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ABSTRACT Survival prediction systems are used among emergency services at hospitals in order tomeasure
their quality objectively. In order to do so, the estimated mortality rate given by a prediction model is
compared with the real rate of the hospital. Hence, the accuracy of the prediction system is a key factor
as more reliable estimations can be obtained. Survival prediction systems are aimed at scoring the severity
of patients’ injuries. Afterward, this score is used to estimate whether the patient will survive or not. Luckily,
the number of patients who survive their injuries is greater than that of those who die. However, this degree
of imbalance implies a greater difficulty in learning the prediction models. The aim of this paper is to develop
a new prediction system for the Hospital of Navarre with the goal of improving the prediction capabilities of
the currently used models since it would imply having a more reliable measurement of its quality. In order
to do so, we propose a new strategy to conform an ensemble of classifiers using an evolutionary under
sampling process in the bagging methodology. The experimental study is carried out over 462 patients who
were treated at the Hospital of Navarre. Our new ensemble approach is an appropriate tool to deal with this
problem as it is able to outperform the currently used models by the staff of the hospital as well as several
state-of-the-art ensemble approaches designed for imbalanced domains.

INDEX TERMS Ensembles, evolutionary algorithms, imbalanced classification, survival prediction, trauma.

I. INTRODUCTION
Severe trauma patients are persons who have several injuries
caused by energy interchanges [1] such as car crashes or falls.
The goal of the emergency services is to save as many persons
as possible and to try to make them have the best possible life
quality after their recovery, as well. The later fact is not only
beneficial for the patients but it also implies a reduction in the
expenses derived from the subsequent treatments prescribed
to these patients.

The survival rate of trauma patients is a good quality
indicator of the emergency services. However, it is not an
objective measure because the severity of the injuries of the
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treated patients can vary depending on the hospital and/or
the period of time. For example, one hospital may have a
survival rate of 97%, whereas another one could stand with
85%. Nevertheless, such a great difference at first glance may
led to draw incorrect conclusions, since the former hospital
may receive less seriously injured patients. Consequently,
it is important to develop tools allowing one to objectively
measure the quality of emergency services by making use of
the severity of the injuries of the patients to properly assess
its survival status. For this reason, survival prediction systems
were developed in such a way that a number representing the
survival probability of a patient was given, which was there-
after converted to a class of survival or death. In this man-
ner, it is possible to compute standardized mortality rate [2]
dividing the real mortality rate by the predicted mortality
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rate, which allows one to determine the quality of emergency
service of the hospitals. If the real rate is close to the predicted
one (standardized mortality rate close to 1), the emergency
service would be working properly. In summary, a survival
prediction system is used as a normalization factor in order
to be able to compare different hospitals or the same hospital
over time. Consequently, the more accurate the prediction
is, the better the measurement of the quality of the service
will be.

Nowadays there are standard methods that are used to
predict the survival status of trauma patients. One of the
most applied ones is the TRauma - Injury Severity Score
(TRISS) [3], which was developed in USA with the data
obtained in the major trauma outcome study. This method
is based on a logistic regression model as most of the cur-
rent prediction systems do [4], [5]. However, the usage of
a general system for every hospital may be biased when
applied to different hospitals from different regions. This
is why developing new models using the data for each
hospital can improve the results given by TRISS, obtain-
ing a more reliable measurement tool for the corresponding
hospital.

The survival prediction of trauma patients is a classifica-
tion problem [6], since there are only two possible outcomes
in the system: survive and die. Nowadays the application of
soft computing techniques is widely accepted to tackle dif-
ferent types of classification problems [7]–[10]. Fortunately,
the number of severe trauma patients who survive to their
injuries is greater, to a large degree, than that of those patients
who die. In data mining, this problem is known as the class
imbalanced problem [11], [12], since there are more instances
belonging to one class (majority class, survive) than to the
other (minority class, die). This problem is a challenge for
machine learning techniques [13] because classifiers usually
tend to predict the majority class for all the instances, and
consequently most of the time they fail the prediction of the
instances belonging to the minority class.

Techniques applied to face imbalanced classification prob-
lems can be categorized in three main groups: 1) internal
approaches [14], [15], which create algorithms or modify
existing ones, 2) external techniques [11], [16], which add
a preprocessing step where the data is sampled (balanced)
before the learning process, and 3) cost-sensitive meth-
ods [17], which consider the two former to take into account
the misclassification costs in the learning process. In the
last years the usage of ensembles of classifiers is emerging
to tackle this problem [18]–[20]. Ensembles are aimed at
increasing the performance of single classifiers by learning
several of them and, when classifying new instances, query-
ing all of them and combining their outputs to determine the
class. However, for the sake of dealing with imbalanced prob-
lems they have to be specifically designed. On this regard,
there is a positive synergy between sampling techniques and
ensemble-based algorithms, since they usually enhance the
results obtained when applying sampling techniques before
learning a single classifier [12].

