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ABSTRACT Recently, convolutional regression networks have drawn great attention in the tracking
community. Convolutional regression trackers formulate the regression network as one convolutional layer
and take advantages of end-to-end learning. However, existing convolutional regression trackers regress
the input feature to Gaussian-like soft labels, which still assign a large label to semantic backgrounds in
online model fine-tuning. As a result, in the presence of background distractors, convolutional regression
trackers tend to drift toward regions, which exhibit a similar appearance compared to the object of interest.
In this paper, we propose to achieve distractor-aware regression tracking with trajectory smoothing constraint
and hard negative mining. The trajectory smoothing constraint measures motion distance and motion
direction between the adjacent frames to discard distractors that fail to meet trajectory smoothness. On this
basis, distractors are fed into convolutional regression networks as hard negative samples, which boosts
the discriminability of convolutional regression trackers against background distractors. The experimental
results on the OTB100 and VOT2016 benchmarks show that the proposed algorithm performs favorably in
terms of both accuracy and robustness when compared with state-of-the-art trackers.

INDEX TERMS Trajectory smoothing constraint, hard negative mining, distractor-aware, convolutional
regression trackers.

I. INTRODUCTION
Visual tracking is a fundamental task for a wide range of high-
level visual understanding problems such as motion analysis,
event detection and activity recognition. Generally speaking,
the task of visual tracking is to estimate the trajectory of a
target in an image sequence, given only its initial location
(a rectangular bounding box) in the first frame. Despite sig-
nificant progress made in recent years, accurate and robust
tracking is still challenging in complicated scenarios due to
illumination variation, background clutter, partial/full occlu-
sion and background distractors. In this paper, we only focus
on single-camera, single-target, short-term and model-free
tracking. The interested readers are referred to [1] and [2] for
a thorough review of existing tracking algorithms.

Most tracking-by-detection trackers can be catego-
rized into generative trackers [6]–[8] and discriminative
trackers [9], [10]. Generative trackers model target
appearance and ignore the background information, which
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leads to tracking drift in complex scenes. On contrast,
discriminative trackers treat the tracking task as a binary
classification objective that discriminates the object from
its surrounding background. Generally, discriminative track-
ers achieve superior accuracy and robustness on numerous
tracking benchmarks [11]–[14]. Discriminative trackers can
be further classified into two-stage trackers and one-stage
trackers. Two-stage trackers first draw a large number of
samples around target objects in the previous frame (first
stage) and then classify each sample as the target object or as
the background (second stage). Numerous two-stage trackers
have been introduced in the tracking community, such as
structure support vector machine [9] and online multiple-
instance learning [10]. Different from two-stage trackers,
one-stage trackers directly learn a mapping from a regularly
dense sampling of target objects to soft labels generated
by a Gaussian function to estimate target positions. One-
stage trackers have recently received increasing attention
due to their potential to be much faster and simpler than
two-stage trackers. One representative category of one-stage
trackers are based on discriminative correlation filters which
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FIGURE 1. Tracking snapshots of our tracker (DaRT), CREST [3], DSST [4]
and KCF [5] in presence of background distractors on the Coupon,
football1 and deer sequences from OTB100.

regress all the circularly shifted versions of input image
into soft labels. Different variants of correlation filters have
been proposed to boost tracking performance using multi-
dimensional features [15], robust scale estimation [16],
non-linear kernels [5], long-term memory components [17],
target response adaptation [18] and complementary cues [19].
Despite increasing performance on benchmarks, discrimi-
native correlation filters take few advantages of end-to-end
training in the deep learning era. The other representative
category of one-stage trackers are based on convolutional
regression networks. The recent FCNT [20], CRT [21] and
CREST [3] trackers belong to this category. Among them,
convolutional regression trackers, such as CRT and CREST,
reformulate correlation filters as a convolutional layer which
is fully differentiable and can be trained end to end.

Due to the straight-forward end-to-end training scheme,
convolutional regression trackers achieve balanced accuracy
and robustness during online tracking. However, in presence
of background distractors, convolutional regression track-
ers tend to drift towards regions which exhibit a similar
appearance compared to the object of interest (see Fig.1).
This is because background distractors are still regressed
to nonzero labels in the expected Gaussian-like output map
during online model finetuning (see Fig.2). Therefore, convo-
lutional regression networks have a big response to semantic
backgrounds, which leads to severe tracking drift in real
tracking scenarios with background clutter and distractors.

