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ABSTRACT Air pollution forecasting can provide reliable information about the future pollution situation,
which is useful for an efficient operation of air pollution control and helps to plan for prevention. Dynamics
of air pollution are usually reflected by various factors, such as the temperature, humidity, wind direction,
wind speed, snowfall, rainfall, and so on, which increase the difficulty in understanding the change of air
pollutant concentration. In this paper, a short-term forecasting model based on deep learning is proposed for
PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5µm) concentration, and the
convolutional-based bidirectional gated recurrent unit (CBGRU) method is presented, which combines 1D
convnets (convolutional neural networks) and bidirectional GRU (gated recurrent unit) neural networks. The
case is carried out by using the Beijing PM2.5 data set in UCI Machine Learning Repository. Comparing the
prediction results with the traditional ones, it is proved that the error of the CBGRU model is lower and the
prediction performance is better.

INDEX TERMS Air pollution forecasting, deep learning, 1D convolutional neural networks, bidirectional
gated recurrent unit.

I. INTRODUCTION
Nowadays, many cities have suffered from massive smog
attacks, which have affected people’s daily life and caused
serious harm to their health. The main component of smog is
the Particulate Matter (PM) 2.5. The primary task of dealing
with smog pollution and improving air quality is to control
PM2.5, so the PM2.5 concentration prediction is the main
content of air quality prediction. It is of great significance
to identify the evolution law of PM2.5 concentration and
achieve efficient and accurate prediction for air pollution
prevention and control.

The concentration of PM2.5 is often related to various
meteorological factors, so the prediction of PM2.5 is actu-
ally a multivariate time series prediction problem. Till now,
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various air quality forecasting approaches have been pro-
posed, which can be mainly classified into the statisti-
cal methods, the shallow machine learning methods and
the deep learning methods. Statistical methods include cor-
relation coefficient method, principal component analysis
method, Newton interpolation method [1], nonlinear regres-
sion model [2], and so on. Accuracy obtained is limited in
these methods because of their inability to model non-linear
and multivariate data. Shallow machine learning methods
include multilayer perceptron (MLP), radial basis func-
tion (RBF) [3], genetic algorithm (GA) [4], support vector
machines (SVM) [5], artificial neural networks (ANN) [6],
and so on.

In recent years, with the development of deep learning and
big data technology, the use of deep learning methods for air
quality prediction has become an active research field, and the
commonly used models are recurrent neural networks (RNN)
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and its variations. Long Short-Term Memory Unit (LSTM),
as a state-of-the-art model of RNN, is used in the air quality
forecasting [7], [8]. Besides, manifold learning method and
deep belief network [9], deep uncertainty learning [10] and
Encoder-Decoder model [11] are also used for PM2.5 pol-
lution concentration. Recently, GRU (gated recurrent unit)
is applied to the PM2.5 forecasting task and is performing
well [12].

In view of the dynamic instability and long-term depen-
dence of the time series of air pollutants, a model combining
the recurrent neural networks and the convolutional neural
networks is proposed for air pollution forecasting in this
paper, which comprehensively utilizes the ability of feature
extraction of convolutional neural networks and the capability
of time series forecasting of recurrent neural networks. As a
first, the convolution neural networks is used to carry out
downsampling of data to reduce the size and complexity of
data and improve the generalization and learning ability of
the model. Then, the reduced-dimensional data are fed into
the recurrent neural networks to further mine the information
characteristics provided by different data sources in meteoro-
logical data, and establish the nonlinear relationship between
the time series of multivariable and air pollutant PM2.5.
In order to verify the effectiveness of the proposed method,
we analyze a Support Vector Regression (SVR), Gradient
Boosting Regressor (GBR), Decision Tree Regressor (DTR),
simple RNN, Long Short-Term Memory Networks (LSTM),
Gated Recurrent Unit (GRU) and bidirectional Gated Recur-
rent Unit (BGRU), and all models are compared regarding
their forecasting performance of PM2.5 concentration.

The remainder of this article is organized in the following
way: In Section II, we highlight data description and cor-
relation analysis of PM2.5 time series. Section III outlines
the framework of the PM2.5 forecasting model based on 1D
convnets and bidirectional GRU. In Section IV, we describe
our experimental setup and results. Finally, the conclusion of
this article is given in Section V.

