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ABSTRACT Temperature control of steel billets plays an important role in the quality of steel billets.
This paper was motivated by the necessity for setting a value of spray cooling water flow with regard to
the accuracy, fast applicability to real-time optimization, and capability of non-steady operation scenarios,
especially for the change of casting speed. Therefore, this paper is focused on the GPU-based model
predictive control (MPC) for temperature control of steel billets. The system dynamics in MPC is a heat
transfer model characterized by the nonlinear parabolic partial differential equations (PDEs). This paper
presented two algorithms. First, an adaptive trust-region Levenberg–Marquardt method (ATR-LM) based on
themeasured surface temperature is presented to estimate the unknown parameters in the heat transfer model.
The corresponding experimental results indicate that the presented method can reduce the iteration time.
Second, for the purpose of satisfying the real-time requirement, the stream parallel sparse Jacobian method
(SP-SJ) is presented to solve the dynamic optimization problem associatedwith the PDEs. The corresponding
experimental results show that the presented method exhibits satisfactory computational performance and
achieves satisfactory control performance.

INDEX TERMS MPC, PDEs, graphic processing unit (GPU), parallel computation, continuous casting.

I. INTRODUCTION
A typical continuous casting of steel is a process in which
molten steel (liquid) is continuously solidified into steel bil-
lets (solid). As shown in Fig.1, steel billets undergo three
cooling areas: a mold, a secondary cooling zone (SCZ), and
an air cooling zone. Mold can remove the heat of molten
steel to grow a solid shell of sufficient thickness. The SCZ
is beneath the mold where there are various cooling water
sprays to continue cooling the steel billets. The SCZ plays a
significant role during the cooling process of the steel billets.
The primary control target of SCZ is to maintain the stability
of the temperature of steel billets in SCZ, and the controlled
variable is cooling water flow rate [1].

Thus, the temperature field of steel billets is a key state
variable. The cooling process can be described by nonlinear
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PDEs. However, the operation conditions always change,
such as the frequent changes of casting speed and the changes
of casting temperature. Frequent changes in casting speed
may result in large temperature fluctuations. Subsequently,
the large temperature fluctuation may result in the cracking
of steel billets. In order to improve the quality of steel billets,
the control law should be adjusted with respect to the water
flow rate to eliminate the temperature fluctuation.

Attempts to improve the control performance of spray
cooling control system have resulted in the application of
numerous control schemes in various situations. The simplest
parameter control method is the speed-tie approach. The
speed-tie approach determines the water flow rate which is
proportional to the casting speed. Specifically, the relation-
ship between the water flow rate and casting speed is shown
as follows [2]

ui (t) = ai[Vc (t)]2 + biVc (t)+ ci, i = 1, 2, · · ·Nz (1)
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FIGURE 1. Cooling process of steel billets.

where Vc represents the casting speed (m/s), ai, bi, and ci are
the parameters determined by operator’s experience.

The parameter control method does not take into account
the process variables in continuous casting such that an
unsteady casting speed may cause the steel billets to crack.
Actually, it belongs to open-loop control method. An abrupt
variation in casting speed would produce a corresponding
change in the water flow rate, which would result in consider-
able surface temperature fluctuations. They do not adjust the
water flow dynamically. Thus, the parameter control method
only works exceedingly satisfactory for steady-state
operations.

In order to overcome the drawbacks of the parameter
control method, the water flow rate should be dynami-
cally adjusted owing to the difference between the measured
temperature and the target temperature. It is obvious that
the simple form of this method is the PI control algorithm
[4]–[6]. The credibility and accuracy of the measured temper-
ature are important for this method. However, the measured
temperature is unreliable due to poor production environ-
ment, such as the oxide skin of steel billets, dust, and water
vapor, etc [5]. Moreover, the internal temperature of the steel
billets cannot be measured. Additionally, the metallurgical
principles including temperature constraints and tempera-
ture gradient constraints are crucial for the quality of steel
billets. Obviously, this method cannot consider these
constraints.

The quality control of steel billets is fundamental for reduc-
ing the reheating of steel billets and ensuring the metallur-
gical principles. This cannot be achieved without a detail
3D heat transfer model. The idea of using heat transfer
model to optimize a continuous caster has been described [7].
Petrus et al. [8] implemented a computational approach inte-
grated with GA to determine operational parameters. Another
approach to dynamic spray cooling modeling and control was
developed by Louhenkilpi et al. [9]. This model uses both
feedback and feedforward techniques to control the tempera-
tures at end-zone locations. Louhenkilpi et al. [10] presented
an online model for a dynamic spray cooling control system

(CASIM). Also, a control model called DYNCOOL has been
developed by Louhenkilpi based on the real-time model [11].

A. MOTIVATION AND INNOVATION
As mentioned above, the traditional methods work exceed-
ingly satisfactorily under steady-state operation condition.
However, unsteady-state operation conditions (the variation
of processing time, tundish replacement, and device failure)
often occur, which has resulted in time conflicts or the inter-
ruption of production [12]. Thus, the schedule system would
adjust the setting value of the casting speed to maintain the
normal production of the casting machine [13]. The temper-
ature of steel billets changes as the casting speed changes.
If the water flow rate is set inappropriately, the tempera-
ture fluctuation would become large and the metallurgical
constraints cannot be satisfied, so the steel billets have a
significant possibility for crack.

MPC has been proved to be an efficient tool to improve
the quality of steel billets. As mentioned above, the idea of
using MPC to search the optimal water flow rate has been
reported in [10], [15]. The temperature fluctuation can be for-
mulated as the control target and the metallurgical principles
are intuitive to formulate the cost function and the constraints,
respectively.

Several MPC systems have been developed to control
the cooling water flow rate under transient conditions for
continuous caster. The simple MPC has been applied to
control the cooling spray water flow rate using 1-D heat
transfer model to predict the temperature behavior of steel
billets [9]. Based on 2-D heat tranfer model, Hardin et al. [3]
developed MPC system to control cooling water flow rate in
real time. Louhuenklpi et al. [10] have developed MPC
system, DYN3D, to adjust cooling water flow rate
dynamically.

Several previous attempts have made to implement MPC
systems of continuous caster. Actually, MPC belongs to a
kind of dynamic optimization problem. Thus, MPC has very
high real-time calculation requirements. Meanwhile, 3D heat
transfer model used in MPC has a large computational cost.
In the face ofmore andmore complicated heat transfer model,
the numerical solution method of MPC appears powerless.
How to build an effective dynamic 3D heat transfer model
for real-time calculation with efficiency is an exceedingly
practical, important and challenging problem. This is the key
difficulty to be solved in this study.

In [14], GPU-based 3D heat transfer model for dynamic
simulation of continuous casting was developed. In [15],
a simple and trial MPC for continuous casting including
GPU-based heat transfer model was presented but the con-
straints were not considered, and the detail of the numer-
ical solution method of MPC was not described. Inspired
by [14], [15], this study is devoted to a new numerical solution
method of MPC associated with GPU-based 3D heat transfer
model. The difference between the current study and those
in literature [14], [15] is that this work considers both the
temperature and reheating of steel billets that are subjected
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to constraints. Moreover, this work not only uses GPU-based
heat transfer model but also design a new perturbation vec-
tor to recycle the wasteful computation of sparse Jocabian
matrix.