To tackle this problem, in this paper, we propose a
Distractor-aware Regression Tracker (DaRT) for accurate
and robust tracking. During online tracking, our DaRT
tracker tackles background distractors from two perspectives:
trajectory smoothing constraint and hard negative minining.
A peak to sidelobe ratio (PSR) value is proposed to detect
potential background distractors. In presence of background

FIGURE 2. (a) Ground truth (red) and background distractor (green);
(b) real regression map; (c) expected output.

distractors, there would be several peaks on the regression
map. The real peak corresponding to the target of interest
will be picked out according to the trajectory smoothing
constraint. The background distractors corresponding to the
other peaks are treated as hard negative samples and fed into
the convolutional regression network for online finetuning.
The main contributions of our work are summarized below:

1. A peak to sidelobe ratio (PSR) value is proposed to
detect potential background distractors.

2. Trajectory smoothing constraint is applied to convolu-
tional regression tracking to discard background distractors
with temporal smoothness of the trajectory.

3. Different from traditional convolutional regression
trackers which only use the positive sample for model fine-
tuning, our method exploits background distractors for hard
negative mining.

4. Extensive experiments performed on the tracking bench-
marks demonstrate the superiority of the proposed algorithm
against many other state-of-the-art trackers in comparison.

II. RELATED WORKS
There have been many advances in the object tracking litera-
ture in recent years. Due to the space limitation, here we focus
on those that are most relevant to our work.

A. CORRELATION FILTER BASED TRACKING
Compared with traditional tracking-by-detection
methods [6]–[10], discriminative correlation filters draw
much attraction in the tracking community due to dense
training samples and high computational efficiency. The
pioneer MOSSE tracker [22] achieves an impressive track-
ing speed of over 600 fps. Later, based on the standard
DCF formulation, different variants of correlation filters
have been proposed to boost tracking performance using
multi-dimensional features [15], robust scale estimation [16],
non-linear kernels [5], long-term memory components [17],
complementary cues [19], target adaptation [18] and spatial
regularization [23]. To achieve further performance gain,
correlation filter based trackers extract convolutional fea-
tures from convolutional neural networks to enhance target
representation. DeepSRDCF [24] and CCOT [25] replace
handcraft features with convolutional features and achieve
top rank on theVOT challenge [26], [27] respectively. Despite
top performance on tracking challenges, discriminative cor-
relation filters hardly benefit from end-to-end training.
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B. CONVOLUTIONAL REGRESSION TRACKING
Recently, the tracking community leads a fashion of end-to-
end training for visual tracking. Following this trend, con-
volutional regression trackers incorporate feature extraction
and correlation filter learning into a unified convolutional
neural network. The overall network architecture consists
of a feature extraction network and a one-channel-output
convolution layer. Different from traditional correlation filter-
based trackers, deep-regression trackers try to obtain an
approximate solution via gradient descent in spatial domain.
Chen and Tao [21] first introduced a single-layer regression
model for visual tracking. This model directly regresses the
input feature to Gauss-like soft labels. Wang et al. [20]
introduced a fully convolutional network to exploit multiple
CNN features by leveraging a feature-map selection strategy.
Both a top layer and a lower layer were jointly used with a
switch mechanism during tracking. Song et al. [3] applied
residual learning to take appearance changes into account on
a single convolutional layer and formulated the tracking pro-
cess in an end-to-end manner by integrating feature extrac-
tion, response-map generation and model updated into the
neural networks. Despite remarkable tracking performance
on benchmarks, existing convolutional regression trackers
treat semantic backgrounds and non-semantic backgrounds
equally in online model fine-tuning. Therefore, these trackers
tend to drift towards background distractors which exhibit
similar appearance as the foreground target.

C. DISTRACTOR-AWARE TRACKING
Background distractors are a big challenge for long-
term robust tracking. Numerous trackers are proposed
to achieve robustness against background distractors.
Possegger et al. [28] proposed a color model based distractor-
aware tracker which relies on standard color histograms for
target representation. This tracker identifies and suppresses
distracting regions in advance which significantly improves
the tracking robustness. To further improve the robustness
against background distractors, several trackers [29], [30]
incorporated contextual information. Such approaches distin-
guish between context provided by supporting and distract-
ing regions. Supporting regions have different appearance
than the target but occur with it, providing valuable cues to
overcome occlusions. Distractors, on the other hand, exhibit
similar appearance and may therefore be confused with the
target. However, the above context-aware trackers assume
that distractors are of the same object class (e.g. pedestrians
and cars) and need to track these distractors in addition to
the target to prevent drifting, which results in a slow tracking
speed. Recently, Mueller et al. [31] proposed a context-aware
correlation filter based tracker which incorporates the global
context into correlation filter learning. This context-aware
correlation filter based tracker achieves strong robustness
against background clutter and distractors while running
at a real-time speed. Kuai et al. [32] and Li et al. [33]
incorporate correlation filters with the fully-convolutional
Siamese network to achieve distractor-aware tracking.