II. DATA AND CORRELATION ANALYSIS OF
PM2.5 TIME SERIES
A. DATA DESCRIPTION
The proposed forecasting approach is tested by using the
database from UCI machine learning repository [13], which
contains the PM2.5 data of US Embassy in Beijing located
at (116.47 E, 39.95 N) and meteorological data from Bei-
jing Capital International Airport. Although the embassy and
the airport are 17 km apart, they experience very much the
same weather. This dataset covers hourly data from Jan-
uary 1, 2010 to December 31, 2014, contains 8 characteristics
including PM2.5 concentration, dew point, temperature, air
pressure, wind direction, wind speed, snowfall, and rainfall.
Eliminate missing points in the data, the total amount of
data is 43,800 rows, select the first 30,000 rows of data
as training set, 30001-38000 rows as validation set and,
38001-43800 rows as test set. The attribute of wind direction

FIGURE 1. PM2.5 concentration change on test set.

in the data contains 4 features: NW, CV, SE and NE, which
need to be encoded as float data, assigned to −10, 0, 10 and
20 respectively. In addition, for the few missing values of
PM2.5 pollution in the data set due to sensor errors, we filled
them in accordance with the data of the previous timestamp.
Finally, the entire dataset is normalized by subtracting the
mean of each feature and dividing by the variance of each
feature:

x istd =
x i − x imean

σ ix
(1)

where, x imean and σ ix are the mean and variance of the i-th
characteristic variable, respectively. It should be noted that
the calculation of the mean and variance in this equation is
only for the training set, because in reality the distribution of
the validation set and the test set are unknown.

The Figure 1 shows the actual situation of the PM2.5 con-
centration on the test set. It can be seen from this plot that
there is no obvious periodic law in the trend of change, and
the fluctuation range is large.

B. CORRELATION ANALYSIS OF PM2.5 TIME SERIES
To develop a good prediction model, it is crucial to identify
the correlation between the various influencing factors and
the PM2.5 concentration before the model is built, which
ensures that the model uses the proper input prognostic fea-
tures for prediction. PM2.5 is affected by many measurable
factors, but not all of them are effective for the prediction task,
and the irrelevant factors will become burdensome for the
model. Therefore, we need to calculate the correlation coef-
ficient between each factor and the target feature, and judge
the correlation between PM2.5 concentration and the selected
feature indirectly via the value of the correlation coeffi-
cient. Suppose one characteristic time series is the vector
X=(x1, x2, . . . , xn), the other time series is vector Y= (y1,
y2, . . . , yn), the correlation coefficient r between them is
calculated by formula (2).

r =

n
n∑
i=1

xiyi −
n∑
i=1

xi
n∑
i=1

yi√
n

n∑
i=1

x2i − (
n∑
i=1

xi)2
√
n

n∑
i=1

y2i − (
n∑
i=1

yi)2
(2)
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TABLE 1. Correlation coefficient (R) between meteorological variables and PM2.5 concentration.

TABLE 2. Model performance with different meteorological data input.

FIGURE 2. Structure of CBGRU model for PM2.5 forecasting.

When 0< r <1, there is a positive correlation, and if −1 <
r < 0, there is a negative correlation. The absolute of r
is closer to 1, the gap between X and Y is smaller and the
correlation is greater.

For Beijing PM2.5 dataset, correlation coefficient between
each feature and PM2.5 concentration was calculated respec-
tively. As shown in Table 1, dew point, wind direction and
snowfall are positive correlation with PM2.5, while tem-
perature, air pressure, wind speed and rainfall are negative
correlation with PM2.5 concentration. It is found that all
the meteorological variables are weakly correlated with each
other, which indicates that there is no information duplication
between the meteorological variables and they can be directly
used as the input of the prediction model.

