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ABSTRACT In this paper, we propose a robust point cloud registration method for ground vehicles. Given
the vast developments in the field of autonomous vehicles, the use of point cloud data has increased. The
simultaneous localization and mapping (SLAM) algorithm is typically used to generate sophisticated point
cloud maps. In the SLAM algorithm, the quality of the map depends on the performance of loop closure
algorithms. The iterative closest point (ICP) algorithm is widely used for loop closure of the point cloud.
However, the ICP algorithm might not work well for ground vehicles because it was originally developed for
3D reconstruction in computer vision field. Therefore, this paper proposes a method to find robust matching
correspondences in the ICP algorithm on ground vehicle conditions. The performance of the proposed
method is compared with other conventional methods by using KITTI open datasets. The source code is
publicly released on the Github website.

INDEX TERMS Iterative closest point, point cloud, autonomous vehicle, ground plane condition.

I. INTRODUCTION
Thanks to the tremendous improvements brought about by
light detection and ranging (LiDAR) sensor technology over
the last decades, LiDAR sensors have been utilized in var-
ious robotics applications, including simultaneous localiza-
tion and mapping (SLAM) [1], localization [2]–[4], map
generation [5], object and pedestrian detection [6], etc. The
DARPA Grand/Urban Challenge [7] verified the possibility
of fully autonomous driving using LiDAR sensors. Although
LiDAR sensors can obtain high-precision information from
the environment, not all information can be procured because
of the limitations of the scanning range. Therefore, data
registration is required for localization and map generation.

The scan matching algorithm is widely utilized for the
registration of 3D shapes. In the early 1990s, the iterative
closest point (ICP) technique was first proposed for scan
matching [8], [9]. The ICP algorithm iteratively calculates
the transformation between two 3D shapes by finding corre-
spondence pairs at each step. Besl and McKay [8] proposed
a ‘‘point-to-point’’ ICP algorithm, which searches for the
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correspondence pairs from the geometrically closest point in
the 3D shape. Chen and Medioni [9] introduced a ‘‘point-
to-plane’’ ICP algorithm that can be used for range data by
estimating the target model as a plane. Zhang [10] introduced
a robust ICP algorithm that addresses outliers, occlusion
appearance, and disappearance.

After the ICP algorithm was proposed, many alternative
studies have been undertaken. Lu and Milios [11] proposed
iterative dual correspondence (IDC) to improve robot pose
estimation in unknown environments by matching 2D range
scans. The metric-based ICP (MbICP) [12] algorithm was
also devised to handle a large initial orientation error by min-
imizing geometric distance including the translation and ori-
entation of sensors simultaneously. Unlike the ICP algorithm,
the normal distributions transform (NDT) algorithm [13] was
proposed as a new approach to laser scan matching without
the need for explicit correspondences. This approach opti-
mizes the transformation using the normal distribution of
each cell from the probabilities of measuring a point. Some
researches proposed a 3D registration method based on Fast
Point Feature Histograms (FPFH) [14], [15]. These methods
have advantages for global registration, but the 3D model
should be of high density to extract good features. Since these
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traditional methods try to match dense point cloud models,
it is difficult to apply them directly to 3DLiDARs, with which
autonomous vehicles are mostly equipped.

The data provided by 3D LiDAR sensors, also known
as multi-layer LiDAR, is sparse due to the limitations
of the sensor coverage area. Therefore, other researchers
have focused on studying matching with multi-layer LiDAR
sensor data. The generalized ICP (G-ICP) method [16]
and multi-channel G-ICP [17] take advantage of sparse
data matching by considering covariance of each point in
the rigid transformation. Tazir et al. [18] proposed clus-
ter iterative closest point (CICP) for sparse-dense point
cloud registration. Agamennoni et al. [19] introduced prob-
abilistic data association for data registration. The 3D [20]
and multi-layered NDT [21] algorithms were also devised
to match 3D multi-layer sensors. Das et al. [22] and
Das and Waslander [23] introduced 3D scan registra-
tion using the NDT with ground segmentation. Similarly,
Pandey et al. [24] introduced a 3D point cloud alignment
for a ground plane-dominant environment. Zaganidis et al.
proposed the semantic-assisted Normal Distributions Trans-
form (SE-NDT) by considering semantic category during
optimization [25]. These algorithms consider only the char-
acteristic of the sensor system or environment, but do not take
into account the movement of the sensor system or vehicle.