The primary contributions of this work: (1) A new iter-
ative algorithm (ATR-LM method) is presented to iden-
tify the unknown parameters. Compared with Landweber
method [25] and Cao method [24], the presented algorithm
has satisfactory convergence property and can reduce the
iteration time. (2) SP-SJ method is presented to solve the
dynamic optimization problem associated with MPC. Com-
pared with traditional solution scheme of MPC for SCZ,
the calculation time of the presented algorithm decreases
to 0.49%, which is the fundamental of the real-time
optimization.

B. STRUCTURE
The remainder of this paper is organized as follows.
Section 2 describes dynamic control model of continuous
casting. Section 3 reviews the strategies for identifying
heat transfer coefficients and presents the ATR-LM method.
Section 4 introduces MPC of continuous casting based on
SP-SJ method and the simulation experiments are shown.

II. DYNAMIC CONTROL MODEL OF CONTINUOUS
CASTING
Production environments are subject to various unexpected
disruptions in continuous casting such as casting speed
changes, and traditional control schemes could not be adapted
to accommodate these uncertain events. Asmentioned earlier,
casting speed is the most vital factor for a spray cooling sys-
tem, but it is not a fixed number. Casting speed is a coefficient
in the PDEs describing the process of continuous casting.
Continuous caster operator needs the surface temperature of
steel billets (the solution of PDEs) to be static.

Based on the explanation in Section I, the heat transfer
model is an important component of the spray cooling control
system. In a continuous caster, molten steel is solidified into
steel billets. This process can be considered as the release and
transfer of heat energy. Therefore, the heat transfer model
can be used to describe the solidification process of steel
billets [3].

ρ (T )Ce (T )
(
∂T
∂t
+ Vc

∂T
∂y

)
=

∂

∂x

(
λ (T )

∂T
∂x

)
+
∂

∂y

(
λ (T )

∂T
∂y

)
+
∂

∂z

(
λ (T )

∂T
∂z

)
,

(x, y, z) ∈ (0, lx)×
(
0, ly

)
× (0, lz) (2)

where ρ(T ) is the density of steel (kg/m3), Ce(T ) is the
effective heat capacity (J/(kg · K )), k(T ) is the thermal
conductivity (W/(m · K )), T (x, y, z, t) is the temperature
distribution (K ), Vc is the casting speed (m/s), lx is the width

of steel billets (m), ly is the length of steel billets (m), lz is the
thickness of steel billets (m), tf is simulation time (s).
The effective heat capacity Ce(T ) can be represented

as [2], [8]

Ce (T ) =


cl T > Tl,

cl + (cs − cl) fs +
L

Tl − Ts
Ts ≤ T ≤ Tl

cs T < Ts,

(3)

where Ts is the solidus temperature (K ), Tl is the liquids tem-
perature (K ), cs is the specific heat of solid phase (J/(kg·K )),
cl is the specific heat of liquid phase (J/(kg · K )), L is the
latent heat (J/kg), k(T ) can be described by [3]

k (T ) =


ks, T < Ts
fsks + m (1− fs) kl, Ts ≤ T ≤ Tl
kl, Tl < T

(4)

where ks is the thermal conductivity of steel in the solid zone
(W/m ·K ), kl is the thermal conductivity of steel in the liquid
zone (W/m ·K ), and m is thermal conductivity enhancement
factor [15]

fs =


1, T < Ts
Tl − T
Tl − Ts

, Ts ≤ T ≤ Tl

0, Tl < T

(5)

The initial temperature is equal to the casting temperature.

T (x, y, z, 0) = Tcast (6)

where Tcast is the casting temperature (K ).
Boundary conditions are shown as follows [2], [18].

−k
∂T
∂x

∣∣∣∣
x=0
= q, −k

∂T
∂x

∣∣∣∣
x=lx

= q

T (x, 0, z, t) = Tcast , −k
∂T
∂y

∣∣∣∣
y=ly

= 0

−k
∂T
∂z

∣∣∣∣
z=0
= q, −k

∂T
∂z

∣∣∣∣
z=lz

= q (7)

In the mold, the boundary conditions are expressed by the
following equation [2], [18]

q = A− B
√
L/Vc (8)

where q represents the mold heat flux (W/m2), and L is the
length of mold (m). The values of A and B are shown in
Appendix.

In secondary and air cooling zones, the boundary condi-
tions can be expressed as [2], [18]

q = h (T − Tw) (9)

where h represents the heat transfer coefficient (W/m2K ),
T is the surface temperature of steel billets (K ), Tw is the
temperature of cooling water (K ).

Heat transfer mechanisms in the secondary cooling zones
are shown in Fig. 2. In the spraying area, the steel billets
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FIGURE 2. Heat transfer mechanisms in the secondary cooling zones.

are cooled by a spray of cooling water. The heat transfer
coefficients hspray are defined as [10]

hspray =
1570.0u0.55 [1.0− 0.0075Tw]

β
(10)

where u is the cooling water flow rate (L/m2
· s), β is a

machine dependent calibration factor in the i th cooling zone
and Tw is the temperature of the cooling water (K ). β is the
unknown parameter to be identified.

Radiation is computed by

hrad = σε(T + Tw)(T 2
+ T 2

w) (11)

where σ is defined as the Stefan-Boltzmann constant (J/K ),
and ε is the emissivity.
The emissivity as a function of surface temperature is given

by the following equation [17]

ε =
0.85

1+ exp(42.68− 0.02682T )0.0115
(12)

In the roll contact area, the heat transfer coefficients can be
obtained by the following equation [19]

hroll =
froll

Lroll(1− froll)
[(hrad + hspray)Lspray

+ hrad (Lspraypitch − Lspray − Lrollcontace)] (13)

A typical froll value of 0.05 produces local temperature drops
beneath the rolls 100K .
In this study, the PDEs (2) are discretized by the finite

difference explicit scheme. According to Taylor’s formula,
the following equations can be obtained.
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(
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(
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(
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)
(1y)2

T tijk +
k
(
T tijk

)
(1y)2
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+

k
(
T tijk

)
(1z)2

T tijk+1 −
2k
(
T tijk

)
(1z)2

T tijk +
k
(
T tijk

)
(1z)2

T tijk−1

i = 2, · · · nx − 1, j = 2, · · · ny− 1, k = 2, · · · nz− 1

(14)

where i, j, k are the indexes of space nodes in x, y, z;
nx, ny, nz are the number of nodes in x, y, z; and1x,1y,1z
are the space steps in x, y, z, respectively; t and t + 1t are
defined as before and after the incremental time interval,
respectively. For simplicity, T (xi, yj, zk , t) is replaced by T tijk .

Let atijk = k(T tijk )/(ρ(T
t
ijk )Ce(T

t
ijk )), the above equation can

be rewritten as

T t+1tijk =
atijk1t

(1x)2
T ti+1jk +

(
atijk1t

(1y)2
−
Vc1t
1y

)
T tij+1k

+

(
1−

2atijk1t

(1x)2
−
2atijk1t

(1y)2
−
2atijk1t

(1z)2
+
Vc1t
1y

)
T tijk

+
atijk1t

(1z)2
T tijk+1 +

atijk1t

(1x)2
T ti−1jk +

atijk1t

(1y)2
T tij−1k

+
atijk1t

(1z)2
T tijk−1, i=2 · · · nx−1, j=2, · · · ny− 1,

k = 2, · · · nz− 1 (15)

The stability condition of the finite difference method is
shown as follows

1t ≤
1

2k
Cρ1x2

+
2k

Cρ1y2
+

2k
Cρ1z2

+
CρVc
1y

(16)

The values of some of the parameters of heat transfermodel
are given in Appendix A.