This work is aimed at developing a new prediction system
adapted to the features of the trauma patients treated at the
Hospital of Navarre (Spain). Consequently, the measurement
of the quality of the emergency service of this hospital can
be improved by comparing the real status of these patients
with the predictions of the system. To do so, we propose
the usage af an ensemble based model, instead of a single
prediction system, combined with sampling techniques to
deal with the imbalanced data problem. Specifically, we pro-
pose a new technique to conform an ensemble of classifiers
(C4.5 decision trees [21] are used in this paper) by combining
the Evolutionary Under Sampling (EUS) [22] algorithm with
the bagging methodology. That is, the generation of each bag
is carried out by applying EUS. Consequently, the quality of
each bag may be increased so that it leads to learning better
base classifiers whereas maintaining their diversity (due to
the usage of a specific mechanism), which can enhance the
overall performance of the ensemble. Moreover, this is a
novel approach as it is the first method combining EUS
and bagging. Although there is an ensemble making use of
EUS and boosting [23], we will show that our new proposal
enhances its results in this problem. All in all, the main
novelties of this work are:

1) The definition of a new methodology to build an
ensemble of classifiers for imbalanced classification
problems. Specifically, it creates a bagging based
ensemble where EUS is applied in each bag to select
the most important patients of the survive class.

2) The application for the first time of ensembles of classi-
fiers considering sampling techniques in their construc-
tion to tackle the survival prediction of trauma patients.

The experimental study has been conducted over the
patients stored in the Major Trauma Registry of Navarre
(MTRN) [24]. Specifically, the MTRN is composed
of 462 patients who were treated at the emergency services
of the Hospital of Navarre in 2011 and 2012. We compare the
results of our proposal with those provided by the following
single models:
• TRISS and the Mortality Prediction Model of Navarre
(MPMN) [5], since they are applied at the Hospital of
Navarre.

• The cost sensitive version of the C4.5 decision tree [25]
as it is a well-known technique for imbalanced domains.

Moreover, we also consider in the comparison easy-
ensemble [19] as well as with several ensemble methods
based both on bagging and boosting designed for imbalanced
domains [12]. The quality of the results is measured using
three well-known metrics for imbalanced domains like the
area under the ROC curve (AUC) [26], the geometric mean
(GM) [27], which quantifies the balance between specificity
and sensitivity, and the F-measure [28]. The results are sup-
ported by a proper statistical study, which is conducted using
the Mann-Whitney’s U statistical test [29].

The remainder of this work is organized as follows:
Section II describes the problem tackled in this work.
In Section III the necessary concepts about imbalanced
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classification problems are introduced including related
ensemble approaches. Next, our new proposal is described in
detail in Section IV. The obtained results and the correspond-
ing analysis are shown in Section V and finally, the main
conclusions are drawn in Section VI.

II. SURVIVAL STATUS PREDICTION OF SEVERE TRAUMA
PATIENTS: PROBLEM DESCRIPTION
Trauma patients are persons suffering from several serious
injuries, which imply a risk for their life. It is one of the
most frequent causes of death for people under 40 and it
also implies high economic expenses for health centers [30].
These patients usually follow an established medical treat-
ment, and therefore there is a relation between the therapeutic
measures taken and the survival status of the patients, which
can take only two values: survive or die.
Survival prediction systems are applied to convert the

severity status of these patients into a probability representing
the likelihood of being able to survive, which can be straight-
forwardly transformed into the two mentioned classes: sur-
vive and die. These measurements can be used to compare
two health centers objectively, taking into account the severity
of the patients they have to deal with. In summary, if a hospital
is able to safe the life of more patients than those that were
predicted by the model, it would be classified as a good
quality hospital because it would be working better than the
standard.

The goal of any hospital control system is to perform a
continuous and measurable improvement of the treatments
applied to patients. With this aim, the information obtained
from all the severe trauma patients treated at health cen-
ters is stored in a database named Major Trauma Registry
(MTR) [24]. A MTR is a precise and complete source of
information that allows one to continuouslymonitor the assis-
tance process in the trauma center units. A well-designed
MTR helps hospital managers in analyzing the information
trying to discover facets that can be changed, aimed at
improving the quality of life of the survivors and coordinating
the different services involved in care units. Both the monitor
and quality control processes have allow the mortality and
disability rates of these patients to be reduced in developed
countries in the last years [31].

The emergency department of the Hospital of Navarre
(Spain) conducted a study that allowed them to develop and
validate the MTR of Navarre (MTRN) [24]. This registry
is based on the Utstein model [32], which determines the
features to be collected (a total of 53). Some of them are
easily obtained like the age or the gender of the patients,
whereas the other ones are based on the severity of the injuries
of the patients such as the Injury Severity Score (ISS) [33],
the New Injury Severity Score (NISS) [34] or the Revised
Trauma Score (RTS) [35].

We have to point out that not all the severe trauma patients
are stored in the MTRN. There exist the following five exclu-
sion criteria:

TABLE 1. Profile of the patients stored in the major trauma registry of
Navarre.

1) The value of the NISS feature is less than 15.
2) The period of time among the injury and the hospital

admission is greater than 24 hours.
3) The patient was drowned.
4) The patient was hanged.
5) The patient was burnt.
Specifically, the MTRN stores data of 462 patients col-

lected between 2011 and 2012,1 368 of them survived to their
injuries whereas the remainder 94 died. Consequently, it is an
imbalanced classification problem as there is a larger number
of patients who survive than that of those who die. In Table 1
we show a summary of the profile of the patients stored in the
MTRN.

