle period. For master–slave systems, even small
perturbations in the states of the master or slave have con-
siderable effects on the chaotic behavior of the system. For
example, loading different initial values into the chaotic sys-
tem may result in completely different chaos phenomena,
thereby leading to substantial changes in the magnitude and
dynamics of the error signal. The present study exploited this
‘‘small-signal’’ characteristic to detect changes in the partial
discharge (PD) state of the power cable such that the quality
of the cable can be rapidly and reliably detected during its
fabrication or subsequent service life.

In 2004, Chen and Lee proposed a new chaotic system [20]
called the Chen–Lee system. It comprises the following sys-
tem of nonlinear differential equations:

dx
dt
= −yz+ ax

dy
dt
= xz+ by

dz
dt
=

(
1
3

)
xy+ cz (1)

where x, y, and z are state variables and a, b, and c are sys-
tem parameters. The Chen–Lee chaos synchronization (CS)
system has the following construction:

Master System :



dx1
dt
= ax1 − y1z1

dy1
dt
= by1 + x1z1

dz1
dt
= cz1 + 1

3x1y1

(2)

Slave System :



dx2
dt
= ax2 − y2z2

dy2
dt
= by2 + x2z2

dz2
dt
= cz2 + 1

3y1y2

(3)

If is the sampled data sequence of defect signals, and y
is the sampled data sequence of normal signals, then let the
variables in Eq. (2) be x1 = x [i], y1 = x [i + 1], z1 = x
[i + 2], and x2 = y [i], y2 = y [i + 1], z2 = y [i + 2],
i = 1, 2, . . . , n − 2, where n denotes the total number of
sampled data in the complete cycle. Then the error states
can be expressed as e1 = x1-x2, e2 = y1-y2, e3 = z1-z2,
and the error dynamic system (ED) can be obtained from
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FIGURE 1. Defect models in power cable joint.

Eqs. (2) and (3):

de1
dt
= E1 = ae1 − e2e3 − y2e3 − z2e2

de2
dt
= E2 = be2 + e1e3 + z2e3 + x2e1

de3
dt
= E3 = ce3 + 1

3 [e1e2 + x2e2 + y2e1]

(4)

In Eqs. (2) and (3), a, b and c are nonzero parameters.
According to the literature [20], the system parameters a, b
and cmust satisfy a > 0, b < 0, c < 0, and 0 < a < −(b+c),
and herein the Chen-Lee system has a chaotic attractor. The
system parameters are selected as a= 3, b=−3, and c=−1.
Then, the master-slave Chen-Lee chaotic system’s dynamic
trajectories move within a bounded range under different
initial conditions.

III. PD MEASUREMENT ENVIRONMENT SYSTEM
A. DEFECT MODELS
Statistics in the literature indicate a high prevalence of cross-
linked polyethylene (XLPE) power cable breakdowns in
cable joints [21]. The specimens in this study were 25-kV
XLPE power cable joints. Figure 1 shows defect models that
may be caused by humans during power cable joint construc-
tion. This study simulated an insulation defect caused by a
knife used by a worker to peel the insulation shield. The
defect depth and length in the insulation were 2 and 20 mm,
respectively, defined as a scratched insulating layer (Type I).
In our measurement, the normal length of the cut made
from the insulation shield to the conductor terminal should
be 139 mm, with ±10% being an acceptable error range.
We simulated an insulation shield cut of only 111 mm, which
was 20% less than the normal length, defined as the case in
which the outer semi-conductive layer exceeded the standard
length (Type II). We simulated another cut of 167 mm, which
was 20% more than the normal length, defined as the case
in which the outer semi-conductive layer was shorter than

FIGURE 2. Block diagram of partial discharge detection system.

the standard length (Type III). Finally, a non-defective power
cable joint was also simulated (Type IV).