III. IDENTIFICATION OF UNKNOWN PARAMETERS IN
CONTINUOUS CASTING BASED ON ATR-LM METHOD
The unknown parameter β in heat transfer model is shown
in (10). In many research works, β is determined by the
lab trials. Recently, some research works obtain heat transfer
coefficients by using the surface temperature measurements,
which is proven to be a more effective method. Thus, this
study also uses the surface temperature measurements to
identify β.
For simplicity, the heat transfer coefficients h are identified

in our model instead of β, which are identical. The estimation
parameters refer to h = [h1, h2, · · · , hNz]T . To estimate
the unknown parameters, the sum of squares of residuals is
minimized. Thus, the cost function has the following form

f (h) =
1
2
‖r (h)‖2 (17)

Obviously, f (h) is the function from RN to R, and N is the
number of measured point.

The residual vector r(h) between the predicted temperature
Tp and measured temperature Tm refers to

r(h) = Tp − Tm (18)
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where

Tp =
(
T 1
p ,T

2
p , · · · ,T

N
p

)T
, Tm =

(
T 1
m,T

2
m, · · · ,T

N
m

)T
r (h) = (r1, r2, · · · , rN )T is the N dimensional residual
vector.

Several optimizationmethods have been extensively devel-
oped to solve this problem, such as gradient method [20],
conjugate gradient method [21], [22], Levenberg-Marquardt
method (LM) [18], [23], Cao method [24], and Lanbwe-
ber method [25]. The basic concept of these optimization
methods is to update h for each iteration via the gradient
of cost function or the value of cost function. The identifi-
cation problem of heat transfer coefficients belongs to the
ill-posed problem [24], meaning that a small error in the
measured data can result in substantially large errors in the
answers, so an ill-posed problem suffers from numerical non
convergence. Levenberg-Marquardt (LM) method has been
proved to be successful for identification of heat transfer coef-
ficients [18], [23], and LM method is shown in Algorithm 1.
More details of LM method can be found in [23].

Algorithm 1 LM [23]
Input: Tm
Output: The estimation of heat tranfer coefficients h̄
1: Set iteration time k = 0, maximum iteration

number S = 50, stop criterion η = 10−4.
2: Solve the PDEs with the boundary condition

hk , and the predicted surface temperature
Tp(hk) can be obtained.

3: Compute the Jacobian matrix Jk using (19).
4: Compute the dk using (22).
5: hk+1 = hk + dk
6: Let k = k + 1.
7: if |fk+1 − fk | ≤ η or k > S,
8: Go to step 2,
9: else
10: output h̄.

The derivatives of r(h) can be expressed in terms of the
Jacobian matrix.

J (h) =



∂r1
∂h1

∂r1
∂h2

· · ·
∂r1
∂hN

∂r2
∂h1

∂r2
∂h2

· · ·
∂r2
∂hN

...
. . .

...
∂rN
∂h1

∂rN
∂h2

· · ·
∂rN
∂hN


(19)

hk is defined as the h at iteration time k . For simplicity,
this paper rewrites J(hk) as Jk, r(hk) as rk, f(hk) as fk .
Using the Taylor approximation r(hk+dk), the cost function
approximator mk (dk) is defined as follows

mk (dk) =
1
2
‖Jkdk + rk‖2 (20)

where mk (dk) is the approximator of fk+1 and mk (0) is equal
to fk , and dk ∈ RN is the search direction at iteration time k .

Subsequently, the following subproblem is solved at k
iteration time

min
dk

mk (dk)

s.t. ‖dk‖ ≤ 1k (21)

where 1k > 0 is the trust-region radius and dk is the search
direction.

The cost function is the first-order Taylor expansion for
r(hk+dk). The motivation of LMmethod is based on the gra-
dient of cost function. The gradient provides a local informa-
tion of cost function but not represents a global information
of cost function, so the trust-region is defined. The constraint
‖dk‖ ≤ 1k means that this approximation is only effective
within the trust-region radius.

According to Karush−Kuhn−Tucker (KKT) condition,
the search direction dk can be obtained

dk = −
(
JkT Jk + λkI

)−1
JkT rk (22)

One important new problem arises: How to set the param-
eters λk which controls the radius of trust-region. In the
following part of this section, an ATR-LM method that has
the effective strategy in practice is described. The primary
ingredient in the LM method is the strategy for selecting the
parameter λk at each iteration. The presented strategy is based
on the agreement between the approximator function mk (dk)
and the cost function fk+1 at previous iterations. The ρ(k) is
defined as

ρk =
f (hk)− f (hk + dk)
mk (0)− mk (dk)

(23)

Note that ρ(k) is a ratio of the actual reduction to the
predicted reduction. If ρk is near 1, it means that a satisfactory
agreement exists betweenmk (dk) and fk+1 over this step, so it
is confident to use the Taylor expansion for the next iteration
and the trust-region should become large. If ρk is positive and
exceedingly small, it means that mk (dk) is not a satisfactory
estimation of fk+1, so trust-region should become small. If ρk
is negative, the next iteration of the cost function is larger
than the current iteration, so this search direction should be
rejected.

According to the above description, the updated technique
of λ is shown in Algorithm 2. Furthermore, the convergence
analysis of the ATR-LM is also provided in Appendix B.

A. NUMERICAL EXPERIMENTS
To verify the presented ATR-LMmethod, the nonlinear PDEs
problem is investigated. The parameters are shown as follows
Vc = 0.02m/s, S = 50, η = 10−4 and other parameters are
shown in Appendix A. The purpose of this study is to identify
the heat transfer coefficients on the boundary conditions (10).
To generate the measured temperature, the exact values of
the heat transfer coefficients are assigned as h∗. Solve the
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Algorithm 2 ATR-LM
Input: Tm
Output: The estimation of heat tranfer coefficients h̄
1: Set iteration time k = 0, maximum iteration

number S = 50, stop criterion η = 10−4.
2: Solve the PDEs with the boundary condition hk ,

and the predicted surface temperature
Tp(hk) can be obtained.

3: Compute the Jacobian matrix Jk using (19).
4: Compute the ρk using (23)
5: Update λk+1.
6: if ρk > 3

4
7: λk+1 =

1
2λk

8: dk = −
(
JkT Jk + λkI

)−1
JkT rk

9: hk+1 = hk + dk
10: else if 1

4 ≤ ρk ≤
3
4

11: λk+1 = λk

12: dk = −
(
JkT Jk + λk I

)−1
JkT rk

13: hk+1 = hk + dk
14: else if 0 ≤ ρk < 1

4
15: λk+1 = 2λk
16: dk = −

(
JkT Jk + λkI

)−1
JkT rk

17: hk+1 = hk + dk
18: Let k = k + 1.
19: if |fk+1 − fk | ≤ η or k > S,
20: Go to step 2,
21: else
22: output h̄.

TABLE 1. Measured temperature.

direct heat transfer model associated with the boundary con-
ditions h∗. Subsequently, the temperature field of the steel
billets T (x, y, z;h∗) can be obtained. Finally, eight measured
points Te are selected. Te and h∗ are shown in Table 1.
Certain noise is added into the measured points.

