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ABSTRACT This paper introduces a direct universal (automatic) tuner for basic loop control in industrial
applications. The direct feature refers to the fact that a first-hand model, such as a step response first-order
plus dead time approximation, is not required. Instead, a point in the frequency domain and the corresponding
slope of the loop frequency response is identified by single test suitable for industrial applications. The
proposed method has been shown to overcome pitfalls found in other (automatic) tuning methods and
has been validated in a wide range of common and exotic processes in simulation and experimental
conditions. The method is very robust to noise, an important feature for real life industrial applications.
Comparison is performed with other well-known methods, such as approximate M-constrained integral
gain optimization (AMIGO) and Skogestad internal model controller (SIMC), which are indirect methods,
i.e., they are based on a first-hand approximation of step response data. The results indicate great similarity
between the results, whereas the direct method has the advantage of skipping this intermediate step of
identification. The control structure is the most commonly used in industry, i.e., proportional–integral–
derivative (PID) type. As the derivative action is often not used in industry due to its difficult choice, in the
proposed method, we use a direct relation between the integral and derivative gains. This enables the user to
have in the tuning structure the advantages of the derivative action, therefore much improving the potential
of good performance in real life control applications.

INDEX TERMS Frequency response, noise measurement, control systems, robustness, tuning.

I. INTRODUCTION
Industry often relies on simple tests during process operation
to detect changes in process dynamics and adapt control
parameters to maintain the desired closed loop performance
specifications. Often, the test is what is known as a ‘bump’
test, or, in control community known as a ‘step response’
test [1], [2]. Recent industry-academia gatherings have tack-
led the problem of Industry 4.0 requirements and identified
a set of bottlenecks. The Linnaeus Center for Control of
Complex Engineering Systems at Lund University, Sweden,
hosted the workshop on Process Control [3], in collabora-
tion with the Process Control Centre at Lund University,
a reference address for automatic tuning control. It was held

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuangqing Wei.

at Pufendorf Institute in Lund, 26-28 September 2016, and
attended by 60 international persons, organizers included.
From the three discussion groups i) current challenges, ii)
industry meets academia and iii) future visions, the following
problems emerged, here is a simplified extract of the meeting
book report.

• Many PID (proportional-integral-derivative) controllers
are in manual or have default settings, but most of the
participants seemed to be unaware or unworried about
the situation. When the PID controllers are used at the
bottom layer under MPC (model predictive control),
they are often tuned when MPC is commissioned, but
they are unfortunately not maintained tuned; according
to industry reports, controllers lose 60% of their perfor-
mance after the first 6 months [4].
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FIGURE 1. Graphical abstract of the tuning schemes for controller parameters extracted from process
information.

• Related to the use of big data, it is hard to find sequences
of data useful for identification and modeling, since
most of it is closed-loop data, meaning that causality
may be reversed. One solution is to look when loops are
in manual mode, or when setpoint changes occur.

• The technology used in automation software is old, often
from the 60s and 70s; the systems are clumsy and hard
to use. Large overhead in terms of engineering hours
are needed to execute simple tasks as replacing a sensor.
Compared to other systems (smart phones for example),
there is a huge technological gap, which is widening
further.

• Monitoring is an essential element in the long-term
(optimal) functioning of the plant.

• Wireless will become the default communication mech-
anism.

Secondly considered were latest annual IEEE academia-
industry conferences on Emerging Technologies and
Factory Automation, in September 2017 and 2018 [5].
Similar messages emerged from the academia-industry
discussion panels during both meetings. Finally, another
event was perused: the 3rd IFAC International Conference
on Advances in Proportional-Integral-Derivative Control
(PID18), held in Ghent, Belgium, 9-11 May 2018 [6]. Once
again, the academia and industry were present and involved
in discussions, where similar messages as above mentioned
emerged.

In a recent review of the most common issues in industry
indicated the use of PID control and MPC as the two most

encountered in industry [7]. The essential problem remains
undoubtedly the tuning of lower loops as a pre-requisite for
good performance achieved with higher loop / supervisory
loop control. It is a mistake to put higher loop control in
charge of dealingwith poor performance stemming from poor
tuning of lower loop control levels in the process hierarchy.
In this context, (automatic) tuning from ongoing process
operation data is the key to success.