The Siamese network is used to detect the object within
a large search area and potential candidate distractors
are screened out on the response map. Correlation filters
are employed to identify the target location from these
candidates.

III. OUR APPROACH
In this section, we introduce the basic building blocks for our
Distractor-aware Regression Tracking (DaRT). It’s worth to
mention that DaRT is a very flexible tracking framework and
our implementation is far from optimal. We believe there is
still room for future improvement and generalization. In the
following discussion, we will give a brief overview of three
building blocks incorporated in our tracker.

A. DEEP REGRESSION TRACKING
Deep regression trackers regress a dense sampling of inputs to
Gaussian-like soft labels. Here, we formulate the linear-ridge
regression model as one convolutional layer. Given an image
patch centered at the target, we can extract convolutional
features X from a convolutional neural network and generate
corresponding Gaussian-like labels Y ranging from 0 to 1.
The kernel weights W of the convolutional layer for the
regression function Y = X ∗W are estimated by solving the
following minimization problem:

min
W
‖W ∗ X − Y‖2 + λ‖W‖2, (1)

where ∗ denotes the convolution operation and λ is a regular-
ization parameter that controls model overfitting. It’s worth
noting that there is no bias term as we set the bias parameter
to 0.

Different from discriminative correlation filters which has
a closed-form solution in the Fourier domain, deep regression
trackers solve the regression problem in the spatial domain
by reformulating the problem as the loss minimization of
the convolutional neural network. The receptive-field size
of the convolutional kernel in the regression layer is set to
cover the target area. The convolutional weights in the con-
volutional kernel can be effectively calculated by iteratively
optimizing W with the Statistical Gradient Descent (SGD)
method. Oncewe have the convolutional kernel trained, target
localization is simply finding the maxima on the response
map.

B. TRAJECTORY SMOOTHING CONSTRAINT
In this subsection, we indicate the presence of background
distractor by the temporal smoothness of the target trajectory.
During tracking, we take the last n states before the current
frame t to estimate the objects’s velocity along the x and y
axis. We calculate the object velocity along the x and y axis
as follows: {

vix = ‖x
i
− x i−1‖,

viy = ‖y
i
− yi−1‖,

(2)

where i ∈ [t − n − 1, t − n, ..., t], x i and yi are the axis
coordinates of the target along the x and y axis in frame i,
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FIGURE 3. (a) Search area filled with the foreground target and background distractors; (b) positive samples and hard negative
sample; (c) convolutional regression network.

vix and viy are the velocity of the target along the x and y
axis in frame i. As the target motion tendency does not vary
significantly at least in a short time period, we formulate the
motion trend of the velocity of the target along the x and y
axis via a Gaussian distribution which has mean value µlt and
standard deviation σ lt as following:

µtx =
1

n− 1

∑t

i=t−n
vix ,

σ tx =

√
1

n− 1

∑t

i=t−n
(vix − µtx),

(3)


µty =

1
n− 1

∑t

i=t−n
viy,

σ ty =

√
1

n− 1

∑t

i=t−n
(viy − µty),

(4)

We measure the stability of the objects’s velocity along the
x and y axis at frame t as following:

S tx =
|vtx − µ

t
x |

σ tx
,

S ty =
|vty − µ

t
y|

σ ty
,

(5)

A smaller value of S tx or S ty means that the current tracking
result tends to be acceptable and instead of a higher S tx or S

t
y

shows that the tracking result of frame t deviates much from
its history trajectories. Based on this principle, we calculate
the temporal smoothness of the tracking result in frame t as
follows:

S t = S tx · S
t
y. (6)

A higher value of S t means higher temporal smoothness of
tracking result in frame t .

C. HARD NEGATIVE MINING
Note that the objective function defined in Equ.6 only
involves features extracted from a positive training sample
centered at the target of interest. During online tracking,
a number of background distractors will emerge in the tar-
get search area. Generally, these background distractors will

be ignored or discarded along with the non-semantic back-
grounds. To achieve strong robustness against background
distractors, we argue that it’s necessary for the convolutional
regression network to learn from these hard negative samples
which exhibit similar appearance with the target and blur
intra-class difference (see Fig.3).