Tm = Te + δ (24)

where δ is the normal distribution with zero mean value and
δ variance.

Using the measured temperature, Landweber [25],
Cao [24], LM [23] and ATR-LM are used to estimate the
heat transfer coefficients h̄. To measure the performance of
different methods, this experiment uses the estimation value
of the heat transfer coefficients h̄ and h∗. The comparison
results between the four methods are shown in Table 2.

TABLE 2. Comparison ATR-LM with other three methods.

FIGURE 3. Comparison with the convergence behavior.

Evidently, when δ = 0, those four methods have almost the
same performance. So does δ = 0.1. When δ = 1, the LM
method has the worst performance, because the parameter
λk of the LM method is unreasonable. On the contrary,
the presented ATR-LM method is better than the Cao and
Landweber methods. When δ = 10, the presented ATR-
LM method has the best performance. The actual values of
the heat transfer coefficients determined by ATR-LM and
empirical values of heat tranfer coefficients are shown in
Appendix Table 11.

Fig. 3 shows a comparison of the convergence behaviors of
Landweber, Cao, LM and ATR-LM. It is concluded that LM
and ATR-LMmethods have better performance than Cao and
Landweber, because the LM and ATR-LM methods belong
to second order optimization methods owing to the approx-
imate Hessian matrix. On the contrary, Cao and Landweber
do not have this property, so the convergence behaviors are
not satisfactory. In addition, the convergence analysis of
ATR-LM methods are given, which supports our results in
theory.

Thus, this study should provide an insight into the param-
eter λk , as shown in Fig. 4. From Fig. 4, it is evident that
λk becomes small as the iteration times k increases. The
relatively large value of λk means that the trust-region is
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FIGURE 4. The behaviour of λ with iteration times.

TABLE 3. Measured temperature.

small. At the primer iteration phase, the current solution is
far from the optimum, and the mk (dk) is not a satisfactory
estimation of the cost function fk+1. Thus, the trust-region
should be small to limit the unsatisfactory estimation of the
Hessian matrix. On the contrary, the relatively small value of
λk means that the trust-region is large. At the late iteration
times, the mk (dk) becomes a satisfactory estimation of fk+1.
Owing to mk (dk), the ATR-LM have a better performance.

B. INDUSTRIAL APPLICATIONS
In this subsection, an actual surface temperature measure-
ment is conducted in a steel plant. Based on the measured
surface temperature, the heat transfer coefficients can be
estimated. Subsequently, the corrected heat transfer model is
used to predict the thickness of steel billets, which can con-
firm the effectiveness of the corrected model. In continuous
casting, this process is called pin-shooting experiment. The
related parameters are shown in Appendix A.

1) TEMPERATURE MEASUREMENTS AND MODEL
IDENTIFICATION
Because of the high temperature of steel billets, the non-
contact temperature measurement with a measuring error
less than 8K is used to measure the surface temperature of
the steel billets. The measured surface temperature is shown
in Table 3.

ATR-LM is used to estimate the heat transfer coeffi-
cients using the measured surface temperature. Fig. 5 shows
a comparison between the predicted surface tempera-
ture (ATR-LM) and the predicted surface temperature

FIGURE 5. Comparison between the measured and predicted surface
temperature.

(empirical formula). The predicted surface temperature
obtained by using the corrected heat transfer model can
follow the measured surface temperature exceedingly
satisfactorily.

2) MODEL VALIDATION
To test the accuracy of the corrected heat transfer model,
the pin-shooting value experiment is conducted to compare
the measured shell thickness with the predicted shell thick-
ness. The pin-shooting method can measure the thickness of
the steel billets with high accuracy. Then, the corrected heat
transfer model is used to predict the shell thickness of the
steel billets. However, the pin-shooting experiment has a poor
effect on the quality of steel billets, so the result of the pin-
shooting method is only used to validate the corrected heat
transfer model. The nephogram of steel billets temperature
field is shown as follows

The red portion represents the temperature beyond
1700(K) and it is beyond the solid temperature, so the molten
steel is still liquid. As shown in Fig. 6, the molten steel inside
solid-phase line is in the liquid state and the steel billets
outside solid-phase line is in solid state. The pin-shooting
experiment shoots the nail into the steel billets, so the thick-
ness of the shell can be measured, as depicted in Fig. 6.

Fig. 7 shows a correlation between the measured shell
thickness and the calculated shell thickness. In Fig. 7,
the square root law belongs to a type of empirical method
utilized to calculate the shell thickness [32]. The predicted
values of the corrected heat transfer model are consistent with
the measured values. The pin-shooting experiment concludes
that the ATR-LM method is effective.

IV. GPU-BASED MODEL PREDICTIVE CONTROL OF
CONTINUOUS CASTING BASED ON SP-SJ METHOD
A. DYNAMIC OPTIMIZATION PROBLEM
The unknown parameters in nonlinear PDEs are identi-
fied using the ATR-LM method. The temperature field is
expressed by T (x, y, z, t). The setting value for Nz, the water
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FIGURE 6. Measuring the shell thickness of the steel billets by the
pin-shooting experiment.

FIGURE 7. Comparison between the measured and calculated steel billets
shell thickness.

flow rate u (t) = [u1 (t) , u2 (t) , · · · , uNz (t)]T is changed
from u(t) to u(t+1) at time t+1. Subsequently, the PDEs (1)
with its boundary conditions can be solved, i.e., the tempera-
ture field at the next time step T (t+1) can be obtained. Thus,
the dynamics of temperature can be regarded as a discrete-
time state-space dynamic model, which can be represented
as

T (t + 1) = f (T (t) ,Q (t + 1)) , t > 0 (25)

where f represents the dynamics of nonlinear PDEs.
It should be mentioned that the nonlinear coefficients
ρ(T ), ce(T ), k(T ) result in f is implicit.
The surface average temperature of the steel billets for each

cooling section can be obtained

T nave (t) =
1
mi

mi∑
j=1

T tijk , ∀j ∈ yn ≤ j× ny < yn+1,

i =
nx − 1

2
, k = 0 (26)

Based on (25) and (26), the surface average temperature of
steel billets Tave (t) =

[
T 1
ave (t) ,T

2
ave (t) , · · · ,T

Nz
ave (t)

]T
can

be got. T iave(t + k) is the surface average temperature of the

steel billets at cooling section i, and T iaim(t + k) is the goal
temperature of the steel billets at cooling section i.

The models used in MPC are generally intended to rep-
resent the behavior of complex dynamical systems. Based
on the prediction of this model, an optimal control problem
is intuitive and naturally derived via minimizing the sum of
squares of future control errors over a finite time horizon
while satisfying constraints [28]. The cost function is shown
as follows

min
Np∑
k=1

∥∥Tave (t + k)− Taim (t + k)
∥∥2 (27)

where Np is the prediction horizon.
1. Surface temperature constraints: The surface tempera-

ture of steel billets should be outside the low ductility temper-
ature range (less than T (978.15(K)) or over T (1233.15(K))).
According to the approximate mechanism analysis and engi-
neering experience, the large temperature gradient may cause
cracks. Taking these factors into account, it is difficult to
define the lower and upper bounds for all grades of steel.
Nevertheless, Petrus et al. [8] recommend that the lower
temperature bound is between 973.15(K) and 1123.15(K)
and the upper temperature bound is between 1173.15(K) and
1273.15(K). Considering the experience of continuous caster
operator, this study has the following constraints

T ≤ T iave ≤ T , ∀i = 1, 2, · · · ,Nz (28)

2. Reheating constraints between adjacent sections: When
the steel billets process a high cooling efficient spray cooling
zone to a lower one, reheatingmay occur. The reheating of the
steel billets has resulted in the development of the cracking,
so the following constraints can be obtained.