This paper proposes a solution to this problem and posi-
tions the work in the industry-demand framework. The paper
is structured as follows: first, some preliminaries are given as
to introduce the rationale and the indirect controller tuning
methods used for comparison. The third section describes the
methodology behind this universal tuner. Results in simula-
tion are summarized on most representative processes in the
fourth section, followed by the experimental validation, and
implementation issues. A conclusion section summarizes the
main outcome of this work and points to new directions.

II. PRELIMINARIES
A. STEP RESPONSE - INDIRECT TUNING METHODS
The indirect tuning methods are those which prior to control
parameter tuning require identification of basic step response
data to first order plus dead time (FOPDT) or second order
plus dead time (SOPDT) [8], [9]. By contrast, direct methods
skip this identification step. Fig. 1 provides this concept in
graphical form.

Identification for the purpose of control is a demanding
step in the process of model development of dynamical
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FIGURE 2. Schematic identification of modulus and phase in a single frequency point for linear systems.

systems. Latest reviews for industrial relevance indicate that
system identification plays an important role in practice [10].
Identification methods vary in terms of complexity, depend-
ing on the scope of the target model usage. Methods
for system identification are available in both time- and
frequency-domains. Most commonly used in industry are
the step test response data, relay test data and sinusoid test
data. Suitable methods for industrial process control are
event-based algorithms, where basic identification plays an
important role before tuning controller parameters [11]–[13].

Relay based methods have been one of the first used to
automatic tuning of PID-type controllers [14]–[16]. How-
ever, they also have been revised for identification of process
model from data [17], [18] as to improve their performance.

Some example of methods using step response data are
summarized in [19]–[21] and [22]. Of these, most commonly
used are AMIGO (Approximate M-constrained Integral Gain
Optimization) [14] and SIMC (Skogestad Internal Model
Controller) [23].

The AMIGO method uses a FOPDT process approxima-
tion of the form:

Ke−τ s

1+ Ts
(1)

with K the gain, τ the time delay and T the time constant of
the approximation to step response data of the process. It then
uses a parallel PID configuration with the tuning rules:

Kp =
1
K

(
0.2+ 0.45

T
τ

)
Ti = τ

(
0.4τ + 0.8T
τ + 0.1T

)
Td = τ

(
0.5T

0.3τ + T

)
(2)

The SIMC method uses a SOPDT process approximation
of the form:

Ke−τ s

(1+ T1s)(1+ T2s)
(3)

with K the gain, τ the time delay and T1 > T2 the time
constants of the approximation to step response data of the

process. It then uses a series PID configuration with the
tuning rules:

Kp =
T1
2Kτ

Ti = min(T1, 8τ )

Td = T2 (4)

B. FREQUENCY RESPONSE TUNING METHODS
Frequency response function (FRF) of a dynamical system is
a measure of the modulus and phase of the output signal as
a function of an input frequency, relative to the input signal
applied to the system. FRF allows one to determine approxi-
matemodels for the process to be controlled. To appropriately
characterize the process dynamics in a given frequency inter-
val, the gathered information must cover the modulus, phase
and their corresponding slopes with respect to frequency.
Classical methods for estimating FRF are based on input
and output data followed by Fast Fourier Transform (FFT).
These procedures usually require multiple or persistent excit-
ing tests with input signals of various frequencies, so that
the frequency response can be estimated over the required
frequency range [24].

For linear systems, a sinusoidal input of amplitude Ai and
frequency f yields a sinusoidal output of same frequency as
the input, shifted in time τ and with different amplitude Ao
and period T . The modulus is given by the ratio of output
amplitude and the input amplitude for the input frequency
tested in the system. The phase is the time shift between the
input-output signals, as summarized in Fig. 2.

When the FRF is required around certain frequency, it is
pragmatic to reduce the number of unnecessary experiments,
complexity and time-to-deliver by using an efficient and reli-
able algorithm. The result should be the modulus, the phase
and the corresponding frequency response slope in/around a
specified frequency [25], [26].