A. RELATED WORKS
The comparison of the results achieved by different health
institutions at any level (regional, national or international)
allows one to enhance the data collection and the patient
survival [4], [36]. Soft computing techniques are usually
considered to do so. The best example is the standard method
in this domain, that is, the Trauma and Injury Severity Score
(TRISS) [3]. This method is based on a logistic regression
and its input variables are the ISS [33], the RTS [35] and
the age, which is binarized. However, the performance of
TRISS can be enhanced by learning the model parameters
according to the features of new patients as it is currently
done in this field [37]–[39]. New adjustments for the TRISS
model have been recently published like [40]. There are also
recent papers where we can find comparisons among the
TRISS methodology and new prediction systems like TARN

1At the moment when the staff of the Hospital of Navarre provided us the
data.

VOLUME 7, 2019 76011



J. A. Sanz et al.: Evolutionary UnderBagging Approach to Tackle the Survival Prediction of Trauma Patients

and NORMIT [41] or models focused on specific segments
of the population like geriatric trauma patients [42]. The sec-
ond version of the Revised Injury Severity Classification
(RISC II) [4] was developed in order to deal with the limi-
tations detected in its first version (RISC) [43]. This model
considers laboratory values like base deficit, haemoglobin’s
concentration and thromboplastin time for the first time,
as well as medical interventions such as cardiopulmonary
resuscitation (CPR) [44].

The staff of the Hospital of Navarre made a review of pre-
diction techniques [45] and developed their own model [5],
which is named as Mortality Prediction Model of Navarre
(MPMN). This model is also a logistic regressionwhose input
variables are the age, the RTS, the NSS and the previous
morbidity. The performance of MPRN is similar to that of
RISC II for the patients stored in the MTRN [46]. Further-
more, trying to provide a more interpretable model they made
usage of decision trees as well as sampling techniques to
tackle the imbalanced data in [47]. Finally, they also proposed
to apply a multiple classifier system in [48] for improving the
performance of individual models.

As it can be observed, all the methods but the last one
relies on the usage of a single classifier to tackle the survival
prediction problem and consequently, whether ensembles of
classifiers would improve the performance of the system or
not remains as an open question, which we aim to answer in
this paper.

III. IMBALANCED CLASSIFICATION PROBLEMS
This section is aimed at introducing the background about
the class imbalance problem besides the proper performance
metrics for this problem (Section III-A) and describing the
ensemble methods related to our proposal (Section III-B).

A. CLASS IMBALANCE PROBLEM AND PERFORMANCE
METRICS
Before defining the imbalance classification problems,
we recall the concept of supervised classification. A classifi-
cation problem consists in learning a function called classifier
that is able to predict the class of new incoming examples.
To do so, a training set DT composed of P labeled exam-
ples xp = (xp1, . . . , xpn), p = {1, . . . ,P}, where xpi is the
value of the i-th variable (i = {1, 2, . . . , n}) of the p-th
training example. Each example belongs to a unique class
yp ∈ C = {C1,C2, . . . ,Cm}, where m is the number of
classes of the problem.

An imbalanced classification problem [11], [12] is a clas-
sification problem where the number of examples belonging
to the different classes is considerably different. That is,
the class distribution is not uniform. When tackling two class
problems, the class having the largest number of examples
is known as majority class (or negative) and the other class
is known as minority class (or positive). The Imbalanced
Ratio (IR) [49], is computed by dividing the number of exam-
ples belonging to the majority class by that of the minority
class.

TABLE 2. Confusion matrix for a two class problem.

A key point when tackling classification problems is
the measurement of the system’s performance. Classically,
the usage of the percentage of correctly classified examples
(accuracy rate) is used to asses the quality of the classifiers.
However, in imbalanced domains it is no longer a proper mea-
sure, since the majority class clearly dominates this metric.
Therefore, to measure the quality of the classifiers in imbal-
anced classification problems, the accuracy on each class has
to be taken into account simultaneously. There are several
proper metrics, which are constructed from the confusion
matrix (Table 2), which stores the number of correctly and
incorrectly classified examples in each class.

From this matrix, different measures can be computed to
perform the evaluation in an imbalanced framework:

• True positive rate: It is also known as recall and it is
the percentage of positive instances correctly classified,
which is computed as TPrate = TP

TP+FN
• True negative rate: It is the percentage of negative
instances correctly classified, which is computed as
TNrate = TN

FP+TN
• False positive rate: It is the percentage of nega-
tive instances misclassified, which is computed as
FPrate = FP

FP+TN
• False negative rate: It is the percentage of posi-
tive instances misclassified, which is computed as
FNrate = FN

TP+FN

However, these measures on their own are still inadequate
because they do not consider both classes at the same time.
In this work, we have selected three performance metrics that
are suitable for this domain.

The first one is the geometric mean (GM) [27], which
computes the geometric mean between the accuracy obtained
in each class as it is shown in (1).

GM =
√
TPrate · TNrate (1)

The second performance metric is the Area Under the
ROC Curve (AUC) [26]. It allows one to take into account
the balance between TPrate and FPrate, which tries to show
that increasing the number of true positives without also
increasing the number of false positives is not possible for any
classifier. This performance metric is obtained applying (2).

AUC =
1+ TPrate − FPrate

2
(2)

The third one is the F-measure [28] that is defined as the
harmonic mean between precision, which is the percentage
of correctly classified instances of those predicted as positive
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( TP
TP+FP ), and recall (TPrate) as shown in (3).