During online tracking, the convolutional regression net-
work is finetuned with both positive and hard negative train-
ing samples as following:

min
W
‖

n∑
i=0

(Xi ∗W − Yi)‖2 + λ‖W‖2, (7)

where X0 is the positive training sample and Xi(i = 1...n) is
the hard negative training sample. Y0 are Gaussian-like label
while Yi(i = 1...n) are flat labels filled with zeros.
The kernel weights W in Equ.7 are optimized with the

SGD (Stochastic Gradient Descent) algorithm.

D. PEAK TO SIDELOBE RATIO
The proposed distractor handlingmodule including trajectory
smoothing constraint and hard negative mining is computa-
tionally consuming and puts a big burden on the real-time
capacity of convolutional regression trackers. In fact, it’s
unnecessary to activate this distractor-handling module in
every frame. Most frames in a video are ‘easy’ frames where
the target moves smoothly and its appearance changes slowly.
In easy frames, there are no background clutters or back-
ground distractors and thus the response map has only
one peak value in the real target position. Accurate and
robust tracking can be achieved by traditional convolutional
regression trackers without the distractor-handling module.
By contrast, in a few ‘hard’ frames which are filled with back-
ground distractors, the response map will fluctuate intensely
and include more peak values as shown in Fig.4. Therefore,
the distractor-handling module should be activated occasion-
ally in these ‘hard’ frames. Whether activating the distractor-
handling module on or off depends on the tracking status of
the convolutional regression tracker.

We point out that the tracking status of the convolutional
regression tracker can be inferred from the peak to sidelobe
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FIGURE 4. (a) Without background distractors; (b) with background
distractors; (c) larger PSR value; (d) small PSR value.

ratio of the response map. In the general case, this response
map peaks at the highest and damps fast from the peak to the
boundary. However, in presence of background distractors,
there will be several sub-peaks on the response map. In light
of this observation, we design the peak to sidelobe ratio (PSR)
measure to quantify the peakiness of the response peak and
thus evaluate the tracking status. The PSR score with higher
value means the detection confidence is higher.

Here we describe the PSR measure in detail. Let ft be a
N ×M matrix representing the response map of frame t . The
PSR value of the response map is defined by

PSRt =
max(ft )− µ(ft )

σ (ft )
(8)

where µ(ft ) and σ (ft ) are the mean value and the standard
deviation of the response map ft .

The PSR criterion becomes larger when the response map
has fewer noise and sharper peak. Otherwise, the PSR crite-
rion will fall into a small value. We save the PSR values and
calculate their historical average values as threshold:

PSRthreshold =

∑T
t=1 PSRt
T

(9)

Online finetuning of the convolutional regression net-
work is performed if only the PSR value is lower than the
PSR threshold, which avoids unwanted model updating and
alleviates the computational burden of convolutional regres-
sion trackers.

E. SCALE ESTIMATION
In the source codes provided in [3], scale variation is esti-
mated by processing the search image at several scales with
the a fixed aspect ratio. With no doubt, searching scale
at multiple resolutions significantly increases the computa-
tional cost. To achieve real-time scale adaptive tracking, our
DaRT tracker removes the scale estimation from CREST and
exploits a common 1-dimensional scale correlation filter.

After we estimate the translation of target in the current
frame, the next step is to estimate the target scale. Inspired
by [4], the scale estimation is efficiently completed through

Algorithm 1 Distractor-Aware Regression Tracking
Input:

Target state Xt−1 = (xt−1, yt−1, st−1) in frame t − 1.
Output:

Estimated target state Xt = (xt , yt , st ) in each frame.
Tracking:
1: Derive the response map with the convolutional regres-

sion tracker and calculate the PSLt value from response
map in frame t .

2: if PSLt > PSLthreshold then
3: Estimate the target location (xt , yt ) as the maxima of

the response map of the convolutional regression tracker
around (xt−1, yt−1) in frame t .

4: else
5: Locate n local maximas on the response map and

find the local maixmawith the largest temporal trajectory
smoothness as the target position.

6: Locate n Feed the other local maximas into the con-
volutional regression network as hard negative samples
to online finetune the network parameters.

7: Feed the local maxima with the largest temporal trajec-
tory smoothness into the convolutional regression net-
work as a positive sample to online finetune the network
parameters.