A large number of applications that require the frequency
response slope justify the necessity for developing such an
algorithm. For instance, in [16] a relay-based method is used,
with the identification method being automated and thus
useful for autotuning applications. The frequency response
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FIGURE 3. The scheme of the relay feedback test.

FIGURE 4. Input-output representation of a relay feedback test and essential information gathered from this test.

slope is considered to be a measure of the process complexity
and it can be used to determine the relative degree of a
process. The slope of the frequency response modulus is
estimated at the gain crossover frequency. This information
is used as a part of the initialization procedure for the tun-
ing of an adaptive controller. Computation of the frequency
response slope has also found applications in the estimation
of non-stationary sinusoidal parameters for sinusoids with
linear AM/FMmodulation [27]. Here, an enhanced algorithm
for frequency domain demodulation of spectral peaks is pro-
posed and it is used to obtain an approximate maximum
likelihood estimate of the frequency slope, as well as an
estimate of the amplitude, phase and frequency parameter
with significantly reduced bias.

In [28] Bode’s integrals are used to approximate frequency
response slope of a system at a given frequency, without
any model of the plant. This information is then used to
design a PID controller for slope adjustment of the Nyquist
diagram and improve the closed-loop performance. Addition-
ally, the frequency response slope is also employed in the
estimation of the gradient and the Hessian of a frequency
criterion, defined as the sum of squared errors between
the desired and measured gain margin, phase margin and
crossover frequency, in an iterative PID controller tuning
method.

Emerging industrial controllers of higher degree of free-
dom are fractional order controllers [7], [29], [30]. The phase
slope of the FRF has been used in the design of fractional
order PD/PI controller based on an auto-tuning method that
requires knowledge of the process modulus, phase and phase
slope at an imposed gain crossover frequency [31].

A popular direct PID tuner is based on relay feedback
test, with amplitude d as depicted in Fig. 3, with the result
given in Fig. 4. This test identifies the modulus at the critical
frequency, i.e. the point of intersection with the negative real
axis in the Nyquist plane. The period of oscillation Tc, and
the amplitude of the oscillation a are the used to tune the
PID-type control parameters. The most known method is the
Ziegler Nichols, and the later revised Ultimate CycleMethod,
with tuning rules:

Kc =
4d
πa

Kp = 0.6Kc
Ti = 0.5Tc
Td = 0.125Tc (5)

This commonly used in industry tuner provides a standard
robustness of 0.5 (on a range from 0 to 1) in the Nyquist plane.

A method based on the same test was proposed in [32],
with one degree of freedom, i.e. to specify the desired phase
margin of the loop. Hence, the user may alter the robust-
ness provided by the tuner, and vary its value according to
the process dynamics. From the same relay feedback test
and specified phase margin (PM ) value (commonly selected
between 40-75 degrees), the tuning rules are:

Kc =
4d
πa

Kp = Kc cosPM

Ti = Tc
1+ sinPM
π cosPM

Td = 0.25Ti (6)
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FIGURE 5. Result for the high order process.

FIGURE 6. Result for the integrating process.

Notice the relation Ti = 4Td ; this is a commonly used choice
to simplify the tuning procedure; it assumes two identical real
zeros in the PID controller.

C. EXAMPLES AND COUNTER EXAMPLES
An example of a process which is not obvious to control with
a PID-type controller is a high order process as in

P1(s) =
1

(s+ 1)6
(7)

The result of the ultimate cycle (UC) method autotuner is
given in Fig. 5. The reference performance for comparison
has been done using the process model and a model based
controller tuning method (e.g. can be any method of user’s
choice, CAD packages, root locus, etc). It can be observed
that the autotuner performs equally well as the model based
tuner.

Now, let us consider the following commonly used in
practice process model (i.e. any positioning system):

P2(s) =
32

s(s+ 3)(s+ 21)
(8)

and the result of the UC tuner is given in Fig. 6, with less
good performance against themodel based tuner. TheNyquist
diagram of the corresponding loop is given in Fig. 7, where is

FIGURE 7. Insight into the Nyquist diagram of the loop frequency
response.

FIGURE 8. Adapted specification delivers good results for the integrating
process.

can be observed amere phasemargin of 25 degrees is ensured,
due to the existence of the integrator (i.e. lower frequencies
effect with a phase of -270 degrees).

