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ABSTRACT In this paper, the finite-time adaptive consensus stabilization is investigated for unknown
nonlinear leaderlessmulti-agent systemswith unknown output dead-zone. Different from the previous results
on the multi-agent systems with unknown dead-zone, the dead-zone nonlinear is researched in the output
channel. By using the recursive backstepping design method and the universal approximation ability of
fuzzy logic systems, a local controller for each follower is constructed. Meanwhile, a Lyapunov-based logic
switching rule is applied to handle the unknown control gain problems aroused by the output dead-zone
nonlinearities. It is, thus, shown that the established adaptive control protocol can assure the finite-time state
synchronization of each node. Besides, the state synchronization error between any adjacent followers also
converges to a small region of zero when time tends to T0. Finally, the two simulations are conducted to
further verify our theoretical results.

INDEX TERMS Multi-agent systems, finite-time stability, synchronization tracking, adaptive backstepping,
unknown output dead-zone.

I. INTRODUCTION
During the past several decades, adaptive finite-time
stabilization [1]–[4] has received great attentions of the
control community, since the system states can achieve a
faster convergence rate in real-world applications. How-
ever, the weakness of the above result were based on the
assumption that the uncertain nonlinearities are either to be
linearly parameterized or to satisfy Lipschitz continuous,
which limited the development of network control system.
Backstepping technique [5] is a powerful tool. At the same
time, due to the approximation property of fuzzy logic
systems (FLS) and neural networks (NNs), the FLS/NNs-
based backstepping is able to deal with the adaptive control
problem when the structural information of the nonlinear
plant functions is uncertain. Following this approach, very
recently, many interesting progresses have been devoted to
adaptive finite-time stabilization for a class of uncertain
nonlinear systems, e.g., see [6]–[11] and references therein.
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approving it for publication was Lifeng Ma.

On the other hand, the distributed consensus, as a
fundamental problem of multi-agent system control, has
attracted tremendous attentions in recent years. This is
due to the fact that consensus problem has a widespread
applications in formation control (unmanned air vehicle,
robotic teams) [12]–[15], sensor networks [16], containment
control [17] and so forth. The so-called consensus problem
demands all the agents in one group can reach an agreement.
Following this principle, the progress of consensus control
witnesses numerous remarkable results reported [18]–[22].
In addition, the consensus problem is widely used on the topic
of stochastic multi-agent systems [23]–[26]. In [24], [25]
Ma and Wang et al. proposed an excellent consen-
sus algorithm and comprehensive review for a class of
stochastic multi-agent systems. Furthermore, the commu-
nication protocols play an important role in the study of
closed-loop systems [22], [27]–[30]. Wan and Wang et al.
investigated the state estimation problem of genetic reg-
ulatory networks (GRNs) under the Round-Robin (RR)
protocol and stochastic communication protocols (SCPs)
in [27]–[29], respectively. The research results in [27]–[29]
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cannot extended to the consensus tracking problem. It is
worth mention that all the aforementioned results are limited
since they have not considered the influence of dead-zone.

Dead-zone is one of the most important non-smooth non-
linearities for its widespread existence in practical devices,
e.g., hydraulic and electronic servo values [31], biomedical
systems [32]. It is a common source of destabilizing the
closed-loop system and limiting the control performance.
In the past years, many research efforts have been devoted to
the adaptive compensation of dead-zone [33]–[36]. To name
just a few, in [33], by constructing the dead-zone inverse,
the effects of the dead-zone are canceled; by decompos-
ing the dead-zone into a combination of linear terms and
disturbance-like terms [34]. More recently, as the rapidly
development of network control systems, some promising
progresses have been reported on the adaptive control for
multi-agent systems with dead-zone [37], [38]. In [37], [38],
the consensus tracking problem for uncertain nonlinear
high-order multi-agent systems with unknown dead-zone
input was developed. However, all these results are input
dead-zone not the output dead-zone. It is worth to mention
that both input dead-zone and output dead-zone may arouse
the unknown control gain problem. The adaptive compensa-
tion problem of output dead-zone is more difficult that the one
of input dead-zone, since the unknown control gain aroused
by output dead-zone is time-varying.

In general, the Nussbaum-type function method is a
promising tool to handle control directions uncertainties.
By employing this design tool originally proposed in [39],
the unknown time-varying control gain has been first
addressed. Recently, plentiful results have been obtained on
the topic [36], [40]–[44]. For example, in order to address
the non-identical partially unknown multiple control gains of
multi-agent systems, Chen et al. [45] proposed a novel family
of Nussbaum approach. For multiple input multiple output
(MIMO), using Nussbaum gain, Zhao et al. [46] realized the
tracking regulation of n-dimensional nonlinear systems with
unknown control gain. Unfortunately, it is well known that
Nussbaum approach only can guarantee that the control error
asymptotically reach a region around the origin, which cannot
solved the finite-time stabilization for multi-agent systems
with unknown output dead-zone. Therefore, there are few
results reported on finite-time adaptive consensus stabiliza-
tion for multi-agent systems with output dead-zone.