B. MEASUREMENT ENVIRONMENT
In this investigation, measurements were made in a hyper-
baric chamber that was divided into two parts in a control
room. Figure 2 presents a block diagram of the partial dis-
charge detection system. The signal detected in the control
room, using a high voltage control panel for controlling the
isolation transformer. The isolation transformer voltage is
boosted, and then the high voltage side of a step-up trans-
former is connected to the conductor layer of the power cable.
The ground and covering of the copper are connected to
each other. The cable shielding current on the copper signal
is measured using a commercial HFCT. The bandwidth of
HFCT is between 500 kHz and 20 MHz. Figure 3 presents
the shielding room and indoor cable used for the actual
measurement. Finally, measurements were conducted under
a condition involving a sampling rate of 20 MS/s and signal
transmission to a NI PXI-5105 computer data acquisition
card. Data were compiled using LABVIEW software for
measurements at the man–machine interface of these partial
discharge signals in real-time detection and storage. In the
voltage step-up procedure of the PD measurement process,
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FIGURE 3. Measurement of a high-voltage power cable.

a 25-kV cable should have a 14.4-kV (U0) rated phase-to-
ground voltage. However, according to IEC 60502-2, for a
power cable from 6 to 30 kV, the test voltage after installation
should be 1.7 U0 for 5 min [22]. Because the voltage must
exceed the partial discharge inception voltage to excite the
PD phenomenon, the test voltage should be 1.7 × 14.4 kV =
24.5 kV. Thus, 25 kV was selected as the test voltage. The
high-voltage generator generated a rising voltage from 0 V to
25 kV. The HFCT then measured the power cable joint and
recorded the signals after 1 min.

FIGURE 4. Electrical signal for different defect models of power cable.
(a) Type I, (b) Type II, (c) Type III, and (d) Type IV.

Figure 4 shows the HFCT electrical signals in one cycle at
60 Hz for different specimens. The x-axis represents time in
seconds, and the y-axis represents the signal amplitude (V).

FIGURE 5. Typically single partial discharge signal for defect models.
(a) Type I, (b) Type II, (c) Type III, and (d) Type IV.

Type I was observed to appear in both the positive and nega-
tive regions, with the corresponding voltage magnitude being
approximately 0.35 V. Type II, representing the defect type
with the highest number of discharges, occurred only in the
negative region, with the corresponding voltage magnitude
being only 60 mV. Type III discharge occurred in both the
positive and negative regions, and the signal in the positive
region was stronger than that in the negative region. The
maximum amplitude was 0.7 V, which was higher than that in
the other defect models. Type IV was considered the healthy
power cable joint; its only noise was background noise, which
was less than 5 mV and had no obvious signal. Figure 5
illustrates one PD pulse in the four defect models for a chaos
synchronization system, as described by Eq. (4). A partial
discharge event for each defect model can be characterized by
such values as signal frequency and amplitude. Type IV was
considered to belong to a healthy power cable joint; therefore,
the measured signal was only a background signal.

C. SIGNAL ANALYSIS METHOD
As in the study of Chen et al. [16], the present study con-
sidered four types of power cables. A total of 200 sampled
data sequences were used for signal analysis. During the
analysis, the master system (with defect signals) was con-
sidered the host system. The number of defect data in the
range of 1–198 was denoted by x1, the number of defect data
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in the range of 2–199 was denoted by y1, and the number
of defect data in the range 3–200 was denoted by z1. The
slave system (with normal signals) was considered the chase
reference system; the number of normal data in the range
of 1–198 was denoted by x2, the number of normal data in the
range of 2–199 was denoted by y2, and the number of normal
data in the range of 3–200 was denoted by z2. Through the
execution of a subtraction process using Eqs. (2) and (3), this
study determined the error dynamics E1, E2, and E3 of the
chase trajectory by using Eq. (4).

FIGURE 6. E1, E2 trajectory diagram of four defect types; (a) Type I,
(b) Type II, (c) Type III, and (d) Type IV.

As revealed by the E1, E2 trajectory diagram in Figure 6,
the trajectories of the various types of cables had clearly
different shapes, paths, and sizes. Notably, however, each
of the trajectories was self-similar. In addition, the different
cable types had different bitmap distributions and densities,
as presented in Figure 7. Thus, both the density between
points and the number of distributed points can serve as useful
indicators of cable type.

This study calculated three-dimensional (3D) characteris-
tic graphs of the cables by applying fractal theory. Moreover,
two characteristic values of each cable, namely the lacunarity
and fractal dimension, were extracted from the characteristic
matrix [15] using the CS and HHT methods. The charac-
teristic values were then used to identify the cable type by
executing a clustering algorithm based on extension theory.