Alternatively, if the phase margin method is used with
a specified value of 50 degrees, the result improves to a
comparable performance in closed loop as the model based
tuner - as illustrated in Fig. 8.

Let us again consider a commonly used process in industry
(i.e. delay dominant system):

P3(s) =
100

(1+ 5s)(1+ 10s)
e−25s (9)

and tune a PID controller with the phase margin specified at
70 degrees (high robustness). The result is depicted in Fig. 9.
As observed, the PM tuner delivers unstable loop results
for this kind of process, while the model based tuner gives
satisfactory results. The insight in the PM tuner failure is
that due to the high values of time delay, the loop modulus
increases slightly as the loop angle decreases at high frequen-
cies, resulting in the fact that the loop goes beyond the critical
point (0,−1), i.e. unstable result.

D. PRELIMINARY CONCLUSIONS
As a summarizing thought, not only the choice of the FR
point, but also the slope of the FR loop is important for the
closed loop performance.
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FIGURE 9. Result for the time delay process.

A direct tuner is a very attractive option for PID control
from practical point of view, as it does not require apriori
identification. A plethora of papers and books have pre-
sented relay feedback PID tuning methods as direct methods
for tuning controller parameters. However, as shown here,
it is not universally successful as the user still has to make
some choices depending on the type of process at hand. Yet
another plethora of other PID (automatic) tuning methods
have been published with excellent results, successful in
practice.

From the above insight, it follows that specifying a point
in frequency domain does not suffice for the loop to be
guaranteed stable. Additional specifications for the loop slope
towards high frequencies is equally important. This can be
achieved by specifying a forbidden zone as a circle, and
imposing the loop is tangent to this circle. It may be an
optimization procedure including other specifications like
gain margin, phase margin, etc.

The next section introduces the concept and method for
a direct tuning method which counteracts the pitfalls of the
previous examples.

III. PROPOSED METHODOLOGY
A. THEORETICAL PRINCIPLES FOR PROCESS FR SLOPE
CALCULATION
To determine the frequency response (modulus and phase) of
any stable process at a specific frequency ω̄, a sinusoidal input
signal u(t) = Au sin(ω̄) is applied to the process as in Fig. 10.
The FR of the process is then

P(jω̄) =
Ay
Au
ejφy = Mejφ (10)

The process derivative is used to determine the output signal
ȳ(t):

Ȳ (s) =
dP(s)
ds

U (s) (11)

and the corresponding frequency response in

dP(jω)
d(jω)

∣∣
ω=ω̄
=
Aȳ
Au
ejφȳ = M̄ejφ̄ (12)

Theorem 1: If the process input is u(t), then the output ȳ(t)
of the process derivative is given by ȳ(t) = x(t)− t ·y(t), with
x(t) the process output.
Proof is given in Appendix.

The FR of the process can be separated in a real R(ω̄)
and an imaginary I (ω̄) part from (10). The derivative can
also be separated in a real and imaginary part from (12) as
in

dP(jω)
d(jω)

∣∣
ω=ω̄
=
dR(ω)
dω

∣∣
ω=ω̄
+ j

dI (ω)
dω

∣∣
ω=ω̄

(13)

Having the real and imaginary parts available as input, one
may calculate the modulus derivative as in

dM (ω)
dω

∣∣
ω=ω̄
=

1
M

(
R(ω̄)

dR(ω)
dω

∣∣
ω=ω̄
+ I (ω̄)

dI (ω)
dω

∣∣
ω=ω̄

)
(14)

and the phase derivative as in

dφ(ω)
dω

∣∣
ω=ω̄
=

1
M2

(
R(ω̄)

dI (ω)
dω

∣∣
ω=ω̄
− I (ω̄)

dR(ω)
dω

∣∣
ω=ω̄

)
(15)

This method is useful in ideal situations, simulation stud-
ies and in processes without noise. In practice however,
processes and signals in general are affected by stochastic
disturbances and noise that could potentially alter the final
result. The following example illustrates this situation and
justifies the need to robustify the proposed method. Consider
the mass-spring-damper system from Fig. 11. Mass-spring-
dampers systems are generally used to study behavior of the
yarn in weavingmachines, active suspension system, trains or
chain of cars on highways, tall buildings, airplane wings, etc.
Applying a sine-test signal of frequency 33.4 rad/s, the output
signal and its derivative are obtained as indicated in Fig. 12.
Clearly, the measured output signal is corrupted with stochas-
tic disturbances.