F − measure = 2 ·
precision · recall
precision+ recall

(3)

B. ENSEMBLE METHODS TO DEAL WITH IMBALANCED
CLASSIFICATION PROBLEMS
The problem of imbalanced classification is present in many
real-world problems. In the last years, there is an increasing
number of solutions using ensembles of classifiers to deal
with it. An ensemble is a classifier that, in turn, is com-
posed of several classifiers [12]. Their objective is to enhance
the performance of single classifiers by learning a group of
them, which are known as base classifiers. To classify new
instances, all the base classifiers are queried and their outputs
are aggregated to determine the class.

In [12] authors review the state-of-the-art in ensemble-
based solutions for imbalanced problems. Specifically, a tax-
onomy was proposed and the quality of ensemble approaches
was validated by an extensive experimental study. In this
section we briefly describe the methods we have used in the
comparative study.
• Boosting-based ensembles: AdaBoost [50], which is the
most representative approach, uses the entire dataset to
train serially a set of classifiers. It assigns weights to the
instances so that in each iteration, the learning process
of the base classifier is focused on the most difficult
instances. The update of the weight increases the weight
of those instances misclassified by the base classifier
generated whereas it decreases that of the correctly clas-
sified ones. Additionally, AdaBoost also assign weights
to the base classifiers according to their performance.
The classical AdaBoost algorithm has been modified
to tackle imbalanced problems by carrying out a sam-
pling process in each iteration so that only the selected
instances are used in the learning process. We have
considered the following three methods:
1) RUSBoost [18]: It applies a random under-

sampling process in order to remove instances
belonging to the majority class. Then, the weights
of the remainder instances are normalized with
respect to their sum.

2) EUSBoost [23]: This technique is aimed at improv-
ing the behavior of RUSBoost by avoiding the
randomness. To do it, EUS is applied to select the
instances of the majority class considering both
the performance and the diversity in the fitness
function. Finally, the distribution of the weights is
also updated according to the selected instances.

3) SMOTEBoost [51]: This method enlarges the
dataset by including new instances of the minority
class applying the SMOTE algorithm [52], which
creates synthetic instances using an interpolation
procedure. The weights of the new instances are
proportional to the total number of instances in the
enlarged dataset and they will be the same in all
the iterations. On the other hand, the weights of the

original instances are normalized so that they form
a distribution with the new instances.

• Bagging-based ensembles: approaches in this group are
based on the concept of bootstrap aggregating [53]. That
is, different classifiers are trained using bootstrapped
replicas of the original training dataset, which usually
have the same size than the original dataset. The replicas
are obtained by randomly drawing (with replacement)
instances from the original dataset. The combination of
bagging and sampling techniques is usually simpler than
with boosting, since it does not require to recompute any
kind of weights. When using this hybridization, the bag
used to train each base classifier is obtained using the
sampling method instead of performing a random selec-
tion of the instances.
1) OverBagging [54]: This method applies a ran-

dom over sampling process to obtain each bag.
As a result, each bag will include all the original
instances as well as the replicas of the randomly
selected instances of the minority class. In order to
boost diversity, instances of the majority class can
be resampled.

2) SMOTEBagging [54]: This technique follows
the same schema than OverBagging but instead
of applying a random oversampling process it
generates new synthetic examples belonging to
the minority class applying the SMOTE algo-
rithm [52]. Furthermore, for the minority class,
it combines the random resampling process and
SMOTE by using a percentage, which is increased
over the iterations, determining the amount of
instances included by each option. The majority
class instances are also randomly resampled to
increase the diversity.

3) UnderBagging [55]: This approach is similar to
OverBagging but it uses a random under sampling
process instead of an over sampling one. There-
fore, the size of each bag is less than that of the
ones obtained with OverBagging. It also includes
the option of randomly resampling the instances of
the minority class.

4) UnderOverBagging [54]: This method uses
undersampling and oversampling. Furthermore,
as SMOTEBagging, it also uses a resampling rate
but it determines the number of instances taken
from each class. Consequently, the first classi-
fiers are trained with a lower number of instances
than the last ones, which may imply boosting the
diversity.

• Hybrid ensembles: the methods belonging to this group
combine both bagging and boosting. The selected
approach is EasyEnsemble [19] that applies a double
ensemble learning process considering Bagging as the
main one, where each bag is balanced including all the
instances of the minority class and randomly under-
sampling the majority one (UnderBagging). Then, for
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each bag, the AdaBoost algorithm is applied and conse-
quently, the final model is an ensemble of ensembles.

IV. EUNDERBAGGING: A NEW METHOD TO CONFORM
ENSEMBLES BASED ON EVOLUTIONARY UNDER
SAMPLING AND BAGGING
In this section we describe our new approach for designing
an ensemble of classifiers to tackle imbalanced classification
problems like the one faced in this paper. Specifically, our
proposal is named EUnderBagging as it combines EUS [22]
with a bagging-based ensemble. As we have explained in
Section III-B, the classical bagging method randomly selects
the instances (with replacement) to create the bag of instances
used to learn the base classifier. Our proposal is based on
replacing that random selection process (creation of the boot-
strapped replica) by the EUS algorithm, which will create
in each iteration the bag of instances used to train the cor-
responding base classifier. Consequently, in first place we
describe the EUS method [22] (Section IV-A) and then,
the complete EUnderBagging algorithm is described in detail
(Section IV-B).

