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ABSTRACT This paper focuses on anti-synchronization and synchronization of a stochastic multi-coupled
chaotic system with ring connection and control schemes. First, the system is simplified by means of the
formula deformation technique and the controller. Based on the Lyapunov method and stochastic differential
theory, some sufficient conditions are obtained by some control methods. At last, the Chen system, Lorenz
system, and Lü system with stochastic perturbations are used to verify the correctness of the conclusions.

INDEX TERMS Anti-synchronization, synchronization, stochastic, coupled chaotic system, ring
connection.

I. INTRODUCTION
Chaotic systems exist widely in nature and human soci-
ety,such as Lorenz system, Chen system, Lü system and
Hyperchaotic Chua Systems and so on.It is an interesting
and challenging issue to make more chaotic systems achieve
synchronization and anti-synchronization.

Up to now, many methods for the synchronization and
anti-synchronization of chaotic systems have been investi-
gatedmainly including the adaptive control [1]–[6], nonlinear
control [1], [7], sliding mode control [8], active con-
trol [9], [10], impulsive control [11], intermittent adjust-
ment feedback control [12], [13], nonlinear parametric
variation [14], nonlinear delay control [15]–[17], etc.

In [18], the two systems can be obtained synchro-
nization and anti-synchronization by the coupling method.
In [19], [20], the authors investigate the complete synchro-
nization and anti-synchronization behavior in an array of
coupled chaotic systems with ring connection.

Example 1: The systems:
(
x ′i1
x ′i2

)
= Ai

(
xi1
xi2

)
, i = 1, 2.

Let Ai =
(
−2 2
−2 1

)
, the eigenvalues of Ai are − 1

2 ±
√
7
2 i.
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Weknow the solution of the vertex systems is globally asymp-
totically stable.

Consider the following linearly coupled system(
x
′

11

x
′

12

)
= A1

(
x11

x12

)
+

(
2x21 − x11

0

)
,(

x
′

21

x
′

22

)
= A2

(
x21

x22

)
+

(
2x11 − x21

0

)
,

whose coefficient matrix

A =


−3 2 2 0
−2 1 0 0
2 0 −3 2
0 0 −2 1

.
has a positive eigenvalue 0.2361, and thus the zero solution
of the coupled system is unstable.

However, a real system is usually affected by external
perturbations which in many cases are of great uncertainty
and hence may be treated as random. Noise is unavoidable
and should be taken into consideration in modeling. Noise
disturbance is a major source of instability and may lead to
poor performances in networks.
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FIGURE 1. Chaotic coupled systems with ring connection for Eq. (1).

Example 2: For the system

ẋ(t) = ax(t) (a > 0),

it is easy to know the equation is a unstable system. Let us
look at the scalar linear Itô equation

dx(t) = ax(t)dt +
m∑
i=1

bix(t)dBi(t).

If a − 1
2

m∑
i=1

b2i < 0, the stochastically perturbed system can

be stable in Ref. [21].
From the above two examples and some backgrounds,

we consider the chaotic coupled models with ring connection
and stochastic perturbations in the following:

ẋ(t) = ax(t) (a > 0),

dx1 =
(
f1(x1)+

N∑
h=1

B1h(xh − x1)
)
dt + Cx1dω(t),

dx2 =
(
f2(x2)+

N∑
h=1

B2h(xh − x2)
)
dt + Cx2dω(t),

· · · · · ·

dxN =
(
fN (xN )+

N∑
h=1

BNh(xh − xN )
)
dt + CxNdω(t),

(1)

where xi is the state vectors,and xi = (xi1, xi2, · · · , xin)T ;
Bih = diag(bih1 , bih2 , · · · , bihn ) (i = 1, 2, · · · ,N , h =
1, 2, · · · ,N ) is n dimensional coupled diagonal matrix, and

FIGURE 2. Chaotic coupled systems with ring connection and the
controllers for Eq. (2).

bihk ≥ 0; C = diag(c1, c2, · · · , cn) is Rn × Rn constant
matrix; ω(t) is n dimension Brownian motion.

This paper is organized as follows. In section 2, we intro-
duce some necessary notations which will be used later.
In section 3, some sufficient conditions are obtained for anti-
synchronization and synchronization of chaotic coupled sys-
tem with stochastic perturbations. In Section 4, an example
and it’s simulations are given to show the effectiveness of the
obtained results.