Most studies reported improved performance by analyz-
ing data in various ways. However, these methods are not
well-suited to autonomous vehicles as the original purpose
of the data registration algorithms is to match two 3D shapes
for 3D reconstruction. Therefore, this paper proposes a
robust scan matching algorithmwith a ground constraint. The
ground vehicles can only move on the ground plane that lies
along the horizontal direction. As the relative transformation
of 3D LiDAR data is mainly related to the ground plane
direction, the transformations of SE(2) elements (x, y, yaw)
are large, while other elements (z, roll, pitch) are small. Thus,
we suggest an efficient data association method to find the
best correspondences in the ground constraint.

The main contribution of this paper is its introduction of an
efficient searching method to find the best correspondences
for ground vehicle applications. In ICP iteration, the general
search algorithms depend on the geometric distance without
any constraints. Thus, this paper proposes a ground plane
search algorithm. Since the ground plane usually lies on the
x-y plane, the proposed algorithm finds the correspondences
through a boundary search based on height information (z).
Unlike the 2D ICP algorithm, 6 degree-of-freedom (DoF)
transformation is estimated at every iteration step to over-
come ground slope conditions.

II. GROUND PLANE ICP
A. G-ICP
The main concept of the standard ICP algorithm consists
of two steps. First, the matched correspondences are com-
puted using geometric distances from two scan data. Second,

Algorithm 1 Standard ICP
Input: A = {ai}: target point cloud

B = {bi}: query point cloud
T0: initial transformation

Output: T : the aligned transformation with A and B
1 T ← T0
2 KA

← k-dTreeGeneration(A)
3 while not converged do
4 for i→ 1 to N do
5 mi← SearchClosestPoint

(
KA,T · bi

)
6 end
7 T ← argmin

T

∑
i
‖T · bi − mi‖2

8 end

the transformation between the two scan data is calcu-
lated by minimizing the distance of matched correspon-
dences. To obtain the final transformation, these two steps
are repeated until convergence. Some researchers focus on
the first step by computing better correspondences than the
standard [11], [12]. Others target the second step of data
processing while calculating the transformation [16]. In this
paper, we focus on the first step to improve the matching
qualities for the ground condition.

Algorithm 1 represents the standard ‘‘point-to-point’’ ICP.
The inputs are two point clouds, A and B, and an initial
transformation T0. The output is the final transformation
between these two point clouds, T . In the first step of the
ICP algorithm, each matched correspondence, mi, is com-
puted by finding the closest pair depending on the current
transformation, T (line 5), using the k-d tree search algo-
rithm that is generated in advance in line 2. In the second
step, a current transformation is computed by minimizing the
distance between the matched correspondences (line 7). For
robustness, outliers can be rejected by checking the distance
betweenmi and T ·bi. The point-to-plane ICP is implemented
by simply changing line 7 of Algorithm 1 as follows:

T ← argmin
T

∑
i

‖ηi · (T · bi − mi)‖2 (1)

where ηi denotes the surface normal vector of mi.
This paper focuses on scan matching utilized in ground

vehicles. G-ICP [16] often yields acceptable results to match
multi-layer LiDAR sensor data [26], but it does not consider
a ground condition. G-ICP takes advantage of sparse data
by taking into account the tendency of data during the opti-
mization process. In the G-ICP algorithm, the optimization
step is changed to the probabilistic-based model on line 7 in
Algorithm 1. When the matched correspondence point sets
of two scan data are denoted as A = {ai}i=1,...,N and B =
{bi}i=1,...,N , the probabilistic model of point sets can be rep-
resented by Â = {âi} and B̂ = {b̂i}where ai ∼ N (âi,CA

i ) and
bi ∼ N (b̂i,CB

i ), respectively, âi and b̂i are means, and CA
i ,

CB
i are covariance matrices calculated using the distribution

of the surrounding points. If T∗ is the aligned transformation,
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we can write

b̂i = T∗âi. (2)

Let the distance error of an arbitrary rigid transformation be
defined as di(T) = bi −Tai. Then, di(T

∗) is drawn as follows:

di(T
∗)
∼ N (b̂i − T∗âi,CB

i + (T∗)CA
i (T
∗)T )

= N (0,CB
i + (T∗)CA

i (T
∗)T ) (3)

by applying b̂i − T∗âi = 0 from (2). To compute T∗,
the simplified optimization method is performed as follows:

T∗ = argmin
T

∑
i

d (T)
T

i (CB
i + TCA

i T
T )−1d (T)i . (4)

The details are shown in [16]. Our proposed method also
calculates the transformation of the correspondence pairs
using the G-ICP method.