In order to select the proper input variables of fore-
casting model, corresponding experiments were performed.
As shown in Table 2, we constructed the prediction model
by gradually reducing the input variables (Detailed modeling
is described in Section IV). The error results of different
models are compared by three measures (The smaller the
error measure value, the better the prediction effect of the
model), they are root mean square error (RMSE), mean abso-
lute error (MAE) and symmetric mean absolute percent error

(SMAPE). It is found that the model performed better with
inputs of pollution, dew point, wind direction, wind speed
and temperature than with inputs of only the first four. But
when the pressure is increased as input, the performance of
the model begins to decline, and the performance is even
worse when all the weather factors in the data set are taken
as inputs. This phenomenon is consistent with what is shown
in Table 1, the correlation coefficients of air pressure, snow-
fall and rainfall are quite small, unrelated inputs increase
the model’s complexity and the difficulty of learning useful
features. So, dew point, historical PM2.5, temperature, wind
direction and wind speed are selected as the input variables
of the forecasting model.

III. METHODOLODIES
A. CBGRU MODEL FOR PM2.5 FORECASTING
The historical meteorological data and PM2.5 concentration
data are used as model inputs, the future PM2.5 concen-
tration is used as output to perform multi-step prediction.
Figure 2 shows the structure of forecasting model.

The model consists of three parts. In the first part, the
one-dimensional convolutional neural networks (convnets)
performs local feature learning and dimensionality reduction
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on five input variables, the original data is processed by
convolution and pooling to form low-dimensional feature
sequences. Second, the feature sequences is fed into the bidi-
rectional GRU neural networks, which reset gate and update
gate constantly adjust their parameters in a large amount of
training, so that it can learn the time dependence relationship
between the information extracted from the convolutional
neural networks. At the end of the model, the fully connected
layers is stacked, the last layer contains only one neuron with-
out any activation function, generating the predicted value of
the PM2.5 concentration. Theoretically, the innovation of this
method is the combination of the local feature extraction abil-
ity and lightness of convnets with the time series prediction
ability of GRU by using 1D convnet as a preprocessing step
before a GRU. On the other hand, by processing a sequence
both way, a bidirectional GRU is able to catch patterns that
may have been overlooked by a one-direction GRU.

B. 1D CONVNETS FOR LOCAL TREND FEATURES
LEARNING
The 1D convnets is used for local trend features learn-
ing. Convnets can perform convolution operation, extracting
features from local input patches, allowing for representation
modularity and data efficiency. These properties make con-
vnets not only excellent in computer vision, but also suitable
for sequence processing [14]. In this forecasting case, time
can be treated as a spatial dimension just like the height or
width of a two-dimensional image. The local perception and
weight sharing feature of convnets can reduce the number of
parameters for processing multivariate time series, thereby
improving learning efficiency. With the peculiarity of tempo-
ral translation invariants [15], a pattern learned at a certain
position in a sequence can be identified at other locations
later, because the same input transformation is performed for
each subsequence.

As shown in the Figure 3, using a convolution window in
each convolutional layer to process the meteorological and
PM2.5 time series, it is possible to learn sequence fragments
within a window size, and should be able to identify these
subsequences anywhere in the entire time series, so that the
local trend change features of themultivariate time series over
time can be captured. After the 1D convolution operation,
the max pooling operation should be used for subsampling,
which outputs the maximum value of subsequences extracted
from the input time series. In this way, the length of one-
dimensional input time series is reduced.

C. BIDIRECTIONAL GATED RECURRENT UNIT FOR TIME
SERIES FORECASTING
In this paper, bidirectional Gated Recurrent Unit (GRU) is
used for processing prediction as shown in the Figure 4.
As everyone knows, RNN is a special neural network devel-
oped for processing sequence data. But there are some draw-
backs with simple RNN, like the vanishing gradient and
exploding gradient, which makes it difficult for RNN to learn
the long-term dependencies tasks. To solve these problems,

FIGURE 3. Graphical illustration of the 1D convnets processing time
series.

a custom RNN structure, i.e., LSTM and GRU, is developed.
The former can track long-term information via the gates it
contains (input gate, forget gate and output gate) [16]. The
latter is an improved version of the LSTM, which can also
learn long-term dependencies [17]. Unlike LSTM, GRU has
no memory unit and has 2 gates (update gate and reset gate)
instead of 3 gates, having a simpler architecture requires less
computation and can be trained faster. Although the structure
of GRU is not so complicated, the research shows that its
performance is comparable to LSTM [18].