II. PRELIMINARIES
Assumed that Ai 6= Aj, ψi(·) 6= ψj(·), (i 6= j), ψi(xi) =
fi(xi)−Aixi, i, j = 1, 2, · · · ,N . Ai is Rn×Rn constant matrix.
Substitute the controllers u1, u2, · · · , uN−1 into the Equ.(1),
then the Equ.(1) can be described as follows:

dx1=
{
A1x1+ψ1(x1)+

N∑
h=1

B1h(xh−x1)
}
dt+Cx1dω(t),

dx2=
{
A2x2 + ψ2(x2)+

N∑
h=1

B2h(xh − x2)+ u1
}
dt

+Cx2dω(t),
· · · · · ·

dxN =
{
AN xN+ψN (xN )+

N∑
h=1

BNh(xh−xN )+uN−1
}
dt

+CxNdω(t),
(2)

Let the error be

ei(t) = xi+1(t)+ xi(t),

F1 =



M1 M2 M3 M4 · · · MN−2 B1N

B21 A3 − B32 0 0 · · · 0 0

0 B32 A4 − B43 0 · · · 0 0

...
...

...
...

...
. . .

...

0 0 0 0 · · · B(N−1)(N−2) MN
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and F1, as shown at the bottom of the previous page, where
M1 = A2 − (−1)N−1B1N − B21,Mj = −(−1)N−jB1N , (j =
2, 3, · · · ,N − 1),MN = AN − BN (N−1), F2, as shown at the
top of the next page, and

H =


C 0 0 · · · 0 0
0 C 0 · · · 0 0
0 0 C · · · 0 0
...

...
...

...
. . .

...

0 0 0 · · · 0 C

 ,
Then the error dynamic system can be described in the

following:

de = (F1e+ F2)dt + Hedω(t) (3)

where e = (e1, e2, · · · , eN−1)T .
Let

u1 = v1 −
[(

(−1− (−1)N
)
B1N + 2B21 − (A2 − A1)

)
x1

+ψ2(x2)+ ψ1(x1)+
N−1∑
h=1

B1h(xh − x1)

+

N∑
h=2

B2h(xh − x2)
]
,

u2 = v2 −
[(
− 2(B21 − B32)+ (A2 − A3)

)
x2

+ψ3(x3)+ ψ2(x2)+ u1 +
N∑

h=2,h 6=1

B2h(xh − x2)

+

N∑
h=1,h 6=2

B3h(xh − x3)
]
,

· · · · · ·

uN−1 = vN−1 −
[(
− 2(B(N−1)(N−2) − BN (N−1))

+(AN−1 − AN )
)
xN−1 + ψN (xN )+ ψN−1(xN−1)

+uN−2 +
N∑

h=1,h 6=N−2

B(N−1)h(xh − xN−1)

+

N∑
h=1,h 6=N−1

BNh(xh − xN−1)
]
.

So, the error system (3) can be rewritten as follows:

de = (F1e+ v)dt + Hedω(t), (4)

where v = (v1, v2, · · · , vN−1)T .
Definition 1: The chaotic coupled system (4) is

anti-synchronization under the controller ui(t)(i =

1, 2, 3, · · · ,N − 1), if the trivial solution of the error system
(4) is asymptotically stable,i.e.

lim
t→∞

E‖ei(t)‖ = lim
t→∞

E‖xi(t)+ xi+1(t)‖ = 0,

i = 1, 2, · · · ,N − 1.

Definition 2: The chaotic coupled system (4) is
complete synchronization under the controller ui(t),
(i = 1, 2, 3, · · · ,N − 1), if the trivial solution of the error

system el(t) and ek (t) is asymptotically stable, i.e., if N is
odd,

lim
t→∞
‖el(t)‖ = lim

t→∞
‖xl+2(t)− xl(t)‖ = 0,

(l = 1, 3, 5, · · · ,N − 2);

lim
t→∞
‖ek (t)‖ = lim

t→∞
‖xk+2(t)− xk (t)‖ = 0;

(k = 2, 4, 6, · · · ,N − 3).

And, if the trivial solution of the error system ẽl(t) and ẽk (t)
is asymptotically stable, i.e.,if N is even,

lim
t→∞
‖ẽl(t)‖ = lim

t→∞
‖xl+2(t)− xl(t)‖ = 0,

(l = 1, 3, 5, · · · ,N − 3);

lim
t→∞
‖ẽk (t)‖ = lim

t→∞
‖xk+2(t)− xk (t)‖ = 0,

(k = 2, 4, 6, · · · ,N − 2).

For the stochastic system:

dx(t) = f (x, t)dt + g(x, t)dB(t).