The scheme from Fig. 10 assumes unbounded signals x(t)
and t∗y(t), while their difference ȳ(t) remains bounded. How-
ever, if the signal y(t) contains other components than a pure
sine, they are amplified by the filter, resulted in unbounded
signal ȳ(t).

B. ROBUST CALCULATION OF THE PROCESS FR SLOPE
CALCULATION
A realistic form of the process output is given by

y(t) = Ay sin(ω̄t + φy)+ b+ n(t) (16)

with zero average stochastic disturbance n(t) and non-zero
bias term b for an integrative process, otherwise b = 0. Using
standard transfer function analyser principles, problems of
non-linear distortion and noise corruption are overcome if the
measured output y(t) is first multiplied by sine and cosine
respectively of the input frequency, followed by integration
over the measurement period Tm = k 2π

ω̄
. After sufficient

measurement time, only the term directly proportional to
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FIGURE 10. Basic scheme for calculating the slope of the frequency response of the process
from a single sine test.

FIGURE 11. Mass-spring-damper system – experimental unit; the position
of the second mass (in the middle position) is the one to be measured as
output. The input is the linear motor on the far left of the setup. The
damper on the far right of the setup is not connected, in order to provide
poor damping in system dynamics.

measurement time remains significant, e.g. the signal mul-
tiplied with the sine function becomes:

ys = 0.5TmAy cosφy (17)

and similarly for the signal multiplied with the cosine func-
tion. Combining them leads to the relation

yc − jys =
∫ Tm

0
y(t)(cos(ω̄t)− j sin(ω̄t))dt

=

∫ Tm

0
y(t)e−jω̄tdt (18)

whereas the last term can be calculated via discrete Fourier
Transform as in∫ Tm

0
y(t)e−jω̄tdt = Ts

N−1∑
0

y(kTs)e−jω̄kTs (19)

with the sampling period Ts adequately chosen such that
Tm = NTs, with N the total number of measured samples.
We can also write

yc − jys = −j0.5TmAyejφy (20)

from where we can summarize the forms of amplitude and
phase of the output signal are given by

Ayejφy =
2j
N

N−1∑
0

y(kTs)e−jω̄kTs (21)

For the calculation of the slope of the process, we consider
Fig. 13 where yTR(t) is the transient part and ySS (t) is the
steady state part of the output signal y(t), assuming the tran-
sient part going to zero (or to a constant value for integrating
systems).

The steady-state component can be defined as

yss(t) = Ay sin(ω̄t + φy) = S sin(ω̄t)+ C cos(ω̄t) (22)

where S = Ay cos(φy) andC = Ay sin(φy). Laplace transform
gives

YSS (s) =
Sω̄

s2 + ω̄2 +
Cs

s2 + ω̄2 =
Sω̄ + Cs
s2 + ω̄2 (23)

with the derivative given by

dYSS (s)
ds

=
C

s2 + ω̄2 −
2s

s2 + ω̄2 YSS (s) (24)

and its inverse Laplace transform is

− t · yss(t)=
Ay sin(φy)

ω̄
sin(ω̄t)−L−1{

2s
s2+ω̄2 YSS (s)} (25)

This result suggest to replace Fig. 13 by the new scheme
in Fig. 14.

The Laplace of the signal x(t) can now be computed as

X̄ (s) =
2s

s2 + ω̄2 YTR(s)
ω̄

s2 + ω̄2 (26)

with

x̄(t) = L−1{
2s
ω̄
YTR(s)} sin(ω̄t) (27)

As the component t ·yTR(t) does not influence the steady-state
oscillation in ȳ(t) or x̄(t), this is then the final form.
For the special case of integrating systems, the transient

signal yTR(t) converges to a constant value yc. In this case,
the DFT of |yTR(t) − yc| is firstly calculated and afterwards
corrected with the FT of a step signal with amplitude yc.
In other words, a scaling factor of yc/(jω̄) should be added.
The FR slope of the process algorithm is summarized

below:
• perform a sine test
• analyze steady-state oscillation to determine amplitude
Ay and phase φy

81314 VOLUME 7, 2019
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FIGURE 12. Sine-test results on a real mass-spring-damper system; one may observe the result does not converge to a useful value due to
noise and disturbances.