A. EVOLUTIONARY UNDER SAMPLING ALGORITHM
The Evolutionary Under Sampling (EUS) algorithm [22]
comes from the application of evolutionary prototype selec-
tion in imbalanced classification due to the fact that some
of their original features, like the fitness function, can be
specifically designed for that problem.

The aim of prototype selection is to select a subset of the
instances in the training set in such a way that the nearest
neighbor algorithm (1NN) [56] enhances its accuracy rate and
lightens its storage requirements. In imbalanced problems
obtaining a balanced class distribution becomes more impor-
tant, since both classes would have the same importance in the
learning process. For this reason, the fitness function used by
EUS takes into account the class distribution (as explained
above, see (5)). The evolutionary process starts selecting at
random several subsets of instances that are evolved until one
of them cannot be improved in terms of the fitness function,
which is the returned solution.

The representation of the solution is a key factor in all the
evolutionary algorithms. In EUS the solutions are represented
by a chromosome composed of as many genes as instances,
where each gene is binary coded to represent the presence
(1) or absence (0) of the corresponding instance. To diminish
the search space, the number of genes is equal to the num-
ber of instances belonging to the majority class. Therefore,
the selection process is carried out only over the negative
instances and all the instances of the minority class will be
always included in the returned subset. The representation of
the chromosomes is shown in 4.

ChrEUS = (genx1 , genx2 , genx3 , genx4 , . . . , genxn− ), (4)

where genxi takes the values 0 or 1, indicating whether
instance xi is included or not in the subset, and n− is the
number of majority class instances.

To evaluate the quality of the chromosomes, a fitness func-
tion considering both the trade-off between the percentage of
instances of both classes and the expected performance when
using the selected subset is applied. The resulting fitness
function is shown in (5).

fitnessEUS =

{
GM −

∣∣∣1− n+
N− · P

∣∣∣ if N− > 0

GM − P if N− = 0,
(5)

where n+ is the number of examples of the minority class and
N− is the number of selected examples of the majority class.
Consequently, for the subset of instances represented by the
chromosome, the division n+

N− quantifies the balance of the
instances belonging to both classes. GM is the performance,
measured in terms of the geometric mean, obtained by the
1NN algorithm considering the leave-one-out technique. P is
a weight that determines the importance given to the balance
part of the equation, whose recommended value is 0.2.

We must point out that the evolutionary algorithm used
is the CHC [57]. The crossover operator used in the CHC
algorithm for binary coding is the heterogeneous uniform
cross-over (HUX), which interchanges half of the different
genes in the chromosomes being combined. This crossover is
modified in EUS for the sake of obtaining a good reduction
rate. Specifically, the probability of including instances is
reduced. To do so, when a gene is switched on it can be
switched off with a probability, whose recommended value
is 0.25.

B. EVOLUTIONARY UNDER BAGGING
The combination between EUS and Bagging is simple, since
it consists of applying the EUS algorithm to conform the
subset of instances used to learn each base classifier. The
pseudo-code of our new approach is shown in Algorithm 1,
where it can be seen that for each iteration the corresponding
bag is obtained applying EUS, which returns a subset of
instances including all the instances from the minority class
and those that are selected in the evolutionary process.

Algorithm 1 EUnderBagging
Require: Training set S: Training set; T : Number of itera-

tions; I : Weak learner

Ensure: Bagged classifier: H (x) = sign
T∑
t=1

ht (x), where

ht ∈ [−1, 1] are the induced classifiers
1: for t = 1 to T do
2: S ′ = EvolutionaryUndersampling(S);
3: ht ← I (S ′)
4: end for

The idea of EUnderBagging is based on the methodolo-
gies of UnderBagging [55] and EUSBoost [23]. In the for-
mer, a random under sampling process is applied to build
each bag. This randomness implies obtaining diverse subsets
of instances, which may lead to construct high perform-
ing ensembles when accurate base classifiers are used [58].
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However, in imbalanced problems, the random selection may
imply that useful instances from the majority class can be
skipped for the learning of the base classifiers. Consequently,
we think that the application of EUS presents a good trade-off
between the two following properties:
• Diversity: the initial population used by the evolutionary
algorithm, which is initialized at random, allows the
diversity to be partially maintained.

• Selection of important instances: the evolutionary pro-
cess increments the probability of selecting the impor-
tant instances of the majority class, which may imply
learning a better model in each iteration.

However, although there are random mechanisms in EUS
the stochastic nature of the evolutionary process does not
provide subsets as diverse as a purely random technique.
Consequently, in order to boost the diversity as much as
possible, we modify the fitness function as it is done in
EUSBoost [23]. The modification is aimed to favor those
chromosomes having the best combination of performance,
which is measured applying (5), and diversity. To compute
the diversity we compare a chromosome and all the subsets
of instances used in the previous iterations of the bagging pro-
cess, since we assume that different subsets of instances will
produce diverse models. Specifically, we take the maximum
value of the Q-statistic [59] over the chromosome and all the
previously used subsets of instances. Consequently, in each
iteration, we will take the most different subset of instances
with respect to the ones used in the previous iterations. The
Q-statistic between two binary vectors (chromosomes)
(Ci,Cj), is computed as follows:

Qi,j =
N 11N 00

− N 01N 10

N 11N 00 + N 01N 10 , (6)

where N ab represents the number of genes (instances) with
value a in the first chromosome and b in the second one.
Recall that a, b ∈ {0, 1}, since we use a binary representation
as mentioned in Section IV-A. When a = b both subsets are
including (or not) the instance. The obtained Q-value ranges
in [−1, 1], where the value 0 means that both chromosomes
are statistically independent whereas large values (negative
and positive) means obtained less diverse chromosomes.