8: Estimate the target scale st with DSST.
9: Update the PSLthresholdvalue.
10: Update the mean and standard deviation of the velocity

of the target along the x and y axis.

a one-dimensional correlation filter. For convenient reasons,
we adopt the same notation in [4]. The training example f for
updating the scale filter is computed by extracting features
using variable patch sizes centered on the target. Let P × R
denote the target size in the current frame and S be the size

of the scale filter. For each n ∈ {
⌊
−(s−1)

2

⌋
, · · · ,

⌊
s−1
2

⌋
},

we extract an image patch Jn of size anP×anR centered on the
target. Here a denotes the scale factor between feature layers.
The value f (n) of the training example f at scale level n is set
to the d-dimensional feature descriptor of Jn. The scale filter
hscale is computed and updated with the sample f. After the
translation estimation of the target, an example z is extracted
from this location using the same procedure as for f and the
scale filter hscale is applied to obtain the response value. The
scale change corresponding to the largest value is picked out
to compute the target scale.

IV. OVERALL TRACKING FRAMEWORK
In this subsection, we present an outline of our proposal in
Algorithm 1 and show the diagram in Fig.5.

V. EXPERIMENTS
We validate our Distractor-aware Regression Tracker (DaRT)
by performing comprehensive experiments on two tracking
benchmarks: OTB100 [12] and VOT2016 [27].
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FIGURE 5. The overall flowchart of the proposed distractor-aware regression tracker.

FIGURE 6. Precision plots (left) and success plots (right) of CREST,
DaRTtsc , DaRThnm and DaRT on the OTB100 benchmark.

Evaluation Methodology: On OTB100, we use the preci-
sion plots and success plots in one-pass evaluation (OPE) [11]
to rank all the trackers. The precision plots are computed as
the percentage of frames in the sequences where Euclidean
distance between the ground-truth and the estimated target
position is smaller than a certain threshold. The success plots
are plotted over the range of intersection over union (IoU)
thresholds over all videos. For the VOT2016 dataset, track-
ing performance is evaluated in terms of both accuracy and
robustness. The accuracy score is based on the overlap with
ground truth, while the robustness is determined by failure
rate. Different from OTB100, the trackers in VOT2016 are
restarted at each failure.

Comparison Scenarios: An ablation study is done on
OTB100 to demonstrate the effectiveness of trajectory
smoothing constraint and hard negative mining respectively
on distractor-aware tracking. On OTB100, we also compare
DaRTwith state-of-the-art trackers. On the VOT2016 dataset,
we compare DaRT with the top 10 trackers in the
challenge.

Implementation Details: In this paper, we choose
CREST as the convolutional regression tracker. For con-
venience reasons, we follow the default parameter setting

FIGURE 7. Precision plots (left) and success plots (right) of trackers in
comparison on the OTB100 benchmark.

of CREST as reported in [3]. The CREST tracker
employs the convolutional features extracted from the
relu4_3 layer in the imagenet-vgg-verydeep-16 model for
feature representation. This model can be downloaded
from http://www.vlfeat.org/matconvnet/pretrained/. The tar-
get search area of CREST is set to be square and five times
the target size. Parameters are fixed for all videos in each
dataset. Our tracker is implemented in Matlab and uses
Matconvnet [34] for deep feature extraction. The comparison
experiments of DaRT are performed on a 4-core Intel Core
-7-6700 CPU at 3.4GHz with a GeForce GTX TITAN GPU.

A. EVALUATION ON OTB
1) ABLATION STUDY
In this subsection, an ablation study on OTB100 is conducted
to demonstrate the effectiveness of the trajectory smoothing
constraint and hard negative mining respectively on
distractor-aware tracking. We introduce two baseline trackers
(DaRT_tsc and DaRT_hnm). DaRT_tsc equips CREST with
the trajectory smoothing constraint while DaRT_hnm equips
CRESTwith hard negative mining. On contrast, DaRT equips
CREST with both the trajectory smoothing constraint and
hard negative mining. Fig.6 shows the precision and success
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FIGURE 8. Precision plots on 11 attributes of the OTB100 dataset. These trackers are ranked by their scores at the threshold of 20 pixels.

FIGURE 9. Success plots on 11 attributes of the OTB100 dataset. These trackers are ranked by their AUC scores.

plots of the three trackers (DaRT,DaRT_tsc, DaRT_hnm). Both
DaRT_tsc and DaRT_hnm achieve performance improvement
against CREST. Compared with DaRT_tsc and DaRT_hnm,
DaRT achieves better performance in both the precision and
success plots, which demonstrates the effectiveness of the
trajectory smoothing constraint and hard negative mining
respectively on distractor-aware tracking.