Figure 8 presents the CS-derived 3D characteristics of the
four cables. Notably, the distributions in Figure 8(a) and (c)
are clearly different from those in Figure 8(b) and (d). Specif-
ically, the characteristic distributions inFigure 8(a) and (c)
are wider and the 6E3 value is higher compared with those
in Figure 8(b) and (c). Figure 9 displays the HHT-derived 3D
characteristics of the four cables [9], [10], [23].

The 3D n–q–ϕ PD patterns that were transferred from the
measured PD signals are presented in Figure 10. For the 3D

FIGURE 7. E1, E2 bitmap of four defect types; (a) Type I, (b) Type II,
(c) Type III, and (d) Type IV.

n–q–ϕ patterns, the primary parameters were the discharge
magnitude (q), discharge number (n), and phase angle (ϕ).
Types I and III exhibited higher discharge amplitudes in
both the positive and negative periods compared with the
other types. The maximum discharge was 225 pC, which
belonged to Type III. Only in the negative period was dis-
charge observed for Type II and IV. Type II had a maximum
discharge of 37 pC. For Type IV, the equipment was virtually
undamaged, and a relatively low amplitude of less than 10 pC
was noted. As confirmed through experimentation, the exten-
sion theory–based pattern recognition technique proposed in
this study could accurately differentiate types of defects.

IV. RESULTS AND DISSCUSSION
A. FEATURES EXTRACTION
A total of 160 partial discharge data points were obtained:
40 for each type of power cable. For each defect type,
20 data points were selected randomly for training, and the
remaining 20 data points were used for testing. The chaos
synchronization system developed in this study revealed the
error dynamic trajectories E1, E2, and E3, and a characteristic
matrix was constructed using the error dynamic trajectory.
The lacunarity and fractal dimension were determined using
fractal theory. To elucidate the advantages of this method,
a 3D characteristic matrix was established through HHT
under the same conditions for comparison. Finally, the accu-
racy of the analysis that was performed using this scheme and
HHT and the noise tolerance were evaluated with reference
to the clustering results according to extension theory.

When the defects were analyzed through the CS and HHT
methods, the lacunarity and fractal dimension were obtained
using fractal theory. Figures 11 and 12 present the results.
Each defect type had its own characteristic range. On the
basis of the 3D characteristics of the various defect types
in Figure 8, Type I and Type III defects were predicted to
yield similar results and to have a larger fractal dimension

VOLUME 7, 2019 76189



F.-C. Gu et al.: Application of Chaos Synchronization Technique and Pattern Clustering

FIGURE 8. Three-dimensional characteristics of four defect models
characterized by CS; (a) Type I, (b) Type II, (c) Type III, and (d) Type IV.

than did Type II and Type IV defects. Because the total value
of E3 for Type I and Type III defects was higher than that
for the other types, the fractal dimension was also larger.
Figure 13 illustrates the fractal dimension distribution. The
fractal dimensions for Type I and Type III defects were
noticeably larger than those for the other two defect types.
However, identifying variations among the four types with
respect to only the fractal dimension was difficult. Therefore,
the lacunarity of the various defect types was calculated.
Figures 13 and 14 map the CS- and HHT-derived character-
istics; as revealed in the figures, the HHT-derived character-
istics could not clearly highlight the various defect types.

B. RECOGNITION METHOD
Extension theory includes the concepts of matter element
analysis and extension sets, and itsmain application is in solv-
ing contradiction and incompatibility problems [24]. Matter
element analysis can easily represent the nature of matter, and

FIGURE 9. Three-dimensional characteristics of four defect models
characterized by HHT; (a) Type I, (b) Type II, (c) Type III, and (d) Type IV.

the extension set is the quantitative tool of extension theory,
which represents the correlation degree of the matter element
according to the designed correlation function. The member-
ship function of a traditional fuzzy set describes the value of
matter in the interval [0, 1]. The extension set extends the
fuzzy set from [0, 1] to [−∞,∞]. Consequently, it enables
the definition of a set that includes any data in a particular
domain [24], [25]. The proposed extension-based recognition
method is described as follows.