All in all, the fitness function used in EUnderBagging is:

fitnessEUSQ = fitnessEUS ·
1.0
β
·
10.0
IR
− Q · β, (7)

where fitnessEUS is the original fitness function used by
EUS (see (5)), IR is the imbalance ratio, Q is the maximum
Q-statistic and β is a weighting factor that changes over the
iterations as follows:

β =
T − t − 1

T
. (8)

According to this weight, in the first iterations the impor-
tance given to the diversity and the performance is similar
whereas in the last iterations more significance is given to the
performance and less to the diversity.

Finally, we have to point out that in (7) the Q-statistic is
subtracted in order to maximize the diversity. Furthermore,
in the first iteration (t = 1), the original fitness function of
EUS is considered as there are no previous bags of instances
used and consequently, it is not possible to compute the
Q-statistics.

V. EXPERIMENTAL STUDY
In this section we show the results obtained when using the
approaches selected in this study. The experimental frame-
work used to conduct the experiments besides the considered
algorithms are introduced in Section V-A. The results as well
as their corresponding analysis are given in Section V-B.

A. EXPERIMENTAL FRAMEWORK
The dataset is composed of the information collected from
462 patients that were stored in the MTRN during the years
2011 and 2012. 368 out of the 462 patients survived to their
injuries (79.65%) whereas the remainder 94 died (20.35%).
Consequently, the IR of the problem is 3.91.
To determine the performance of the classifiers, one of

the most used methods is the k-cross validation model (k-
FCV). In this work, we have applied a 10 × 10-FCV (k =
10). To apply a 10-FCV we first have to split the set of
examples in 10 folds having the same number of patients
and maintaining the original distribution of the classes. Next,
9 of them are joined to learn the classifier and the remainder
one is used to test the quality of the system. This process
is repeated 10 times using a different testing fold in each
case. Consequently, when the process is ended all the patients
will have been used as testing instances once. The whole
10-FCV process is repeated 10 times (obtaining the
10×10-FCV) using a different seed each time to perform the
splitting. The final result shown in this study is the average
among the 100 testing folders. The 10× 10-FCV allows one
to provide robust results as the evolutionary process is carried
out 100 times using different data in each run.

In each fold, we consider three widely used performance
metrics to measure the performance of the classifiers: the
Area Under the ROC Curve (AUC) [26], the geometric mean
(GM) [27] as well as the F-measure [28] (we also show the
TNrate and the TPrate).

To support the quality of the proposals we apply the non-
parametric Mann-Whitney’s U statistical test [29] to compare
the results of two methods. This method, in first place, sorts
the results of both methods in ascending order assigning
ranks to the results so that the worst and the best ones
receive the ranks 1 and maximum (two times the number
of results), respectively. In case of draws, the corresponding
ranks are equally assigned. Next, the sum of the ranks is
computed for each method. Consequently, if a method is
regularly better than the other, the sum of its ranks will
be clearly greater than that of the other, which is reflected
by a low p-value. Otherwise, if both methods provide sim-
ilar results, the sum of their ranks will be also similar
leading to a large p-value. We have considered 0.1 as the
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TABLE 3. Testing results obtained for the sampling techniques with and without being combined with ensembles.

lowest level of significance of a hypothesis that results in a
rejection.

Regarding the configuration of the different approaches,
in first place, we have to point out the we have used the
C4.5 decision tree [21] as base classifier for the ensembles
and as the model for the approaches using a single classifier.
In all the cases we have set the confidence level to 0.25, using
the Laplace correction and a minimum of 2 examples per leaf.

According to the recommendations given in [12], the num-
ber of base classifiers has been set to 40 and 10 for bagging
and boosting-based ensembles, respectively. On the other
hand, to make a fair comparison we have used 4 bags using
10 classifiers in each one for EasyEnsemble.

Finally, the configuration of the evolutionary algorithm
for those approaches using it is as follows: the populations
are composed of 50 individuals, 10.000 iterations, the inclu-
sion probability for the HUX crossover operator is 0.25,
the parameter P is set to 0.2 and the Euclidean distance is
used in the 1NN algorithm.

For the comparative study we have also considered the cost
sensitive version of the C4.5 decision tree (C45_CS) [25],
since it is usually applied in the imbalanced context. More-
over, we have also considered the two currently used meth-
ods by the staff of the Hospital of Navarre to confirm the
quality of our proposal, namely, TRISS and MPMN. Finally,
we have also considered our previous proposal where we
applied a Multiple Classifier System (MCS) to tackle this
problem as well as the TRISS method whose parameters
has been learned according the patients stored in the MTRN
(TRISSNav).
We have to stress that for all the methods in the comparison

(except TRISS, TRISSNav and MCS) we have used the same
input variables as those used by MPMN, that is, the age,
the RTS, the NISS and the previous morbidity.