B. GP-ICP
This paper proposes an efficient search method to find
the best correspondences for ground vehicles. The pro-
posed method changes the search step based on line 5 of
Algorithm 1. The conventional method finds correspon-
dences based on the closest point in the 2D or 3D geo-
metric distance. Most ego-motions of ground vehicles have
slight changes in roll, pitch, and height direction (z), and
large changes in forward direction (x), lateral direction (y),
and yaw. In the conventional method, the correspondence
points are found according to the Euclidean distance in
x, y, and z-axes without considering the ground condition,
so the mismatch might happen. For ground vehicles, some
conditions never occur such as a large displacement in the
z-axis. Therefore, this paper proposes a height-limit condi-
tioned search algorithm by changing line 5 of Algorithm 1 as
follows:

mi← SearchClosest

−Point
(
KA,T · bi

)
||(mi)z−(T ·bi)z|≤ε, (5)

where ε denotes a pre-specified small value and the subscript
z denotes the height value of the defined vector. When search-
ing for a correspondence as in (5), the mismatch pair is mini-
mized by the z-axis condition. Examples of the proposed and
conventional matching methods are shown in Fig. 1. Fig. 1
represents matching correspondence results of the proposed
method and conventional method between a query and a
target point cloud at a random initial transformation of a cer-
tain distance. According to the result in Fig. 1, the proposed
method has the advantage of matching vertical information to
a better extent than the conventional method as the matching
condition is limited to a certain height range. Since the pro-
posed method can also estimate 6-DoF transformation due
to a limited height range, it can handle a inclined condition
unlike 2D ICP.

FIGURE 1. Comparison of the proposed and conventional matching
methods between a query point cloud (green) and a target point
cloud (gray). The yellow lines denote the result of matching
correspondences. (a) Matching result of the conventional method in view
#1. (b) Matching result of the proposed method in view #1. (c) Matching
result of the conventional method in view #2. (d) Matching result of the
proposed matching method in view #2.

C. ACCELERATION OF GP-ICP
This section introduces an acceleration method of the pro-
posed GP-ICP algorithm. The conventional ICP algorithm
finds the correspondence point by referring to the nearest
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FIGURE 2. Acceleration concept to find matching correspondences using
the multi-layer scheme. The colored layers denote each multi-layer point
cloud, and the white lines refer to the results of each matching
correspondence with each multi-layer point cloud.

neighbor point using the k-d tree algorithm. On the other
hand, the proposed method searches for the correspondence
point by checking the height value sequentially until the point
is in a certain height range. In this case, the complexity
increases if many neighbor points are out of the height range.
The average complexity of the conventional k-d tree search
algorithm is O(log(n)), where n is the number of points in
the search space. On the other hand, the average complexity
of the proposed searching method is O(p · log(n)), where p
denotes the number of search trials until neighbor points are
within the height range. In usual cases, 80% ∼ 90% of the
nearest points satisfy the height range (in this case p = 1),
while others do not satisfy the height range. In the unsatisfied
case, p is often very large. Inspired from this, we propose
an acceleration method to search for (5) using multi-layer
scheme. The target point cloud is divided evenly in vertical
direction by a pre-specified small value, ε from (5), as shown
in the colored point cloud layers in Fig. 2. The query point
cloud searches the closest point in each layer according to
the height value, and then, the correspondences are found
from the closest point in the height range among the searched
points. Since the k-d tree search algorithm is performed three
times, i.e., for the relevant layer, its upper layer, and its lower
layer, the average complexity of the proposed search algo-
rithm is O(3 · log(n/L)), where L denotes the total number of
layers. L is determined by ε and the maximum height of point
cloud. This height-limited search algorithm is performed only
if the height condition is not satisfied (p 6= 1). While
the computation time of non-accelerated search algorithm
depends on the p value, the accelerated search algorithm has a
constant computation time. The accelerated method is faster
than the non-accelerated method when the p value is greater
than 3 even in the worst case of L = 1. Since p is often very
large in unsatisfied cases, the accelerated method is expected
to be much faster than the non-accelerated method.