−100K/m ≤
∂T iave
∂z
≤ 100K/m, ∀i = 1, 2, · · · ,Nz (29)

where ∂T iave
∂z represents the reheating of the steel billets in the

cooling section i.
The reheating is defined by the temperature gradients along

with the casting direction. Thus, the temperature gradients are
replaced by the difference between the average temperature
in the cooling section i and the average temperature in the
cooling section i+ 1 gradient.

−100K/m ≤
T i+1ave − T

i
ave

Li+1 − Li
≤ 100K/m

∀i = 1, 2, · · · ,Nz − 1 (30)

3. Shell thickness at the mold exit: The shell thickness
at the mold exit must be greater than 10% of the thickness
of steel billets. This constraint avoids breakout occurrences
caused by extraction stresses and liquid ferrostatic pressure,
and can be defined as

Xs
(
T tijk

)
≥ 0.1lx , (31)

where Xs are the axes of coordinate (m) and the temperature
of steel billets is equal to solidus temperature.
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4. Spray cooling water flow constraints:

ui≤ui (t+k) ≤ ui, ∀k=1, 2, · · · ,Np, ∀i = 1, 2, · · · ,Nz
(32)

The values of ui and ui are shown in Appendix.
The inequality constraints can be transformed into the cost

function. Subsequently, we have

min
u
L (u (t + k)) =

K∑
k=1

H (t + k) (33)

with the definition

H (t+k)=‖Taim (t + k)− Tave (t + k)‖2+µTC (u (t + k))

(34)

where

C (u) =
(
T i − T iave, · · · ,T

i
− TNzave,T

1
ave − T , · · · ,

TNzave−T ,L−
∂T 1

ave

∂z
, · · · ,L−

∂TNz−1ave

∂z
,
∂T 1

ave

∂z
−D,

· · · ,
∂TNz−1ave

∂z
−D, u− u1, · · · , u− uNz, u1 − u · · · ,

uNz − u
)T
, 0.1lx − Xs ∈ R6Nz−1

There are several numerical optimization algorithms that
can be used to solve this problem such as quasi-Newtonmeth-
ods and conjugate gradient methods. Most of those methods
are based on the gradient of the cost function. The gradient
∇L (u) = gt+k can be obtained

gt+k =
(
∂H (t + k)
∂u (t + k)

)T
+

(
∂H (t + k + 1)
∂u (t + k)

)T
,

k = 1, 2 · · · ,K − 1 (35)

gK =
(
∂H (K )
∂u (K )

)T
(36)

B. SPARSE JACOBIAN COMPUTATION
According to chain rule, the following equation can be
obtained.

∂H (t+k+1)
∂u (t + k)

=
∂H (t + k + 1)
∂Tave (t + k + 1)

∂Tave (t + k + 1)
∂u (t + k)

(37)

Because the first term ∂H (t+k+1)
∂Tave(t+k+1)

is easy to obtain,
the key to calculate the gradient is to compute the second
term ∂Tave(t+k+1)

∂u(t+k) . Actually, ∂Tave(t+k+1)
∂u(t+k) is a Jacobian matrix,

which is calculated by (38), as shown at the bottom of this
page.

Because the relationship between Tave and u is governed
by nonlinear PDEs, the analytic form of ∂Tave

∂u(t+k) does not
exist. Thus, the partial derivation at a given point can be
approximated

∂Tave

∂uj
≈

Tave
(
u+εej

)
− Tave (u)

ε
, j = 1, 2, · · ·Nz (39)

where ε is a small positive scalar and ej is the i th unit vector,
i.e., the vector whose elements are all 0 expect for a 1 in the
i th position.

The Jacobian matrix can be built by merely applying this
formula. In general, this process requires evaluation of Tave
at u point and the Nz perturbed points u + εei: a total of
Nz + 1 points. Therefore, Nz + 1 times solution of nonlinear
PDEs are required to calculate the Jacobian matrix. This is an
exceedingly large computation task.

For continuous casting, the Jacobian matrix has a sparse
structure. Furthermore, the Jacobian matrix is a tridiagonal
matrix. Because the water flow rate of 1st section u1(t+k1t)
only affects the average surface temperature of 1st section
T 1
ave(t + k1t + 1t) and its neighboring region T 2

ave(t +
k1t + 1t). u2(t + k1t) only affects T 2

ave(t + k1t + 1t)
and its neighboring regions T 1

ave(t + k1t +1t) and T
3
ave(t +

k1t +1t). Furthermore, a perturbation εe1 to the first com-
ponent of u will affect only the first and second components
of Tave(t + k1t + 1t). The remaining components will
remain unchanged, so that the Jacobian matrix has numerous
zeros elements. Evidently, the evaluations of the components
T 3
ave(t+k1t+1t),T

4
ave(t+k1t+1t), . . . , , T

Nz
ave(t+k1t+

1t) are wasteful.
Remark 1:Assume that u1(t+k1t) only affects the average

surface temperature of section one T 1
ave(t + k1t + 1t) and

its neighboring region T 2
ave(t + k1t + 1t). If and only if tz

is larger than the ratio of the length of cooling section 2 to
casting speed, u1(t + k1t) can effect T 3

ave(t + k1t + tz).
In our case, 1t is less than the ratio of the length of cooling
section 2 to casting speed, so u1(t + k1t) cannot effect

∂Tave (t + k + 1)
∂u (t + k)

=

[
∂Tave (t + k + 1)
∂u1 (t + k)

· · ·
∂Tave (t + k + 1)
∂uNz (t + k)

]

=



∂T 1
ave (t + k + 1)
∂u1 (t + k)

∂T 1
ave (t + k + 1)
∂u2 (t + k)

· · ·
∂T 1

ave (t + k + 1)
∂uNz (t + k)

∂T 2
ave (t + k + 1)
∂u1 (t + k)

. . .
...

...

∂TNzave (t + k + 1)
∂u1 (t + k)

· · ·
∂TNzave (t + k + 1)
∂uNz (t + k)


(38)
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T 3
ave(t + k1t + 1t). Therefore, the assumption was

established.
To recycle the wasteful evaluations, the perturbation vector

should be modified so that it does not have any further
effect on T 1

ave(t + k + 1) and T 2
ave(t + k + 1), but does

produce a change in certain components T 3
ave(t + k + 1),

T 4
ave(t + k + 1), . . . , , TNzave(t + k + 1), which can be used

to compute other columns of the Jacobian matrix. It is easy to
understand that the additional perturbation εe4 possesses the
desired property. Thus, the new perturbation vector is shown
as follows

p1 = ε (e1 + e4) (40)

Subsequently, the following equation can be obtained[
∂T 1

ave

∂u

]
1,2
≈

[
Tave (u+ p1)− Tave (u)

ε1

]
1,2

(41)[
∂T 4

ave

∂u

]
3,4,5
≈

[
Tave (u+ p1)− Tave (u)

ε4

]
3,4,5

(42)

where the notation [·]1,2 represents the subvector consisting
of the 1st and 2nd elements.