FIGURE 13. Preliminary solution to the robust scheme for determining
the frequency response slope.

• calculate transient part as yTR(t) = y(t) − yss(t), with
yss(t) = Ay sin(ω̄t + φy)

• calculate the complex number

Aȳejφȳ = 2jTs
N−1∑
k=0

yTR(kTs)e−jω̄kTs +
Ay sin(φy)

ω̄

• calculate the FR of the process and the FR slope at the
test frequency ω̄:

P(jω̄) =
Ay
Au
ejφy

and
dP(jω)
d(jω)

∣∣
ω=ω̄
= j

Aȳ
Au
ejφȳ

FIGURE 14. Final solution to the robust scheme for determining the
frequency response slope.

This concludes the slope calculation of the process from a
single sine test.

C. CALCULATION OF THE LOOP FR SLOPE
The loop frequency response contains the process and con-
troller FRF for the known frequency. For a known controller
C(s), the values forC(jω̄) and dC(jω)

dω

∣∣
ω̄
can be easily obtained.

The process values for P(jω̄) and dP(jω)
dω

∣∣
ω̄
are obtained from

the sine test described in previous subsections. The loop FRF
is given then by:

dL(jω)
dω

= P(jω)
dC(jω)
dω

+ C(jω)
dP(jω)
dω

(28)
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FIGURE 15. Nyquist diagram of loop FRF and circle of forbidden zone for
tuning controller parameters.

D. CALCULATION OF THE CIRCLE SLOPE
The user defined circle as the forbidden zone of the loop FRF,
is defined by the relation

(Re+ C)2 + Im2
= R2 (29)

and goes through: point A - defined as the gain margin GM
and point B - defined as the phase margin PM. Fig. 15
provides essential information in the Nyquist plane used to
optimize the angle α necessary in the tuning of the controller
parameters.

In Fig. 15, point A is given by relation (−1/GM + C)2 =
R2 and point B is given by relation (− cosPM + C)2 +
(− sinPM )2 = R2. It follows equality C2

− 2 cosPM ∗ C +
1 = C2

− 2C/GM + 1/GM2. From here one can extract the
value of the circle center and circle radius as in

C =
GM2

− 1
2GM (GM cosPM − 1)

R = C −
1
GM

(30)

The complex number of the positions on the circle are given
by Re = −C + R cosα and Im = −R sinα. The angle of the
slope is given by αC = 90o − α.

It follows an optimization procedure for 0 ≤ α ≤ αmax
such that |αL − αC | is minimized. This then delivers the
information for the last step in the tuner procedure summarize
din the next subsection.

E. DIRECT TUNER PROCEDURE
Having all the information at hand from previous subsections,
the direct tuner algorithm consists of several steps summa-
rized hereafter:
• select a test frequency ω̄, e.g. gain cross over frequency
ωc; other frequencies may be chosen in the 3rd quadrant

• perform a sine-test on the process P(s); the result
is then the frequency response information at that
test-frequency P(jω̄) and the slope dP(jω)

dω

∣∣
ω̄

• define a forbidden region around the −1 point in the
Nyquist plane as a circle

FIGURE 16. Signals used in the MSD setup for slope calculation.

• for each point on the circle: calculate a PID controller
C(s) such that the loop frequency response L(jω) =
P(jω)C(jω) goes through a single point on this circle (see
next step)

• find the point on the circle for which the loop frequency
response touches the circle (kisses the circle / Kiss Cir-
cle (KC) method), i.e the difference between the slope
of the circle and the slope of the frequency response is
minimum

• select the PID parameters from the last step

In Appendix the reader may consider further support in
implementing the procedure in practice.