The accelerated GP-ICP algorithm is shown in Alg. 2.
The multi-layer k-d trees, KA

1,...,h, where h denotes the num-
ber of layers, are generated by a certain height interval ε
(line 3). The line 7 checks the hight condition. In line 8 of

Algorithm 2 Accelerated GP-ICP
Input: A = {ai}: target point cloud

B = {bi}: query point cloud
T0: initial transformation

Output: T : aligned transformation with A and B
1 T ← T0
2 KA

← k-dTreeGeneration(A)
3 KA

1,...,h← k-dTreeGeneration(A1,...,n)
4 while not converged do
5 for i→ 1 to N do
6 mi← SearchClosestPoint

(
KA,T · bi

)
7 if |(mi)z − (T · bi)z|>ε then
8 l ← SearchLayerByZ (T · bi)
9 m+i ←

SearchClosestPoint
(
KA
l+1,T · bi

)
10 m0

i ←

SearchClosestPoint
(
KA
l ,T · bi

)
11 m−i ←

SearchClosestPoint
(
KA
l−1,T · bi

)
12 mi← MinDistance(

T · bi, {m
+

i ,m
0
i ,m
−

i }
)
||(m∗i )z−(T ·bi)z|≤ε

13 end
14 end
15 T ← argmin

T

∑
i
‖T · bi − mi‖2

16 end

Algorithm 2, the relevant layer, l, of each point is selected by
the z value of T · bi in every iteration step. The closest points
in the relevant layer (line 9), its upper layer (line 10), and
its lower layer (line 11) are found by the k-d tree search of
the corresponding layer. The final matched point is selected
using the closest point among the three points (m+i , m

0
i , and

m−i ) under the height condition |(m
∗
i )z − (T · bi)z| ≤ ε. The

same optimization method to G-ICP is applied in line 15.

III. EXPERIMENTS
Since the proposed method focuses on matching with sparse
data for a ground vehicle, the algorithm is verified using a
KITTI [27], [28] (sequences 00 and 01), Ford campus [29]
collected on a vehicle equipped with Velodyne 64E [31],
and Udacity [30] datasets with Velodyne 32E. These datasets
were collected in various urban, residential, and campus areas
as shown in Fig. 3. Ford campus data partially contains
off-road environment and Udacity dataset contains many
inclined environment. To test extreme cases such as off-road
and inclined environments, our own robot system equipped
with Velodyne VLP-16 is utilized as shown in Fig. 4. In this
experiment, only the horizontal Velodyne sensor is used for
matching. The off-road environment consists of glass and
dirt road as shown in Fig. 5a and the inclined environment
slants around 5◦ ∼ 10◦ as shown in Fig. 5b. To demonstrate
superiority, GP-ICP is compared with conventional methods
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FIGURE 3. Various test environments from open dataset. (a) KITTI, (b) Ford Campus, (c) Udacity.

FIGURE 4. The robot system used in our experiment.

such as the G-ICP [16], point-to-point ICP [8], point-to-plane
ICP [9], and NDT [13] algorithms.

The experiment is conducted by matching two point clouds
collected at different positions. To compare the matching
performance of each algorithm, 2,646, 1,039, 1,256, and
1,503 pairs from sequence 00 and 01 of KITTI, Ford campus,
and Udacity datasets, respectively, are randomly selected by
two point clouds of Velodyne with a distance difference of
7-10m.We also select 1,000 pairs each from our own off-load
and inclined datasets are also randomly selected by two point
clouds of Velodyne VLP-16 with a distance difference of
2-4m, respectively. Since the overlapping part of Velodyne
VLP-16 is smaller than the one of Velodyne 64E, the dis-
tance difference of Velodyne VLP-16 datasets set smaller
than the one of Velodyne 64E. Since the proposed method
has advantages for robust matching in ground conditions,
each pair is tested to match in various initial transformations
with x (-8 m ∼ 8 m), y (-8 m ∼ 8 m), and theta (−40◦ ∼
40◦) where the direction of the x-axis and y-axis denote
the front direction and the lateral direction of the vehicle,
respectively. To represent the performance of each algorithm,