B. ANALYSIS OF THE PERFORMANCE OF
EUNDERBAGGING
The experimental analysis to show the quality of our new
approach is driven in four stages:

1) First, we check the usefulness of ensembles of clas-
sifiers combining sampling techniques by comparing
them versus the sampling technique applied with a
single C4.5 decision tree (Section V-B.1).

2) Then, we study the performance of the ensem-
ble methods with sampling techniques belonging
to the two families, namely, bagging and boosting
(Section V-B.2).

3) Next, the best ensemblewith sampling is determined by
comparing the best ensemble of each family selected in
the previous stage (Section V-B.3).

4) Finally, the quality of the best ensemble is contrasted
versus the two regression based models used in the
Hospital of Navarre as well as with respect to C4.5_CS
(Section V-B.4).

1) COMPARING ENSEMBLE METHODS VERSUS THEIR
SINGLE CLASSIFIER COUNTERPART
According to the ensemble methods described in
Section III-B, we can observe that they are combined with
three sampling techniques, namely, RandomUnder Sampling
(RUS), Evolutionary Under Sampling (EUS) and SMOTE.
Therefore, this section is aimed at comparing each sam-
pling technique (with a single decision tree) versus both
its bagging-based ensemble and its boosting-based ensem-
ble. The results in testing of these 9 approaches are intro-
duced in Table 3, where we can find a different classifier
in each row and a different performance metric in each
column (AUC, GM, F-measure as well as TNrate and TPrate).
We also show the standard deviation for each metric, ±,
to show the robustness of the approaches. The best result for
each sampling technique and each metric is highlighted in
bold-face.2

From these results we can stress the fact the usage of
ensembles is highly recommendable, since none of the three
sampling techniques achieves the best results in any metric.
Furthermore, bagging-based ensembles are providing better
results (and more robust as the standard deviation is almost
always better) than boosting-based ones with the exception
of the TNrate for RUS and SMOTE (but at the cost of a
decrease in the TPrate). Finally, we have to point out that the
combination of SMOTE and ensembles is providing worse
results than combining ensembles with RUS and EUS. So,
it seems that the generation of new examples of the minority
class (die) is not beneficial and the prediction method works
better with the real patients than when including synthetically
created ones.

To support the previous findings we conduct an statisti-
cal study composed of pairwise comparisons between the
sampling technique combined with an ensemble and without
them for the three performance metrics. These results are
reported in Table 4, where each comparison is shown in a row

2The structure of all the tables showing the testing performance is the same
as the one explained for Table 3
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TABLE 4. Results of the Mann-Whitney’s U statistical test to the usage of sampling techniques with esembles (R+) and without them (R−).

TABLE 5. Testing results obtained for boosting-based ensembles.

TABLE 6. Testing results obtained for bagging-based ensembles.

and results are grouped in groups of three columns (a group
for each metric). For each group it is shown the obtained
p-value, the average ranks when using ensembles (R+) and
without them (R−). We have to point out that when the
obtained p-value is less than 0.01 we show it with the notation
< 0.01 and, on the other hand, we stress the p-value with *
as super-index when there are statistical differences (p-value
less than 0.1).
From the statistical results we can observe that the combi-

nation of ensembles and RUS is beneficial for both bagging
and boosting approaches, since there are statistical differ-
ences. Regarding EUS, its combination with bagging-based
ensembles is highly recommended whereas with boosting
there are not statistical evidences although the performance
is enhanced. Finally, regarding SMOTE, it is suitable when
used with boosting techniques (there are statistical differ-
ences in AUC and GM) but when it is combined with bag-
ging methods their behavior is similar in all the performance
metrics.

2) STUDYING THE BEHAVIOR OF BAGGING AND BOOSTING
BASED ENSEMBLE METHODS
Once the usefulness of the usage of ensembles is proven
for the problem faced in this paper, we conduct an study
to determine the best ensemble using sampling techniques.
To do so, we present in Tables 5 and 6, the results provided by
boosting-based and bagging-based ensembles, respectively.

From these results we can stress the behavior of two
approaches (one for each family). On the one hand, EUS-
Boost achieves the best results among the boosting-based
approaches since the results in terms of AUC and GM are

better than those of the remainder approaches whereas in
terms of F-measure it almost performs equal to RUSBoost.
On the other hand, EUnderBagging is clearly the best choice
among the bagging-based methods, since it provides the
best results in the three performance metrics (having a large
increase versus OverBagging, SMOTEBagging and Under-
OverBagging).Moreover, they are themost robustmethods of
their families according to their standard deviations in terms
of AUC, GM and F-measure. Additionally, it is worth men-
tioning that the combination of under sampling techniques
with ensembles is providing better results that the combina-
tion with over sampling ones. We can think of two possible
reasons why these two methods obtain the best results: 1) the
usage of under sampling techniques as we have mentioned
in the previous section and 2) EUS (both methods apply it)
is the best choice as sampling method, since the selection of
the patients of the majority class is driven by an evolutionary
algorithm that selects the most suitable patients of the survive
class for the learning stage.