Step 1: Formulate the matter-element Ri for each defect
type as

Ri = (Ti,Cj,Vj) =
{
Ti c1 〈ai1, bi1〉

c2 〈ai2, bi2〉

}
(5)

where
Ti: ith defect type of the PD pattern;
Cj: jth input feature;
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FIGURE 10. Four typical n-q-ϕ PD patterns of experiment models.
(a) Type I, (b) Type II, (c) Type III, and (d) Type IV.

FIGURE 11. Distribution of the fractal dimension of four defects featured
by CS.

aij: lower bound of classical domains related to the jth input
feature of the ith defect type;
bij: upper bound of classical domains related to the jth input

feature of the ith defect type.
The classical domain V =< a, b > of each value falls

between the lower and upper bounds on PD records. The
neighborhood domain V̂ = < f , g > of classical domains,
which constitutes the possible range of each characteristic,
can then be determined by setting f = (1 − α) × a and
g = (1 + α) × b, where α represents an extend factor [24].
The extension correlation function concept is presented
in Figure 15.

FIGURE 12. Distribution of the lacunarity of four defects derived by CS.

FIGURE 13. Characteristic distribution of four defects featured by CS.

FIGURE 14. Distribution of HHT-derived characteristics of four defects.

Step 2: Extract the PD features (i.e., the fractal dimension
and lacunarity).

Step 3: Calculate the degree of the correlation.

K (x) =


−2ρ(x,X0)
b− a

, x ∈ Xo

ρ(x,X0)
ρ(x,X )− ρ(x,X0)

x /∈ X0
(6)

where

ρ(x,X0) =

∣∣∣∣x − a+ b
2

∣∣∣∣− b− a
2

(7)

ρ(x,X ) =

∣∣∣∣x − f + g
2

∣∣∣∣− g− f
2

(8)
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FIGURE 15. Extension membership function.

which relates the jth feature of the tested PD pattern to the jth
input feature of the ith defect type as in Step 1.
Step 4: Set the weights of respective features W1, W2.

In this study, the weights of all features were set to be equal.
Step 5: Evaluate the correlation index related to each defect

type.

ζi =

2∑
j=1

WjKij (9)

Step 6: Normalize the correlation index.

λi =
2ζi − ζmin − ζmax

ζmax − ζmin
(10)

which falls between [−1, 1] and is seen as a significant
quantity for pattern recognition.

TABLE 1. Cs clustering result: FD-3.

C. RECOGNITION RESULT
The extension method was used to identify defects. The first
20 extracted data points were selected as the set of clustered
data for training. The remaining 20 data points were used
in the recognition test, thus yielding the results presented
in Tables 1 and 2. Random uniformly distributed noise was
generated on the basis of the PD signal. Under a condition
of 0% noise, the proposed method could identify the four
defect types with 100% accuracy; under a condition of 10%
noise, the average recognition rate was 86.3%. However,
the HHT method was determined to have an 83.8% recog-
nition rate. The CS method had a higher recognition rate than
did the HHT method under noisy conditions. The proposed

TABLE 2. HHT clustering result: FD-3.

method incorporates fractal dimension and lacunarity char-
acteristics. The clustering result revealed a relatively high
level of effectiveness. Incorporating a third characteristic into
the proposed method may increase the recognition rate under
noise conditions. These results demonstrate that the proposed
method can effectively distinguish the four defect types and
extract crucial characteristic information regarding the four
defect types.

V. CONCLUSION
The present study evaluated four cable types: a standard
cable, one with a scratched insulation layer, one with an
excessively short insulation layer, and onewith an excessively
long insulation layer. The PD characteristics of each cable
type were measured through the application of the HFCT
method. Analysis was performed using amaster–slave system
for the power cable models; the status of the power cable
(i.e., the ‘‘master’’) was assessed by inspecting the dynamic
trajectory of the error signal. Fractal theory was employed
to extract the trajectory properties of fractal dimensionality
and lacunarity related to the various cable types. Additionally,
for the purpose of accomplishing automatic defect recogni-
tion, this study developed a clustering algorithm based on
extension theory. This algorithm demonstrated a clustering
performance level superior to that of the HHT method, thus
proving that it offers more reliable defect detection during
the installation or fabrication of power cable systems in the
service stage.
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