2) QUANTITATIVE RESULTS
In this subsection, we compare DaRT with eight state-of-
the-art trackers on OTB100. The trackers in comparison
include CREST [3], CFnet [35], Siamfc [36], CCOT [25],
DeepSRDCF [24], SRDCF [23], Staple [37] and DSST [4].
Fig.7 shows the performance of trackers in comparison on
the OTB100 benchmark. In general, our proposed algorithm
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FIGURE 10. Tracking snapshots of our tracker. The videos (from top to bottom) are: BlurOwl, Trans, Jogging, Skiing, Skating1,
Singer1, Coupon and Tiger1.

performs superiorly against the trackers in comparison in both
the precision and success plots.

Fig.8 and Fig.9 illustrate the attribute based evaluation
of all trackers on the OTB100 dataset. All sequences in
the OTB100 dataset are annotated by 11 different attributes,

namely: illumination variation, scale variation, occlusion,
deformation, motion blur, fast motion, in-plane rotation,
out-of-plane rotation, out-of-view, background clutter and
low resolution. In Fig.8 and Fig.9, we show the precision and
success rates of our tracker and other trackers in comparison
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TABLE 1. State-of-the-art comparison in terms of expected average overlap (EAO), robustness (failure rate), accuracy, and speed (in EFO units) on the
VOT 2016 dataset. Only the top-10 best compared trackers are shown. The best and second best values are highlighted by red and blue fonts.

FIGURE 11. Expected average overlap ranking plots on the VOT2016 benchmark.

under 11 attributes: illumination variation, scale variation,
occlusion, deformation, motion blur, fast motion, in-plane
rotation, out-of-plane rotation, out-of-view, background clut-
ter and low resolution. It can be seen that our proposed tracker
achieves the best performance under most attributes.

3) QUALITATIVE RESULTS
To intuitively exhibit the superiority of the proposed algo-
rithm, Fig.10 illustrates snapshots of the tracking results of
DaRT on videos from the OTB100 dataset. The videos (from
top to bottom) are:BlurOwl, Trans, Jogging, Skiing, Skating1,
Singer1, Coupon and Tiger1. These sequences cover many
challenging scenarios that a tracker may encounter, such
as occlusion, fast motion, background clutter, illumination
variation, dramatic scale change and et, al. Our tracker
performs well in all the above videos which demonstrates
the strong robustness of DaRT under complicated tracking
scenarios.

B. EVALUATION ON VOT2016

The visual object tracking (VOT) challenge is a competi-
tion between short-term, model-free visual tracking algo-
rithms. Different fromOTB, for each sequence in this dataset,
a tracker is restarted whenever the target is lost (i.e. at a
tracking failure). Four primary measures are used to analyze
tracking performance: accuracy (A), robustness (R), expected
average overlap (EAO) and equivalent filter operation (EFO).
A is calculated as the average IoU, while R is expressed in
terms of the total number of failures. EAO represents the
average IoUwith no re-initialization following a failure. EAO
reports the tracker speed in terms of a predefined filtering
operation that the toolkit carries out prior to running the
experiments. We refer readers to [27] for details.

Table 1 shows the comparison of our approach with the
top 10 participants in the VOT2016 challenge. In Table 1,
DeepTACF outperforms all the top 10 trackers at the
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EAO score (0.335). Fig.11 shows a visualization of the accu-
racy and robustness ranking plot for the compared trackers on
the VOT2016 dataset.

VI. CONCLUSION
In the paper, we propose a distractor-aware regression tracker
frame inspired by the trajectory smoothing constraint and
hard negative mining. The trajectory smoothing constraint
measuresmotion distance andmotion direction between adja-
cent frames to discard distractors which fail to meet tra-
jectory smoothness. On this basis, distractors are fed into
convolutional regression networks as hard negative samples,
which boosts the discriminability of convolutional regres-
sion trackers against background distractors. To validate the
effectiveness of the proposed method, experiments are per-
formed to compare our algorithm with many other state-
of-the-art trackers on the popular OTB100 benchmark and
VOT2016 challenge. Experimental results demonstrate the
superiority of our tracker. One interesting avenue for future
work would be extending our tracker to multi-object and/or
long-term tracking with these inspiring ideas.
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