The graphical illustration of GRU neural networks is
included in Figure 4. Inside a GRU, the update gate (z) spec-
ifies which information can be retained to the next state, and
the reset gate (r) specifies how the previous state information
is combined with the new input information. The calculation
formula for the next output and state value in the GRU unit is
as follows:

zt = σ (Wz ∗ [x(t), h(t − 1)]) (3)

rt = σ (Wr ∗ [x(t), h(t − 1)]) (4)

ĥ(t) = σ (Wh ∗ [x(t), (rt ∗ h(t − 1))]) (5)

h(t) = (1− zt ) ∗ h(t − 1)+ zt ∗ ĥ(t) (6)

where σ is the activation function, x(t) is the input, h(t − 1)
is the previous output, wz, wr and wh are the weights of the
update gate, reset gate, and candidate output, respectively.

The bidirectional GRU consists of two ordinary GRUs,
which process the input sequence from two directions of time
series (chronologically and antichronologically), then merge
their representations together. Factors such as air quality and
meteorological are subject to a continuous function, we can
fit a function according to the historical observation values
(time series) through the observation values to predict the
future values. In the same way, future data can be used to fit a
function to predict the value of the previous moment. For time
series forecasting tasks, we know that only historical data
can provide predictive power when making predictions, but
this method of bidirectional training model can provide more
useful information in modeling. By viewing meteorological
and PM2.5 data from two directions enables the model to
get richer representations and capture patterns that may be
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FIGURE 4. Bidirectional GRU processing time series. r and z are the reset and update gate, h an h̃ are the activation and the candidate
activation of GRU neural networks.

ignored when using one-direction GRU, thereby improving
the performance of ordinary GRU.

IV. CASE STUDY
The real air quality data set described in Section II is used to
evaluate the proposed model, which performance is compare
with the other seven models. All deep models are trained
on Keras framework with TensorFlow backend, while tradi-
tional machine learning methods are implemented through
the scikit-learn library. All recurrent architecture are trained
using backpropagation through time (BPTT) with RMSprop
as an optimizer.

A. ERROR MEASURES
Loss function is defined by mean absolute error (MAE),
MAE can better reflect the actual situation of the predic-
tion error, backpropagation operation based on MAE value
in each mini-batch during training. At the same time, root
mean square error (RMSE) and symmetric mean absolute
percentage error (SMAPE) are selected as the error evaluation
metrics of themodel, which can evaluate the degree of change
and accuracy of data, measuring the prediction quality of
model. The calculation formula is as shown in equation (7),
(8) and (9).

MAE(y′,y) =
1
n

n∑
i=1

|y′i − yi| (7)

RMSE(y′,y) =

√√√√1
n

n∑
i=1

(y′i − yi)
2 (8)

SMAPE(y′,y) =
1
n

n∑
i=1

∣∣y′i − yi∣∣
(y′i + yi)/2

(9)

where n is the total number of samples, yi is the measured
time series, and y′i is the predicted time series.

B. EXPERIMENTAL SETUP
Seven reference models were built to evaluate the perfor-
mance of the proposed model, i.e., support vector regres-
sion (SVR), gradient boosting regressor (GBR), decision

tree regressor (DTR), simple RNN, LSTM, GRU and bidi-
rectional GRU (BGRU). The training is carried out in
mini-batches with the batch size of 50, and all the models
are trained for 100 epochs. In order to avoid the overfitting
problem, Dropout is widely used between layers with the
probability of 0.2. If the loss of the past epoch is greater
than that of the current epoch, the weight matrices are stored.
Furthmore, all models used an early stopping condition dur-
ing the training, which stops the training if the validation loss
on the validation data does not change within 10 training
epochs. RMSprop,a variant of stochastic gradient descent
(SGD), is chosen as the optimizer of these models, as it is
usually a good choice for recurrent neural networks, which
taking into account previous weight updates when computing
the next weight update, rather than just looking at the current
value of the gradients. Furthermore,Momentum of RMSprop
addresses two issues with SGD: convergence speed, and local
minima. After obtaining the trained models, each data points
in testing set are tested and, MAE, RMSE and SMAPE are
calculated.