Definition 3: For each V ∈ C2,1(Rn
× R+;R+), we define

an operator LV from Rn
× R+ to R by LV (x, t) =

Vt (x, t) + Vx(x, t)f (x, t) + 1
2 trace[g

T (x, t)Vxx(x, t)g(x, t)],
where Vx(x, t) = ( ∂V (x,t)

∂x1
,
∂V (x,t)
∂x2

, · · · ,
∂V (x,t)
∂xn

),Vxx(x, t) =

( ∂
2 V (x,t))
∂xi∂xj

)n×n.

III. CONCLUSION
Theorem 1: Assumed that the following condition holds,

eT v ≤ −eTF1e−
1
2
trace

[
eTHTHe

]
,

then (4) is asymptotically stable,i.e.,the chaotic systems (2) is
anti-synchronization under the control schemes.

Proof: Consider the Lyapunov function as follows:

V =
1
2
eT e,

then LV can be computed by trajectory of (4),

LV = eT (F1e+ v)+
1
2
trace

[
eTHTHe

]
,

by the condition of Theorem 1, we know LV < 0.
Therefore, (4) is asymptotically stable,i.e.,the chaotic sys-

tems (2) is anti-synchronization under the control schemes.
Let

v = Ke,
1
2
trace

[
eTHTHe

]
≤ λeT e, λ > 0,

then the following conclusions are established.
Theorem 2: Assumed that the following condition holds,

and

F1 + K + λI ≤ 0,

then (4) is asymptotically stable,i.e.,the coupled chaotic sys-
tems (2)is anti-synchronization under the control schemes.

Proof: Consider the Lyapunov function as follows:

V =
1
2
eT e,
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F2 =



[(
(−1− (−1)N )B1N + 2B21 − (A2 − A1)

)
x1

+ψ2(x2)+ ψ1(x1)+ u1

+

N−1∑
h=1

B1h(xh − x1)+
N∑
h=2

B2h(xh − x2)
]
,[(

− 2(B21 − B32)+ (A2 − A3)
)
x2

+ψ3(x3)+ ψ2(x2)+ u2 + u1

+

N∑
h=2,h 6=1

B2h(xh − x2)+
N∑

h=1,h 6=2

B3h(xh − x3)
]
,[(

− 2(B32 − B43)+ (A3 − A4)
)
x3

+ψ4(x4)+ ψ3(x3)+ u3 + u2

+

N∑
h=1,h 6=2

B3h(xh − x3)+
N∑

h=1,h 6=3

B4h(xh − x4)
]
,[(

− 2(B43 − B54)+ (A4 − A5)
)
x4 + ψ5(x5)+ ψ4(x4)+ u4 + u3

+

N∑
h=1,h 6=3

B4h(xh − x4)+
N∑

h=1,h 6=4

B5h(xh − x5)
]
,

...
...
...[(

− 2(B(N−2)(N−3) − B(N−1)(N−2))+ (AN−2 − AN−1)
)
xN−2

+ψN−1(xN−1)+ ψN−2(xN−2)+ uN−2 + uN−3

+

N∑
h=1,h 6=N−3

B(N−2)h(xh − xN−2)

+

N∑
h=1,h 6=N−2

B(N−1)h(xh − xN−1)
]
,[(

− 2(B(N−1)(N−2) − BN (N−1))+ (AN−1 − AN )
)
xN−1

+ψN (xN )+ ψN−1(xN−1)+ uN−1 + uN−2

+

N∑
h=1,h 6=N−2

B(N−1)h(xh − xN−1)

+

N∑
h=1,h 6=N−1

BNh(xh − xN−1)
]
,



then LV can be computed by trajectory of (4), LV =

eT (F1e + v) + 1
2 trace

[
eTHTHe

]
= eT (F1 + K + λI )e ≤ 0,

by the condition of Theorem 2, we know LV < 0.
Therefore, it is asymptotically stable for Equ.(4),i.e.,the

coupled chaotic systems (2) is anti-synchronization under the
control schemes.

Let’s consider the complete synchronization behavior for
such chaotic systems under the anti-synchronization con-
trollers. According to the number of the systems, two cases
are discussed.
Case I: If the number of chaotic systems N (N ≥ 3) is odd,

let

el(t) = xl+2(t)− xl(t), l = 1, 3, 5, · · · ,N − 2;

ek = xk+2(t)− xk (t), k = 2, 4, 6, · · · ,N − 3. (5)

Theorem 3: Assumed that (3) is asymptotically stable, for
the errors (5), then

lim
t→∞
‖el(t)‖ = lim

t→∞
‖xl+2(t)− xl(t)‖ = 0,

(l = 1, 3, 5, · · · ,N − 2);

lim
t→∞
‖ek (t)‖ = lim

t→∞
‖xk+2(t)− xk (t)‖ = 0;

(k = 2, 4, 6, · · · ,N − 3).

i.e., for the chaotic coupled system (2), the xj and xj+2(j =
l, k) is the complete synchronization under the controller
ui(t).