Motivated by the mentioned observations above, this study
investigates the finite-time adaptive coordination stabiliza-
tion problem for unknown nonlinear leaderless multi-agent
systems, where the unknown dead zone nonlinear exists in
the output channel. Compared with the existing consensus
works [37], [38], [47]–[49], the main contributions of this
paper are listed below.

1) Different from the previous studies on the consensus
problems, they [47]–[49] have been investigated the
finite-time adaptive control for multi-agent systems,
while ignored the effects of the dead-zone. However,
in [37], [38], thinking that the dead-zone nonlinear is

an important nonlinearity, but never considered the
convergence rate of system states in a finite time.
Therefore, this study considers the finite-time stability
and dead-zone nonlinear in the output mechanism of
multi-agent systems simultaneously.

2) Note that the unknown control gain of each agent
aroused by the output dead-zone nonlinearities is time-
varying. However, the Nussbaum approach cannot
addressed the finite-time stabilization for multi-agent
systems with output dead-zone because of it asymp-
totically convergent property. It makes the control
design and stability analysis become more compli-
cated. In order to overcome this obstacle, a Lyapunov-
based logic switching rule [4], [50], [51] is employed
in the finite-time adaptive consensus control design
process.

The outline of this paper is as follows. In Section II,
the problem statement and the related preliminaries are
given. In Section III, the finite-time adaptive fuzzy con-
sensus stabilization control protocol is designed and the
finite-time state synchronization stability of closed-loop sys-
tem is also proofed. And then, a numerical simulation exam-
ples are provided to further verify our theoretical results in
Section IV. Finally, we summarize the conclusions and our
future research direction in Section V.
Notations: The following notations are used throughout

this paper. Rn denotes the real n-dimensional space. R+even ,
{p ∈ R : p > 0 and p denotes a positive even integer};
R−odd , {q ∈ R : q < 0 and q denotes a negative odd integer};
and C i denotes a set of functions whose ith derivatives are
continuous and differentiable.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION
In this paper, the leaderless multi-agent systems contain
k(k ≥ 2) followers (denoted by 1 to k), where the unknown
dead-zone nonlinear exists in the output channel. The model
of ith(i = 1, . . . , k) follower is described as:

ẋi,1 = xi,2 + fi,1(x i,1)
ẋi,2 = xi,3 + fi,2(x i,2)
...

ẋi,n = ui + fi,n(xi,n)
yi = Di(xi,1) (1)

where x i,k = [xi,1, xi,2, . . . , xi,k ] ∈ Rk denotes the
measurable state vectors of the ith follower and xi,n =
[xi,1, xi,2, . . . , xi,n] ∈ Rn. fi,k (x i,k )(k = 1, 2, . . . , n) is an
unknown nonlinear function. ui ∈ R and yi ∈ R are the
control input and the output of each subsystem, respectively.
The dead-zone Di(xi,1) ∈ R is considered in the output
channel of multi-agent systems, which can be formulated by
the following form:

Di(xi,1) =

mri,k (xi,1 − vri,k ), xi,1 ≥ vri,k
0, vli,k ≤ xi,1 ≤ vri,k
mli,k (xi,1 − vli,k ), xi,1 ≤ vli,k

(2)
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where the unknown parameters vri,k > 0 and vli,k represent
the breakpoints of the output nonlinearity, mri,k and mli,k are
the slope of the output dead zone.
Remark 1: Compared with the synchronization prob-

lem of multi-agent systems with dead-zone in [37], [38],
the dead-zone nonlinear in these results is input dead-zone
nonlinear (see Fig. 1(a)) not the output dead-zone nonlin-
ear (see Fig. 1(b)). It is worth mentioning that the output
dead-zone nonlinear is investigated in the unknown nonlinear
multi-agent systems, i.e., the dead-zoneDi(xi,1) is considered
in the output channel.

FIGURE 1. The plant with dead-zone.

Remark 2: Due to the effects of manufacturing, the dead-
zone parameters may be different among all sensors. That
means some signs of the output dead-zone directions are
positive, but rest of signs are negative. Therefore, the output
dead-zones may arouse the unknown non-identical control
gain problems [45]. By the uncertainties of control directions,
they will bring great difficulties for the finite-time control
protocol design.