In order to achieve the best prediction performance, sev-
eral hyperparameters should be preset before building the
CBGRU prediction model. In order to prove the superiority
of CBGRU model proposed in this paper, GRU networks
was selected as the benchmark. CBGRU model based on the
structure of benchmarkwas established after the limit of GRU
prediction ability was reached. Mainly examined parameters
are lookback and number of neurons, where the lookback
specifies how many timesteps back should the input data go,
the number of neurons specifies which neuron nodes achieve
an optimal prediction effect.

First of all, the number of neurons was set to an equivalent
value chosen from a candidate set of {32, 64, 80, 128, 256}.
Several experiments were performed and the corresponding
errors (MAE and RMSE calculated by standardized data)
were recorded as shown in Table 3. The results show that with
the increase of neurons of GRU hidden layer, the forecasting
performance first improves greatly and then begins to dete-
riorate. Under the same configuration, over-fitting problems
arise when neurons exceed 80. Thus, we set the number of
neurons to 80 in the successive experiments.
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TABLE 3. Effect of the number of neuron nodes in GRU model.

TABLE 4. Effect of lookback.

Next, making neurons as a constant, changing the look-
back, we can see from Table 4 that the model is best fitted
when the lookback is 8, as indicated by the RMSE and MAE.
That is to say, a small lookback cannot guarantee evenough
long-term memory inputs for this deep learning model, but
large lookback allows for more redundant information inputs,
which is not conducive to modeling. Furthermore, the tempo-
ral correlations among the PM2.5 concentration time series
were analyzed by autocorrelation functions. For time delay k ,
the autocorrelation coefficients can be calculated as follows:

ρk =
Cov(yt , yt+k )
σytσyt+k

(10)

where yt and yt+k denote the PM2.5 concentrations at time t
and time t+ k , respectively, Cov(·) is the covariance and σ (·)
is the standard deviation. The results are shown in Figure 5.
An obvious descending trend is observed with increasing
time lag, which means earlier events have a weaker effect on
the current status. Bisides, the autocorrelation coefficients is
higher than 0.7 when the time lag is less than 7, indicating
a high temporal correlation. As a compromise, the lookback
was set to 8, which was the most appropriate setting for this
forecasting model.

After a lot of experiments, the values of each parameter are
determined. Both the meteorological data and the PM2.5 data
of the past 8 hours are used to predict the PM2.5 concentration
2 hours later. For fairness, all reference deep learning models
in this experiment used the same hidden layers and the num-
ber of neurons, the difference between these models and the
CBGRU is the absence of convolutional neural networks. For
CBGRU model, after adjusting the parameters of different
model structures and parameters, the final parameters are as
follows.
• Convolutional neural networks: Contains 2 layers of
convolutional layers with the activation functions of

FIGURE 5. Variations among the autocorrelation coefficients of
PM2.5 concentration with respect to different time lags.

TABLE 5. Comparison of model performance.

ReLu, each have 40 and 80 feature detectors, the length
of the 1D convolution window is 3. There is a MaxPool-
ing1D layer between the two convolution layers with the
pool size of 2, which halve the input tensor.

• Bidirectional GRU networks: Contains 2 layers of bidi-
rectional GRUs with 80 neurons per layer.

• Fully connected layers: contains 1 fully connected layer
with only 1 neuron.

C. FORECASTING RESULTS AND ANALYSIS
After training to convergence, the optimal model weights
of CBGRU prediction model is obtained. The evaluations
were conducted using the test set (Hourly points between
May 6, 2014 and December 30, 2014), and the predicted and
observed PM2.5 concentrations are presented in Figure 6.
It can be observed from the figure that the CBGRU model
produced results which can follow the fluctuations of actual
values during the testing set successfully.

To verify the efficiency and accuracy of the proposed
approach, several comparative models were developed for
PM2.5 prediction.

Table 5 lists the quantitative results by RMSE, MAE and
SMAPE, which gives comparative analysis of SVR, DTR,
GBR, RNN, GRU, LSTM, BGRU and our proposed model of
CBGRU. As shown in the Table 5, shallow machine learning
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FIGURE 6. PM2.5 concentration forecasting results of CBGRU model.