Proof: By the conclusion of Theorems 1 and 2, we have

lim
t→∞
‖ei(t)‖ = lim

t→∞
‖xi+1(t)+ xi(t)‖ = 0,

(i = 1, 2, 3, · · · ,N − 1). (6)
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In view of (5), we have

el(t) = xl+2(t)−xl(t)=xl+2(t)+xl+1(t)− (xl+1(t)+ xl(t));

ek = xk+2(t)− xk (t) = xk+2(t)+ xk+1(t)

− (xk+1(t)+ .xk (t)).

By (6),

lim
t→∞
‖el(t)‖ = lim

t→∞
‖xl+2(t)− xl(t)‖

≤ lim
t→∞
‖xl+2(t)+ xl+1(t)‖

+ lim
t→∞
‖xl+1(t)+ xl(t)‖

= 0, (l = 1, 3, 5, · · · ,N − 2),

and

lim
t→∞
‖ek (t)‖ = lim

t→∞
‖xk+2(t)− xk (t)‖

≤ lim
t→∞
‖xk+2(t)+ xk+1(t)‖

+ lim
t→∞
‖xk+1(t)+ xk (t)‖

= 0, (l = 2, 4, 6, · · · ,N − 3).

Therefore, the errors el and ek converge to 0, i.e.,the xj+2 and
xj (j = l, k) is complete synchronization.
Case II: If the number of chaotic systems N (N ≥ 3) is

even, let

ẽl(t) = xl+2(t)− xl(t), l = 1, 3, 5, · · · ,N − 3;

ẽk = xk+2(t)− xk (t), k = 2, 4, 6, · · · ,N − 2. (7)

Theorem 4: Assumed that (3) is asymptotically stable, for
the errors (7), then

lim
t→∞
‖ẽl(t)‖ = lim

t→∞
‖xl+2(t)− xl(t)‖ = 0,

(l = 1, 3, 5, · · · ,N − 3);

lim
t→∞
‖ẽk (t)‖ = lim

t→∞
‖xk+2(t)− xk (t)‖ = 0,

(k = 2, 4, 6, · · · ,N − 2).

i.e., for the chaotic system (2), the xj and xj+2(j = l, k) is the
complete synchronization under the controller ui(t).
Remark : The proof of Theorem 4 is similar to Theorem 3.

Therefore it’s proof is omitted here.

IV. APPLICATION
Here we give many different chaotic systems to verify those
results, such as Lorenz System, Chen System, Lü System.

Let N = 3,

dx1 =
(
A1x1 + ψ1(x1)+ B12(x2 − x1)

+B13(x3 − x1)
)
dt + Cx1dω(t),

dx2 =
(
A2x2 + ψ2(x2)+ B21(x1 − x2)

+B23(x3 − x2)
)
dt + Cx2dω(t),

dx3 =
(
A3x3 + ψ3(x3)+ B31(x1 − x3)

+B32(x2 − x3)
)
dt + Cx3dω(t),

(8)

where x1 = (x11, x12, x13)T , x2 = (x21, x22, x23)T , x3 =
(x31, x32, x33)T ,

A1 =

−10 10 0
28 −1 0

0 0 −
8
3

, ψ1(x1) =

 0
−x11x13
x11x12

,
A2 =

−35 35 0
−7 28 0
0 0 −3

, ψ2(x2) =

 0
−x21x23
x21x22

,
A3 =

−36 36 0
0 20 0
0 0 −3

, ψ3(x3) =

 0
−x31x33
x31x32

,
B12 = diag(b121 , b122 , b123 ), B13 = diag(b131 , b132 , b133 ),

B21 = diag(b211 , b212 , b213 ), B23 = diag(b231 , b232 , b233 ),

B31 = diag(b311 , b312 , b313 ), B32 = diag(b321 , b322 , b323 ),

C = diag(c1, c2, c3).