FIGURE 5. Experimental environments of our own datasets. (a) Off-road
environment and robot path. (b) Inclined environment and robot path.

the success rate in each direction with the absolute initial
transformation is plotted in Fig. 6. The success or failure
is determined by the overlapping area of the matched point
clouds. The overlapping points are judged by the distance
between matching correspondences which are selected as the
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FIGURE 6. Success rate plots with Velodyne 64E for various initial transformation; (left) initial transformation in x-axis direction, (middle)
y-axis direction, (right) initial yaw angle. (a) KITTI dataset sequence 00, (b) sequence 01, (c) Ford campus dataset, (d) Udacity dataset,
(e) off-road dataset, and (f) slope dataset.
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FIGURE 7. Success rate plots with Velodyne 64E for various initial transformation; (left) initial transformation in x-axis direction, (middle)
y-axis direction, (right) initial yaw angle. (a) KITTI dataset sequence 00, (b) sequence 01, (c) Ford campus dataset, (d) Udacity dataset,
(e) off-road dataset, and (f) slope dataset.
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FIGURE 8. Point cloud matching result in various initial transformation; (top - bottom) initial transformation, GP-ICP, G-ICP, NDT, point-to-point
ICP, and point-to-plane ICP. (a) An arbitrary pair of initial transformation (x : -5.5m, y : -1.4m, z : 0, roll: 0, pitch: 0, yaw: 0) from KITTI dataset
sequence 00. (b) An arbitrary pair of initial transformation (x : -2.5m, y : -1.2m, z : 0, roll: 0, pitch: 0, yaw: 35◦) from KITTI dataset sequence 00.
(c) An arbitrary pair of initial transformation (x : -8.3m, y : -0.2m, z : 0, roll: 0, pitch: 0, yaw: 0) from KITTI dataset sequence 01.

closest points between point clouds. In this paper, the distance
threshold is set to 10cm and the overlapping area over 50% is
regarded as a success. Fig. 6 shows that the proposed method
provides superior results, particularly with regard to large
initial transformations, than the other conventional methods.
Asmentioned in [16], thematching performances of point-to-
point ICP and point-to-plane ICP are significantly degraded.
The NDT algorithm shows acceptable results for small initial
transformations only. The graph of the G-ICP algorithm is

slightly similar to that of the GP-ICP algorithm, but the per-
formance deteriorates sharply as the initial transformations
in the direction of the x-axis and yaw angle increase. When
considering the movements of the ground vehicle, matching
in large initial transformations of the x-axis and yaw angle
are more important than that of the other axes. Therefore,
the proposedmethod is of considerable value as its superiority
is verified using a public dataset for large initial transforma-
tions, especially in the x-axis and yaw angle.
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FIGURE 9. Point cloud matching result in various initial transformation; (top - bottom) initial transformation, GP-ICP, G-ICP, NDT, point-to-point
ICP, and point-to-plane ICP. (a) An arbitrary pair of initial transformation (x : -3.0m, y : -1.5m, z : 0, roll: 20◦, pitch: 0, yaw: 0) from KITTI dataset
sequence 01. (b) An arbitrary pair of initial transformation (x : -4.5m, y : -1.5m, z : 0, roll: 0, pitch: 20◦, yaw: 10◦) from Udacity dataset. (c) An
arbitrary pair of initial transformation (x : -3.2m, y : 0.5m, z : 0.5, roll: 0, pitch: 0, yaw: 4◦) from Ford campus dataset.