FIGURE 7. Scatter plots with the comparison models. (a) DTR, (b) SVR, (c) GBR, (d) RNN, (e) GRU, (f) LSTM, and (g) CBGRU.

models (SVR, DTR and GBR) have similar performance.
Compared with traditional deep learning methods (RNN,
GRU, LSTM), shallowmachine learning methods have larger
RMSE and MAE, while the SMAPE are smaller. For deep
learning methods, LSTM and GRU have similar perfor-
mance, both of them are significantly superior to RNN. Fur-
thermore, themodel error of BGRU is lower thanGRU,which

shows the bi-direction training model is improved obviously
compared with the traditional model, indicating that the bidi-
rectional model can improve the prediction performance.
More significantly, compared to other seven methods, our
model exhibited higher forecasting precision, as indicated by
the RMSE, MAE and SMAPE values. This result confirms
that our model CBGRU can learn local trend information and

76696 VOLUME 7, 2019



Q. Tao et al.: Air Pollution Forecasting Using a Deep Learning Model Based on 1D Convnets and Bidirectional GRU

FIGURE 8. Boxplot of comparison models’ prediction deviation. The blue
solid line in the box represents the median of data, and the green
diamond represents the mean of data.

long term dependencies features of meteorological data and
PM2.5 concentration data.

In order to compare the prediction effect of each model
more intuitively, the scatter plots of observed and predictid
PM2.5 concentrations during the whole test set is illustrated
in Figure 7. It can be seen from the figure (a, b and c)
that the distribution between predicted and observed values
of shallow machine learning models (SVR, DTR, GBR) is
divergent. For deep learning methods, RNN (Figure 7 (d))
showed the worst forecasting effect, it fail at some peak and
valley values, causing the distribution between the forecasted
and observed values deviate from the diagonal. Apparently,
variants of RNN (LSTM and GRU, Figure 7 (e and f))
show better results. Compared with all the models described
above, it can be find that the model proposed in this paper
(Figure 7(g)) is more sensitive to local sharp changes (the dis-
tribution between the predicted value and the observed value
is more inclined to the diagonal), which mainly attributed to
the existence of convolution networks that capture richer local
change information.

Besides, the prediction deviation analysis is also con-
ducted. The prediction deviation is obtained by subtracting
the observed values from the predicted values of each model.
The boxplot of the prediction deviation is shown in Figure 8.
The height of the box partly reflects the fluctuation of the
deviation data, the flatter the box, the more centralized the
data is. Similarly, the shorter the whisker, the more central-
ized the data is. According to Figure 8, although the mean
and median of SVR, DTR and GBR are closer to 0, they are
highly volatile. With narrower box and whisker, the CBGRU
performs much better compared to other models.

In terms of the comparison analysis above, the proposed
method outperforms all other models, including mainstream
approaches like LSTM. It fully proves the effectiveness and
superiority of the combination of 1D convnets and bidirec-
tional GRU.

V. CONCLUSION
In this study, time series forecasting experiments on PM2.5
concentration using 1D convnets and bidirectional GRU,

which is a special type of RNN are conducted. The per-
formances of the proposed model have been investigated.
The results are compared with traditional mechine learning
models and conventional deep learning models. The results
show that the proposed method can be suitable and compet-
itive on the PM2.5 data time series forecasting. To be more
specific, compared with shallow machine learning models,
such as DTR, SVR and GBR, deep learning-based methods
exhibited better prediction performance. Furthermore, com-
pared with GRU, bidirectional GRU has lower error value,
which indicates that the use of bidirectional GRU can improve
the prediction effect. This is because the bidirectional GRU
processes the time series chronologically and antichrono-
logically, it captures patterns that may be ignored by one-
direction GRUs, improving feature learning capabilities in
time series. In addition, compared with the other benchmark
models, the accuracy of the CBGRU model is significantly
improved, which shows that the convnets can help the GRU to
obtain better prediction performance, because convnets uses
its local feature learning ability and subsampling ability to
obtain a sequence pattern that is more conducive to GRU
processing.
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