Substitute the controllers u1 = (u11, u12, u13)T , u2 =
(u21, u22, u23)T into the Equ.(8), we can obtain

dx1 =
(
A1x1 + ψ1(x1)+ B12(x2 − x1)

+B13(x3 − x1)
)
dt + Cx1dω(t),

dx2 =
(
A2x2 + ψ2(x2)+ B21(x1 − x2)

+B23(x3 − x2)+ u1
)
dt + Cx2dω(t),

dx3 =
(
A3x3 + ψ3(x3)+ B31(x1 − x3)

+B32(x2 − x3)+ u2
)
dt + Cx3dω(t).

(9)

Remark: If Bih = 0(i = 1, 2, 3, h = 1, 2, 3),C = 0, then
dx1 =

(
A1x1 + ψ1(x1)

)
dt,

dx2 =
(
A2x2 + ψ2(x2)

)
dt,

dx3 =
(
A3x3 + ψ3(x3)

)
dt.

are respectively Lorenz system, Chen system, Lü system. It is
well known that the three systems are all chaotic systems.

Let ei = xi + xi+1(i = 1, 2), then the error system can be
described in the following:

de = (F1e+ F2)dt + Hedω(t), (10)

where

F1 =



K1 35 0 b131 0 0

−7 K2 0 0 b132 0

0 0 K3 0 0 b133
b211 0 0 K4 36 0

0 b212 0 0 K5 0

0 0 b213 0 0 K6


,

76906 VOLUME 7, 2019
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K1 = −35 − b131 − b211 ,K2 = 28 − b132 − b212 ,K3 =

−3 − b133 − b213 ,K4 = −36 − b321 ,K5 = 20 − b322 ,
K6 = −3− b323 .

F2 =



[(
2B21−(A2−A1)

)
x1+ψ2(x2)+ψ1(x1)+ u1

+B12(x2 − x1)+ B23(x3 − x2)
]
,[(

− 2(B21 − B32)+ (A2 − A3)
)
x2 + ψ3(x3)

+ψ2(x2)+ u2 + u1 + B23(x3 − x2)

+B31(x1 − x3)
]


The controllers u1 and u2 are designed in the following:

u1 = v1 −
[(

2B21 − (A2 − A1)
)
x1 + ψ2(x2)+ ψ1(x1)

+B12(x2 − x1)+ B23(x3 − x2)
]
,

u2 = v2 −
[(
− 2(B21 − B32)+ (A2 − A3)

)
x2 + ψ3(x3)

+ψ2(x2)+ u1 + B23(x3 − x2)+ B31(x1 − x3)
]
.

Let v, as shown at the bottom of this page.
Therefore, the Equ.(10) can be rewritten as follows:

de = (F1e+ v)dt + Hedω(t). (11)

It is easy to compute that

F1 + K + λI

=



K1 + λ 35 0 b131 0 0

−35 K2 + λ 0 0 b132 0

0 0 K3 + λ 0 0 b133

−b131 0 0 K4 + λ 36 0

0 − b132 0 − 36 K5 + λ 0

0 0 − b133 0 0 K6 + λ


,

where

λ = max{2c21, 2c
2
2, 2c

2
3}.

FIGURE 3. x11(t), x21(t) state trajectories.

FIGURE 4. x12(t), x22(t) state trajectories.

If those conditions K1 + λ = −35− b131 − b211 + λ < 0,
K2 + λ = 28− b132 − b212 + λ < 0, K3 + λ = −3− b133 −
b213 + λ < 0,K4 + λ = −36 − b321 + λ < 0, K5 + λ =

20−b322+λ < 0,K6+λ = −3−b323+λ < 0, hold. The con-
ditions of the Theorem 2 are satisfied. Therefore, it is asymp-
totically stable for Equ.(11),i.e.,the chaotic systems (9)is
anti-synchronization under the control schemes. The state
trajectories of x11(t), x21(t), x12(t), x22(t) and x13(t), x23(t)
are shown in Fig.3, Fig.4, Fig.5,respectively. The error state
trajectories of e(t) are shown in Fig.6, which obviously sup-
ports our theoretical result.

Let e′i = x3 − x1, by the Theorem 3, for the chaotic
system (9), the x1 and x3 is the complete synchronization
under the controller u1(t) and u2(t).

v = Ke

=



0 0 0 0 0 0

−28 0 0 0 0 0

0 0 0 0 0 0

−b131 − b211 0 0 0 0 0

0 −b132 − b212 0 −36 0 0

0 0 −b133 − b213 0 0 0


e
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FIGURE 5. x13(t), x23(t) state trajectories.

FIGURE 6. Error state trajectories by controller.
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