According to the previous analysis, we select EUSBoost
and EUnderBagging as control methods to conduct the sta-
tistical study. That is, for each family we compare the con-
trol method (R+) versus the remainder methods (R−). The
statistical results are reported in Tables 7 and 8 for boosting-
based and bagging-based ensembles, respectively. From these
results we can observe the following facts:
• EUSBoost is statistically outperforming AdaBoost.
• SMOTEBoost is clearly enhanced by EUSBoost in
terms of AUC and GM.

• There are not statistical differences among EUSBoost
and RUSBoost though the former provides better
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TABLE 7. Results of the Mann-Whitney’s U statistical test to compare EUSBoost (R+) versus the remainder boosting-based ensembles (R−).

TABLE 8. Results of the Mann-Whitney’s U statistical test to compare EUnderBagging (R+) versus the remainder bagging-based ensembles (R−).

TABLE 9. Testing results obtained for EUnderBagging, EUSBoost and EasyEnsemble.

TABLE 10. Results of the Mann-Whitney’s U statistical test to compare EUnderBagging (R+) versus EUSBoost and EasyEnsemble (R−).

performance results and the p-values are low in terms
of AUC and GM.

• EUnderBagging outperforms bagging-based ensem-
bles using over sampling techniques (OverBagging,
SMOTEBagging and UnderOverBagging).

• EUnderBagging achieves better results and rankings (in
the statistical study) than UnderBagging in the three
metrics but there are not statistical differences between
them.

3) DETERMINING THE BEST ENSEMBLE METHOD TO
TACKLE THIS PROBLEM
Taking into account both the performance results and the
statistical analysis, we can select EUSBoost and EUnderBag-
ging as the best options from each family of ensembles.
Therefore, we compare them along with EasyEnsemble,
as representative of hybrid ensemble approaches combin-
ing bagging and boosting, so that the best ensemble with
sampling technique can be determined. Their performance
results and the corresponding statistical comparison are
shown in Tables 9 and 10, respectively. From these results
we can conclude that EUnderBagging is clearly the best
option since it provides the best performance in all themetrics
and there are statistical differences versus EUSBoost and
EasyEnsemble.

4) COMPARISON VERSUS CLASSICAL CLASSIFIERS TO DEAL
WITH TRAUMA PATIENTS
Finally, we want to study if our new proposal, EUnderBag-
ging, is able to enhance the performance of the models that
are currently used by the Hospital of Navarre staff (MPMN
and TRISS) as well as with C45_CS, TRISSNav and MCS.
The results of these six classifiers are reported in Table 11,
where it can be observed that EUnderBagging improves the
results of all of the remainder approaches. If we analyze in
detail these results we can observe the following facts:

• The adaptation of the parameters of TRISS to the fea-
tures of the patients in the MTRN (TRISSNav) allows to
enhance the results of TRISS in all the metrics.

• Among the results of models composed of a unique
classifier the ones provided by C45_CS are better in
terms of AUC and GM as a consequence of a great
improvement of the TPrate at the cost of a large FPrate
(1− TNrate).

• Comparing the logistic regression-based methods with
EUnderBagging we can find that the latter is a better
choice as the results in all the balanced metrics are better
and the FPrate is not large. Obviously, the intepretability
of the logistic regression models is lost when applying
EUnderBagging.
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TABLE 11. Testing results obtained for EUnderBagging and standard methods.

TABLE 12. Results of the Mann-Whitney’s U statistical test to compare EUnderBagging (R+) versus the remainder approaches (R−).

• The results of EUnderBagging are superior than those of
MCS as the balance among TPrate and TNrate is better
as well. We may guess that this behavior is caused
by the effectiveness of the sampling method used by
EUnderBagging.

• EUnderBagging is providing the most stable results
as its standard deviation in terms of AUC, GM and
F-measure is always less than the remainder methods
(except C45_CS in the F-measure). Consequently, EUn-
derBagging is not only the best performing method but
the most stable one.

In order to give statistical support to the results shown
in Table 11, we have conducted the proper statistical study,
whose results are shown in Table 12. These statistical results
allow us to conclude that the usage of our new proposal
is suitable to deal with the survival prediction of trauma
patients.

VI. CONCLUSIONS
The prediction of the survival status of severe trauma patients
is an important problem for emergency services at the hos-
pitals. It is an imbalanced problem because the number of
patients who survive to their injuries excels that of those who
die. To solve these types of problems, the classical approaches
used by doctors are based on logistic regression models. Such
classifiers provide good results but, as every data mining
method, they can suffer from the problems derived by the
special features of imbalanced classification problems.

In this work we have proposed a newmethod, named EUn-
derBagging, to construct bagging-based ensembles for imbal-
anced problems by including an evolutionary under sampling
process to obtain each bag. Consequently, EUnderBagging
is specifically designed to tackle imbalanced classification
problems. From the experimental study we can stress the fol-
lowing facts: 1) the combination of ensembles and sampling
techniques is appropriate for this problem; 2) the usage of
under sampling techniques is providing better results than
over sampling techniques when combined with ensembles;

3) bagging-based ensembles work better than boosting-based
ones; 4) EUnderBagging is the best choice among the con-
sidered ensembles that use sampling techniques and 5) our
new proposal allows one to clearly enhance the behavior
of the currently used methods by the staff of the Hospital
of Navarre. New prediction systems are continuously being
developed and consequently, wewill test the behavior of other
ensembles of classifiers like [60]–[63] in the future.
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