IV. RESULTS
A. SIMULATION AND EXPERIMENTAL VALIDATION OF
THE SLOPE CALCULATION
In order to indicate the feasibility of the slope calculation for
systems with noise and transients in the output signal, we reit-
erate the experimental validation on the mass-spring-damper
system. For the purpose of validation, extensive identification
led to the following process transfer function

PMSD(s) =
28340

s3 + 173.9s2 + 1282s+ 145600
(31)

from which the critical frequency is ω̄ = 33.4 rad/s, with
the process value P(jω̄) = −0.578 − 0.0644j and its deriva-
tive dP(jω)

d(jω)

∣∣
ω−ω̄

= 0.130 + 0.056j. It follows the modu-
lus and phase are M (ω̄) = 0.581 and φ(ω̄) = −173o,
respectively. The slopes of the FRF modulus and phase
are d20logM (ω)

dlog(ω)

∣∣
ω=ω̄

= −155 dB/dec and dφ(ω)
dlog(ω)

∣∣
ω=ω̄

=

−207o/dec.
From the experimental test with the sine input, it follows

the critical frequency ω̄ = 33.4 rad/s, the FRF of process
and its derivative are −0.561− 0.0264j and 0.131+ 0.032j,
respectively. The corresponding modulus is 0.562 and phase
−177o. The slopes of the FRF for modulus and phase are
−157 dB/dec and −204o/dec, respectively.
Hence, it can be concluded that the experimental values

correspond well with the theoretical values for the system.
Fig. 16 depicts the signals used to compute the slopes as
detailed in this paper.
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FIGURE 17. Signals used for the slope calculation for the delay dominant
process.

FIGURE 18. Signals used for slope calculation for the integrating process.

Another example for calculus of the slope is a time delay
dominant system:

2e−25s

(1+ 5s)(1+ 10s)
(32)

where noise has been added to mimic a real situation. The
signals used to calculate the slope are given in Fig. 17, and
again, a very good validation has been obtained.

Finally, an integrating system has been tested:

e−2s

s(1+ s)
(33)

with added noise and signals given in Fig. 18. This is par-
ticularly challenging as it contains both integrator and a con-
siderable time delay value. The theoretical and experimental
results of the proposed slope calculation method are again in
agreement.

Other processes have been analyzed in simulation and
in experimental setups. For instance, the slope calculation
has been used in a mechatronic application of an industrial
robot arm control as described in [34], [35]. Prior versions
of slope calculation have been discussed in vibration sys-
tems control [36], in a multivariable nonlinear benchmark
process [38] and in extensive simulation processes in [37].

B. SIMULATION AND EXPERIMENTAL VALIDATION OF
THE UNIVERSAL TUNER
The method for the universal tuner parameter calculation
using the FRF and slope calculation method has been exten-
sively tested in simulation, with successful results on a

FIGURE 19. Comparison for the high order process.

plethora of type of processes. These processes with the spec-
ifications of gain margin GM = 2 dB, phase margin PM =
45 degrees, include:

1
(s+ 1)6

e−s

s(1+ s)
2

(1+ 10s)(1+ 5s)(1+ 2s)
(1− 0.2s)e−0.1s

(s+ 1)2
498

s(s2 + 1.8s+ 36
1.75(1− 3s)(1− 5s)e−1.25s

(1+ 10s)(1+ 4s)2

(s+ 6)2

s(s+ 1)2(s+ 36)
e−s

s(s+ 1)3
(34)

The full details on these processes and controller parame-
ters can be found in [33]. From these, a selection is made and
compared here against the ultimate gain method and the two
tuners presented in the beginning of the paper: AMIGO and
SIMC.
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FIGURE 20. Comparison for the delay dominant process.

The high order process

1
(s+ 1)6

(35)

with the universal tuner gives the reference tracking and load
disturbance rejection from Fig. 19.

The dominant time delay process

0.04e−25s

(s+ 0.2)(s+ 0.1)
(36)

with the universal tuner gives the reference tracking and load
disturbance rejection from Fig. 20.

Finally, a nonlinear 6th order process is assembled with
three Quanser modules of water tanks, as depicted in Fig. 21.
The water is pumped from the water reservoir Vp1,Vp2,Vp3
and entered the first tank (on the far left, upper tank L1)),
following in series the tanks, with the purpose to regulate the
water level in the last tank (on the far right, lower tank L6).
A disturbance V is implemented by opening and closing the
valve in the middle module.