KITTI datasets offer the 6-DoF ground truth for a bench-
mark, while other datasets only offer the 3-DoF ground
truth from RTK-GPS. Therefore, the root mean square
error (RMSE) of datasets are compared with the ground truth
as shown in Table 1. The comparison results are generated
from the calculation using only the successfully matched
pairs in Fig. 6. In Table 1, the errors of point-to-point ICP
and point-to-plane ICP are larger than those of the other
methods, which is as expected [13], [16]. The result of the

NDT algorithm is slightly worse than those of its G-ICP
and GP-ICP counterparts. Given that GP-ICP utilizes the
same optimization method as G-ICP, the errors of G-ICP and
GP-ICP are similar, as expected. The average computation
time for successful matching according to the initial transfor-
mations is shown in Fig 7. Since the performance of point-to-
point and point-to-plane ICPs is poor, the computation time
of the proposed method is only compared with G-ICP and
NDT. The average computation time ofGP-ICP is slower than
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FIGURE 10. Point cloud matching result in various initial transformation; (top - bottom) initial transformation, GP-ICP, G-ICP, NDT,
point-to-point ICP, and point-to-plane ICP. (a) An arbitrary pair of initial transformation (x : -3.2m, y : 0.5m, z : 2.5, roll: 0, pitch: 0, yaw: 4◦) from
Ford campus dataset as a failure case. (b) An arbitrary pair of initial transformation (x : -5.2m, y : 0.5m, z : 0, roll: 0, pitch: 0, yaw: 4◦) from
offroad dataset. (c) An arbitrary pair of initial transformation (x : -6.3m, y : 0.2m, z : 0, roll: 0, pitch: 0, yaw: 0) from Udacity dataset.

that of G-ICP at small initial transformations while GP-ICP
is much faster at large initial transformations. According to
Section II.C, the search method of GP-ICP is 1.33 times
slower than that of G-ICP when n = 100, 000, L = 20,
and |(mi)z − (T · bi)z|>ε is 15%. Nevertheless, the overall
processing time of GP-ICP is faster than that of G-ICP at
large initial transformations. The computation time of NDT
is usually low and significantly increases in large initial
transformations.

The results of point cloud matching are shown in
Figs. 8-10. The green dots denote the target point cloud
and the red dots represent a transformation of the query
point cloud with (a) the initial transformation, (b) GP-ICP,
(c) G-ICP, (d) NDT, (e) point-to-point ICP, and (f) point-to-
plane ICP.

The matching results with various initial transformations
in x, y, and yaw are shown in Fig. 8. In this case, GP-ICP
shows superior results than the other conventional algorithms
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TABLE 1. Root mean square error of each algorithm compared with the
ground truth (units: meter, degree).

in environments with plentiful vertical geometric information
such as walls of buildings, trucks of trees, or poles. However,
the performance of GP-ICP is similar to that of G-ICP in
environments such as empty place or bushes area where there
are little vertical geometry. Therefore, GP-ICP is better than
G-ICP in overall performance. Although the movements in
roll, pitch, and z-axis for ground vehicle are not large in
general cases, some cases such as inclined, off-road, or unex-
pected situations might result in certain differences to roll,
pitch, and z-axis. Therefore, small initial transformations in
roll, pitch, and z-axis are tested as shown in Fig. 9. From
the results, the proposed method is also verified to match
well in small unexpected movements (roll, pitch, and z-axis).
However, the large initial transformation in z-axis results in
poor matching while the other methods (G-ICP, point-to-
plane ICP) are matched well as shown in Fig. 10(a). Since
this paper employs horizontal search method, it is hard to
handle a large initial transformation in z-axis. However, this
case rarely happens in ground vehicle conditions. The match-
ing results with Velodyne VLP-16 for off-road and inclined
environments are shown in Fig. 10. As a result, the superiority
of the proposed algorithm is verified in various environments,
initial transformation, and sensor system.

IV. CONCLUSION
This paper proposed a new matching method with two-point
cloud for ground vehicles. We termed this method as GP-
ICP. While the conventional methods utilize only geomet-
ric information of point cloud data, GP-ICP can consider

a ground condition in the process of point cloud matching.
Notably, GP-ICP provides a big advantage in terms of large
initial transformations. The proposed method was validated
by testing an open public data set, by comparing with other
state-of-the-art methods for matching performance, error, and
computation time. The proposed method was also tested in
inclined and off-road environments using our own robot sys-
tem. The results of this paper are bound to be very useful
to the fields of mobile robots, and it can be extended to
autonomous vehicles as well. We publicly release the source
code of the GP-ICP algorithm in the following website:
https://github.com/hyungjinkim0508/gpicp, and we expect
that the method will be implemented for various applications
in several industries. In future works, the proposed method
will be tested to generate vast point cloud map data.
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