Overall, this study can meanwhile compute the two
columns of the Jacobian by evaluating the function Tave at
one time. The remainder columns of the Jacobian matrix can
be approximated in this economical manner as well, such as
p2 = ε (e2 + e5) and p3 = ε (e3 + e6).
Actually, three extra evaluation of Tave are sufficient

to calculate the entire Jacobian matrix. The selections of
perturbation p are defined as

p1 = ε (e1 + e4 + e7 + · · ·)

p2 = ε (e2 + e5 + e8 + · · ·)

p3 = ε (e3 + e6 + e9 + · · ·) (43)

Remark 2: In fact, for any selection of Nz (irrespective
of how large the Jacobian matrix is), three extra evaluations
of PDEs are sufficient to approximate the entire Jacobian.
In contrast, if the sparse structure is not used in this study to
compute the Jacobian, Nz evaluation of PDEs are necessary
to approximate the entire Jacobian matrix.

C. STREAM PARALLEL IMPLEMENTATION OF SPARSE
JACOBIAN COMPUTATION
As mentioned above, obtaining the solution of the nonlin-
ear PDEs is the most significant computation bottleneck in
the dynamic optimization problem. GPUs with thousands of
threads have power ability to handle large parallel computa-
tional tasks, which have been applied to problems with high
computing costs such as image processing, training neural
networks, and operations research.

Recently, some research works have used GPU to solve
nonlinear PDEs [14], [15], which are pioneer works for GPU-
based 3D heat transfer model. GPU-based 3D heat transfer
model has high computational performance owing to mas-
sively parallel computations, which are appropriate for real-
time applications in casting control and optimization [14].

From the above subsection, it is obvious that every iteration
time requires one time gradient calculation, and the one time
gradient calculation contains one time Jacobian matrix calcu-
lation. Each Jacobian matrix calculation requires four times
PDEs solution with different boundary conditions, which are
T(u), Tave(u+ p1), Tave(u+ p2), and Tave(u+ p3). The cal-
culation of PDEs is running on GPUs. Prior to the calculation
of PDEs on GPUs, the CPU should transfer the data such as
the boundary conditions u + p1 from the CPU memory to
the GPUs memory. After the GPU finishes the calculation of
PDEs, the data (Tave(u+ p)) will be copied back to the CPU
memory. This process called one-around calculation will be
repeated four times with different boundary conditions.

The copy memory operations occupy significant running
time, which results in the GPU having considerable free time.
Several researchers reported that the copy memory opera-
tions are a bottleneck [30] because they are slower than the
computing operations. According to our practical experience,
the ratio of the running time of the copy memory operation to
the entire running time is 56%.

In this study, stream parallelism is applied to the Jacobian
matrix calculation. The stream parallel implementation of this
application relies on the overlapping of memory copies with
the solution of the PDEs. Fig. 8 shows the sequences of the
calculation operations of the presented SP-SJ method. This
study endeavors to obtain Tave(u + p2) to its input data u +
p2 to the GPU in advance while the solution Tave(u + p1)
is being executed on the GPU. The execution time with the
SP-SJ method can be even more favorable than that without
stream parallelism. The process of SP-SJ method is shown in
Algorithm 3.

In this study, the implementation of CUDA/C++ kernel
is the same as that of [12]. The details of CUDA kernel
implementation can be found in [14].

CUDA kernels have been implemented in the calculation
of Jacobian matrix (the step 4 of A lgorithm 3). The CUDA
kernel is designed for the computation of one time iteration,
which provides the temperature field at time step t + k + 1.
The pseudocode of the main CUDA/C++ kernel reads.

Remark 3:One round of calculation intends to use the GPU
to solve the PDEs with given boundary conditions. Thus, two
separate rounds of calculations allocate two identical data
so that each round can independently work. Owing to the
naturally parallel structure of the Jacobian matrix calculation,
the stream parallels can work exceedingly satisfactory to
accelerate the solution strategy of the dynamic optimization
problem (conjugate gradient method).
Remark 4: The stability of the MPC of the nonlinear PDEs

has been developed, but several assumptions with respect to
these results are not satisfied in our dynamic PDEs system or
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FIGURE 8. A flowchart of GPU-based model for SP-SJ method.

it is difficult to verify whether these assumptions are satis-
fied. The stability is quite significant for MPC. Meanwhile,
Sanders and Kandrot [28] reported that providing close-loop
stability to the MPC of nonlinear PDEs system is challenging
in theory. Thus, future work should be focused on the stability
of MPC of this class of nonlinear PDEs. In terms of practical
applications, the description from the input to the stable
state conforms to the second law of thermodynamics. The
operation of a close-loop controlled spray cooling system is
safe only if the inputs (water flow rate) are bounded, which
is satisfied in this study.

D. SIMULATION EXPERIMENT AND INDUSTRIAL
APPLICATIONS
Experiments 1-3 are simulation experiment and experiment
4 is an actual experiment. This section made this simulation
experiment test the MPC scheme. Simulation experiments
are necessary. Possible reason may be (1) Certain important
features and capabilities of the control algorithm cannot be
varied via an actual steel plant. (2) The MPC strategy should
be tested based on a simulation model before it is conducted
on an actual system.

All the experiments in Experiment 1-4 were conducted
using Visual Studio 2015 and CUDA 8.0. The parallel-based
heat transfer model was launched on NIVIDA Tesla P100.
The traditional heat transfer model was launched on i7-3770.
The heat transfer model is concerned with the casting

conditions, including continuous caster parameters, and the
physical parameters of steel billets shown in Table 4, 7-10.
Uniform mesh is used. The time step is 0.02s. The number
of mesh nodes are 25, 3000, 25 in x, y, z, respectively.
The number of blocks is 3000 and the number of threads is
25 × 25.
Experiment 1: The experiment was conducted to compare

the empirical methods and the MPC strategy. In the current
subsection, the prediction horizon Np is 10. MPC is based
on an iterative, finite-horizon optimization of a plant model.
At time t, the current plant state is sampled and a cost
minimizing control strategy is computed (via a numerical
minimization algorithm) for a relatively short time horizon
in the future: [t, t + Np1t]. Specifically, an online or on-
the-fly calculation is used to explore state trajectories that
emanate from the current state and find a cost-minimizing
control strategy until time t + Np1t . The number of cooling
section Nz is 8. The target temperature is shown in Table 4.
In this study, the target temperatures are obtained by the
steel thermomechanical performance test are specified for
the billet center and corner in every zone. The continuous
caster operator can give the reference temperature profile.
Based on the reference temperature profile, the candidate
target temperature can be obtained. Then, the candidate target
temperature are input into our algorithm. If the metallurgical
principles can be satisfied, this candidate target temperature
is set as the target temperature. If the metallurgical principles
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Algorithm 3 SP-SJ method
Input: Taim
Output: The optimal of water flow rate u∗

1: Let t = 0
2: Let k = 0, set the initial water flow rate uk

and the maximum iteration number kmax.
3: Evaluation the steel billets temperature

T(uk + p1, t),
T(uk + p2, t), T(uk + p3, t), T(uk, t).