From the step response, the AMIGO and SIMC process
approximations necessary for the controller tuning are

FOPDT :
0.82e−30s

1+ 38s

SOPDT :
0.82e−22s

(1+ 24s)(1+ 23s)
(37)

FIGURE 21. Photo of the sextuple water tank system.

TABLE 1. Controller parameters.

The tuning of the universal tuner has been done for speci-
fications of gain margin GM = 2.5 and phase margin PM =
55. The controller parameters are given in Table 1.

The successful results and details of the slope calculation,
signals used and controller derivation are described in [39].

C. ON IMPLEMENTATION ASPECTS
Notice the controllers presented here are of PID-type. The
methods presented here for slope calculation with a single
sine experiment on the process and the controller parameter
optimization may be used for any structure of controller
function, with the necessary adaptations. If PID-type control
is used in practice, it is often necessary to add a filter to
the derivative term. This may be used as part of the design
as discussed in [40], [41], or it can simply be tuned such
that the artificial pole has no influence on the dominant
dynamics of the system. Altogether reducing its effect even
for non-experienced users requires to divide the controller
form by the extra pole.

From the testing point of view, a sinusoid is not a difficult
test to perform on the real industrial process. In a manifold
of real life processes, often the controlled output is in manual
mode (which implies a certain degree of sluggishness) or in
closed loop mode within a tolerance interval. Hence, the sine
may be included with an amplitude to accommodate the
tolerance interval during continuous operation.

The manner in which the slope and controller parameters
are calculated allow for the method to be implemented in an
autonomous mode, i.e. as an automatic tuner.

V. CONCLUSION
A direct controller tuning method is presented with inher-
ent robust properties to measurement noise and process

81318 VOLUME 7, 2019



R. De Keyser et al.: Universal Direct Tuner for Loop Control in Industry

disturbances. The proposed method has been extensively
tested in simulation on a variety of processes representative
for industrial applications and lower loop control problems.
Extensive experimental validation has also been performed
successfully. The controller type is PID-type, but the method
is generically applicable to any controller structure. There
are no known limitations of the proposed method. Although
an important industrial control problem is ratio control,
the method presented here has not yet been evaluated for this
type of industrial control loop.

APPENDIX A
Property of the Laplace transform yields

dF(s)
ds
= L{−t · f (t)} (38)

The signal x(t) is the output of the process P(s) to an input
signal t · u(t). It follows that

X (s) = P(s)L{t · u(t)} (39)

with X (s) the Laplace transform of the signal x(t). Using the
property of the Laplace transform it follows

X (s) = −P(s)
dU (s)
ds

(40)

The Laplace transform of the signal u(t) and its derivative are
given by

U (s) =
Auω̄

s2 + ω̄2

dU (s)
ds
= −

2Auω̄s
(s2 + ω̄)2

= −
2s

s2 + ω̄2U (s) (41)

Using (40) leads to

X (s)=−P(s)
dU (s)
ds
=

2s
s2+ω̄2P(s)U (s)=

2s
s2+ω̄2 Y (s) (42)

which suggests that the signal x(t) may be obtained from
the measured process output y(t). The derivative of Y (s) =
P(s)U (s) is

dY (s)
ds
=
dP(s)
ds

U (s)+ P(s)
dU (s)
ds

(43)

Recalling Ȳ (s) = dP(s)
ds U (s) and (40) it follows that

dY (s)
ds
= Ȳ (s)− X (s) (44)

whose inverse Laplace is

−t ∗ y(t) = ȳ(t)− x(t) (45)

which completes the proof.

APPENDIX B
In order to provide support for algorithm implementation,
an example from the paper is fully illustrated with cor-
responding programs and functions in Matlab. The users
are kindly advised to cite this paper when using the soft-
ware provided by the authors. The software can be found
at the following location: Clara Ionescu - UGent (2019).
Universal tuner for all types of processes (https://www.
mathworks.com/matlabcentral/fileexchange/71759-universal
-tuner-for-all-types-of-processes), MATLAB Central File
Exchange. Retrieved June 5, 2019.
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