4: Compute the Jacobian matrix based on (39).
5: Update the water flow rate uk+1.

if k = 1
uk+1 = uk + αkpk
pk = −gk

else
uk+1 = uk + αkpk
βk =

‖gk‖2

‖gk−1‖
2

pk = −gk + βkpk−1
6: Let k = k + 1 and if k < kmax go back to

Step 3
7: Let t = t +1t and if t < tfinal go back to

Step 2, else stop

TABLE 4. Target temperature.

cannot be satisfied, the condidate target temperature should
be adjusted, until the metallurgical principles can be satisfied.
Before t = 400s, the operation condition is static, i.e., the
temperature field of steel billets and the water flow rate of
every cooling section are fixed. The casting speed is changed
from 0.0167m/s to 0.02m/s at t = 400s. Both of the pre-
sented MPC and PI control [6] were applied to set the water
flow rate. The experimental results are shown in Fig. 9-12.

Fig. 10 and Fig. 12 show the results of the PI control
method. When the casting speed changes from 0.0167m/s to
0.02m/s, the surface temperature of the steel billets cannot
stay static. PI control only uses the measured surface temper-
ature to adjust the water flow rate. However, the internal tem-
perature cannot be measured, so the surface temperature will
also be affected. Another drawback of PI control is that the
PI control method only determines the water flow rate of i th
cooling section using the average temperature of i th cooling
section and does not consider the adjacent cooling sections.
PI control requires a long time to adjust the water flow rate
to reduce the temperature variations. On the contrary, from
Fig. 9 and Fig. 11, the presented MPC approach considers
the entire temperature field of steel billets to determine the

FIGURE 9. Water flow rate by using MPC.

FIGURE 10. Water flow rate by using PI control.

FIGURE 11. Surface average temperature by using MPC.

water flow rate, so the surface temperature is more stable and
the surface temperature fluctuations are relatively small when
using the MPC approach.
Experiment 2: The four different changes of casting speed

status (case A: 0.02m/s to 0.03m/s, case B: 0.025m/s to
0.03m/s, case C: 0.022m/s to 0.026m/s, case D: 0.025m/s
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FIGURE 12. Surface average temperature by using PI control.

FIGURE 13. The DT of the average temperature with the different casting
speed changes.

to 0.015m/s) are conducted to verify the MPC approach. The
DT is used to evaluate the control performance, which is
defined as

DTi =
1
tf

∫ tf

0

∣∣Tave,i (t)− Taim,i (t)∣∣dt (44)

The DT of those four cases are shown in Fig. 13. From
Fig. 13, it is obvious that the temperature fluctuations are
small when the casting speed changes abruptly.
Experiment 3: Experiment 1 and experiment 2 show the

control performance of the presented MPC approach.
In this subsection, this work developed this experiment

to demonstrate the running time between CPU sequential
implementation, CPU parallel implementation, GPU par-
allel Jacobian computation (PJ) and SP-SJ method. This
study implemented CPU parallel codes using OpenMP 2.0.
OpenMP is an application programming interface for writing
multi-threaded programs in C++, C and Fortran. In this
experiment, eight threads are created in OpenMP. The results
are listed in Table 5.

In Table 5, the running time represents the time during
which a program is executing, and the relative run time is

TABLE 5. A comparison of running time.

FIGURE 14. Measured surface temperature in cooling section 6.

FIGURE 15. Micrographs before applying the new system.

defined as the ratio of the run time for the wall-clock of
the actual continuous casting process being simulated. The
relative run time is a crucial performance indicator for real-
time control and optimization. It should be mentioned that the
solution approach for theMPC and its relative run time should
be less than 1. From Table 5, the relative run time of SP-SJ
method is less than 1. This provides the possibility of the
application of MPC.MPC is the dynamic optimization. Thus,
MPC starts to run the code to obtain the optimal solution
at time ts. tc is defined as the computational time of MPC.
It takes tc to get the optimal solution, which implies that the
optimal solution of ts can be obtained at time ts + tc; hence,
there exists a delay. The shorter delay tc, the better. Especially
for continuous casting, if the water spray cannot be adjusted
in time, the steel billets will produce a large temperature
fluctuation. It is concluded that the presented SP-SJ method
has the best performance and the complicated MPC approach
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FIGURE 16. Micrographs after applying the new system.

can work exceedingly satisfactorily especially with respect to
the large computation problem.
Experiment 4: This experiment is an actual experiment

and all the experimental data are collected in Benxi Iron and
Steel Corporation. The presented MPC approach has been
implemented in an actual continuous casting process. As the
casting speed changes from 0.02m/s to 0.025m/s, the real-
time measured surface temperature of the steel billets at the
exit of the cooling section 6 are shown in Fig. 14.

From Fig. 14, the maximum fluctuation is 12.3K . It is
lower than the simulation case value of PI control 38.7K from
Fig. 12, so the presentedMPC approach can make the surface
temperature stable. Moreover, the presented MPC approach
also can improve the quality of the steel billets.

Fig. 15 and Fig. 16 show the micrographs before and after
applying the new control system, respectively. The micro-
graphs of the steel billets can be obtained via observation
under a low-magnifying glass. The steel billets were severely
cracked when an improper cooling water control scheme was
used before applying the new control system. The proposed
scheme can reduce the crack index (ranging from 0 to 1),
which is used to evaluate the quality of the steel billets within
the metallurgy industry. The reduction of data from 0.28 to
0.03 fully proves the improvement of billet quality.

V. CONCLUSIONS
This paper is devoted to the design of a MPC approach
for the continuous casting process. A new ATR-LM was
developed to identify the unknown parameters in PDEs using
the measured surface temperature and a new SP-SJ method
was proposed to solve the dynamic optimization problem for
MPC. The contributions of this study are shown as follows

(1)The presented ATR-LM method has better perfor-
mance than the Cao and Landweber methods. Moreover,
the unknown parameters are identified using this method and
the prediction shell thickness of the corrected heat transfer
model can follow the measured shell thickness obtained via

TABLE 6. Major components of steel grade.

TABLE 7. Process parameters and some physical properties of steel
billets.

the pin-shooting experiment. Furthermore, the convergence
analysis of the ATR-LM is also provided.

(2)Utilizing the sparse structure of the Jacobian matrix,
the SP-SJ method was presented to accelerate the compu-
tations based on the GPU, which provides the possibility
to apply advanced real-time and optimization strategies to
continuous casting.

(3)This study discusses the practical application problems
and the case of real industrial study is also described. More-
over, the new construction of the MPC based on GPU can be
extended to other complex industrial processes that include
heat transfer model.

APPENDIX
A. PROCESS PARAMETERS AND SOME PHYSICAL
PROPERTIES OF STEEL BILLETS.
Thermal conductivity is obtained by the following equa-
tions [31]

kl = 35.0− 0.3574wCr − 0.5116wMo − 0.0014wNi (45)

ks = 20.76+ 0.009T − 3.2627wC − 0.7598wSi
− 0.1432wMn−0.2222wMo+(0.0124+2.204×10−4T

+ 1.078×10−7T 2
+7.822×10−4wCr−1.741×10−7T

×wCr )wCr + (−0.5860+ 8.354× 10−4T − 1.368

× 10−7T 2
+ 1.067× 10−2wNi

− 1.504× 10−7TwNi)wNi (46)

Liquidus temperature and solidus temperature are obtained
by the following equation [31]

Tl = 1536.6− (88wC + 8wSi + 5wMn + 25wCu + 1.5wCr
+ 4wNi + 2wMo + 18wTi) (47)

Ts = 1527− (187.5wC + 700wS + 500wP + 20.5wSi
+ 11.5wNi + 6.5wMn + 5.5wAl + 2.0wCr ) (48)

The results of ATR-LM and empirical formula are shown
in Table 11. The empirical formula can be found in [2].
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TABLE 8. Continuous caster parameters.

TABLE 9. y.

TABLE 10. Water flow rate constraints.

TABLE 11. The results of ATR-LM and empirical formula.

B. CONVERGENCE ANALYSIS.
Lemma 1: The search direction dk satisfies with c1, that is

mk (0)− mk (dk) ≥
1
2

∥∥∥JkT rk∥∥∥min

(
1k ,

∥∥JkT rk∥∥∥∥JkT Jk∥∥
)

(49)

Proof 5.1: Obviously, rkT JkJkT rk ≥ 0. There are two
cases. Consider the cases of ‖dk‖ < 1k and ‖dk‖ = 1k
separately. For the former case, the following equations can
be obtained ∥∥JkT rk∥∥3

1krkT JkJkT rk
≤ 1 (50)

From the KKT conditions, the following equation can be
obtained

dk = −

∥∥JkT rk∥∥2
1k

(
rkT JkJkT rk

)JkT rk (51)

Substitute dk into mk , the following equation can be
obtained

m (0)− m (dk)

= −
1
2
rkT JkJkT rk

∥∥JkT rk∥∥4(
rkT JkJkT rk

)2 +
∥∥JkT rk∥∥4
rkT JkJkT rk

=
1
2

∥∥JkT rk∥∥4
rkT JkJkT rk

≥
1
2

∥∥JkT rk∥∥4∥∥JkJkT∥∥ ∥∥JkT rk∥∥2
=

1
2

∥∥JkT rk∥∥2∥∥JkJkT∥∥ ≥ 1
2

∥∥∥JkT rk∥∥∥min

(
1k ,

∥∥JkT rk∥∥∥∥JkJkT∥∥
)

(52)

For the next case, the following equation can be obtained.

dk = −
1k∥∥JkT rk∥∥JkT rk (53)

Therefore, the following equation can be obtained

rkT JkJkT rk ≤

∥∥JkT rk∥∥
1k

(54)

Using (54), the following equation can be obtained

m (0)− m (dk)

= −
1k(

rkT JkJkT rk
)2 rkT JkJkT rk + 1k∥∥JkT rk∥∥

∥∥∥JkT rk∥∥∥2
≥ −

1k

rkT JkJkT rk
+

1
2

12
k∥∥JkT rk∥∥2

∥∥JkT rk∥∥3
1k

=
1
2
1k

∥∥∥JkT rk∥∥∥ ≥ 1
2

∥∥∥JkT rk∥∥∥min

(
1k ,

∥∥JkT rk∥∥∥∥JkT Jk∥∥
)

(55)

The desired results are proved.
Theorem 1: Suppose that

∥∥JkJTk∥∥ ≤ β for some con-
stant β, that f is bounded below on the level set S defined by

S = {x|f (x) ≤ f (x0)} (56)

Lipschitz continuously differentiable in the neighborhood
S(R0) for some R0 > 0 is referred as

S (R0) = {x| ‖x− y‖ < R0} (57)

The following equation can be obtained

lim inf
k→∞

∥∥∥JkT rk∥∥∥ = 0 (58)

Proof 5.2: By performing some technical manipulation
with the ratio ρk , we have

|ρk − 1| =

∣∣∣∣ f (xk)− f (xk + dk)− mk (0)+ mk (dk)
mk (0)− mk (dk)

∣∣∣∣
=

∣∣∣∣mk (dk)− f (xk + dk)
mk (0)− mk (dk)

∣∣∣∣ (59)

Based on the Taylor’s expression, the following equation
can be obtained

f (xk + dk) = f (xk)+
(
JkT rk

)T
dk

+

∫ 1

0

[
JT (xk + tdk) rk − JkT rk

]T
dkdt

(60)
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It follows from the definition of mk that

|m (dk)− f (xk + dk)|

=

∣∣∣∣12dkT JkT Jkdk−
∫ 1

0

[
JT (xk+tdk) rk − JkT rk

]T
dkdt

∣∣∣∣
≤
β1

2
‖dk‖2 + β2‖dk‖2 (61)

Suppose for contradiction that there exists ε > 0 and a
positive index K such that∥∥∥JkT rk∥∥∥ ≥ ε (62)

for all k > K
From Lemma 1, for k > K , the following equation holds

mk (0)− mk (dk) ≥
1
2

∥∥∥JkT rk∥∥∥min

(
1k ,

∥∥JkT rk∥∥∥∥JkT Jk∥∥
)

≥
1
2
εmin

(
1k ,

∥∥JkT rk∥∥∥∥JkT Jk∥∥
)

(63)

Considering (61), (63) and ‖dk‖ ≤ 1k , we have

|ρk − 1| ≤
212

k (β/2+ β1)
εmin (1k , ε/β)

(64)

1̄ is defined as follows for all 1k ≤ 1̄

1 = min
(
1
2

ε

(β1/2+ β2)
,R0

)
(65)

Note that 1̄ ≤ ε
β1
, which implies that 1k ∈

[
0, 1̄

]
. The

following equation can be obtained

min (1k , ε/β) = 1k (66)

Since,

|ρk − 1| ≤
212

k (β1/2+ β2)
ε1k

=
21k (β1/2+ β2)

ε

≤
21̄ (β1/2+ β2)

ε
≤

1
2

(67)

Based on (67), ρk > 1
4 . Because of ρk >

1
4 , 1k+1 ≥ 1k

whenever 1k falls below the threshold 1̄k . The reduction of
1k can happen in the presented algorithm only if

1k ≥ 1̄ (68)

Then, the following equation can be obtained

1k ≥ min
(
1K , 1̄/4

)
(69)

Suppose now that there is an infinite subsequence K1 such
that ρk ≥ 1/4 for k ∈ K1. For k ∈ K1 and k ≥ K , from
equation (63), we have

f (xk)− f (xk+1) = f (xk)− f (xk + dk)

≥
1
4
[mk (0)− mk (dk)]

≥
1
2
εmin (1k , ε/β) (70)

Thus, f is monotonically decreasing and bounded below.
For k → ∞, f (xk) must possess a limit. Based on the
Cauchy’s convergence principle,

lim
k→∞

f (xk)−f (xk+1)=0 ≥
1
4
c1ε lim

k→∞
(min (1k , ε/β))≥0

(71)

Since

lim
k∈K1,k→∞

1k = 0 (72)

This conclusion contradicts with (69). Hence, our original
assertion (62) must be false, giving (58).

C. ABBREVIATION
MPC: model predictive control
PDE: partial differential equation
GPU: graphic process unit
SCZ: secondary cooling zone
SP-SJ: stream parallel sparse Jacobian
PJ: parallel Jacobian
GA: genetic algorithm
LM: Levenberg-Marquardt
ATR-LM: adaptive trust-region Levenberg-Marquardt
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