Our design objective is to develop a finite-time adaptive
concensus control protocol ui and adaption parameter law ˙̂θi
for multi-agent systems (1) to guarantee that each follower
can faster reach the state synchronization when time tends to
T0, i.e., the following theoretical result holds:

lim
t→T0
|yi(t)−yj(t)|= lim

t→T0
|Di(xi,1)−Dj(xj,1)|=0, ∀t ≥ T0

(3)

where i, j represent the subscript of each follower, respec-
tively.

The following assumptions are introduced for achieving
our design objective.
Assumption 1: Although the output dead-zone is unknown

and time-varying, there exists an unknown but bounded com-
pact set � and scalar η such that

|Ḋi| ≤ η, η ∈ � (4)

Assumption 2: If a constant satisfies 0.5 < γ < 1 and γ ∈
R+odd , there exists unknown continuous function ℵi,k (x i,k ) ≥ 0
for i ∈ M, such that

|fi,k (x i,k )| ≤ |x i,k |
2γ−1
γ ℵi,k (x i,k ) (5)

Remark 3: Assumption 2 is similar to a common Propo-
sition for finite-time adaptive tracking control of nonlin-
ear systems [3], [4], [47]. In practice, many systems satisfy
Assumption 2 (e.g., unicycle-type mobile [52]). Therefore,
Assumption 2 does not bring too much conservatism in the
establishment of the main results.

Before drawing out our main results, the preliminaries
about graph theory and some key lemmas and definitions are
introduced.

B. GRAPH THEORY
In this paper, the communication topology graph of the k
n-order agents is considered, which represented by G =
(V ,E). V = {v1, . . . , vk} denotes a set of nodes or agents
and E ⊆ V ×V indicates an edge set. There exists a directed
path from every node to others, we believed that the directed
graphy is strongly connected. Moreover,M = [aij] ∈ Rk×k is
denoted as the connectivity matrix of topology graph, where
aij > 0, if ki = {vj|(vi, vj)} ∈ E and aij = 0, otherwise.
It is assumed that each node has no self edge. The in-degree
matrix is defined as D =diag(d1, . . . , dk ) ∈ Rk×k , where
di =

∑
(aij). Then, the graphy Laplacian matrix L is obtained

from L = D−M .
Assumption 3: In the leaderless multi-agent systems, it is

assume that all followers can get information from each other.
That means the communication graph topology is undirected.
Assumption 4: For multi-agent systems (1) with unknown

output dead-zone. It is note that the graph G is connected,
then we suppose that the packet dropouts [53]–[56] will
never happen.
Remark 4: The communication protocol is an important

issue for data transmissions in the communication channels,
which can efficiently avoid the undesired data collision.More
recently, several remarkable results have been reported on
the adaptive state estimation control for GRNs under the RR
protocol and SCPs [27]–[29]. It should be mentioned that
these results are based on single system. These protocols will
be infeasible when plant is the multi-agent system. To solve
this problem, the graph topology [17], [20], [37] has been
widely recognized as one of the most promising protocol for
the consensus control of nonlinear multi-agent systems.

C. SOME KEY LEMMAS AND DEFINITIONS
Lemma 1 ( [57]): For z, y ∈ R, if 0 < p = p1/p2 ≤ 1,

where p1 > 0 and p2 > 0 are odd integers, the following
inequality holds:

|zp − yp| ≤ 21−p|z− y|p. (6)

Lemma 2 ( [58]): If there exists two numbers e ∈

(0,+∞), f ∈ (0,+∞) and g(x, y) > 0 is a real-value
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function. Then

|x|e|y|f ≤
e

e+ f
g(x, y)|x|e+f +

f
e+ f

g−e/f (x, y)|y|e+f . (7)

Lemma 3 ( [59]): For sl ∈ R, l ∈ M , if 0 < $ ≤ 1, then( π∑
l=1

|sl |
)$
≤

π∑
l=1

|sl |$ ≤ π1−$
( π∑
l=1

|sl |
)$
. (8)

Definition 1 ( [60]): Given a plant χ̇ = f (χ, t) and f (0) =
0. Assume that there are continuous differentiable function
V (x) and constants c > 0, α ∈ (0, 1) such that

(1)V (x) > 0

(2)dV (x)+ c(V (x))α ≤ 0 (9)

then V (x) reachs 0 when time tends to T0. Meanwhile,
the finite convergent time T0 satisfies:

T0 ≤
V (x(0))1−α

c(1− α)
. (10)

Hence, we called that the origin of plant χ̇ = f (χ, t) is
semi-global finite-time stable (SGFTS).
Lemma 4 (Universal Approximation Theorem [61]): For

any continuous function H (x) defined on a compact set �.
If given a constant ε > 0, there exists a FLS 2T S(x) such
that

sup
x∈�
|H (x)−2T S(x)| ≤ ε (11)

where 2 = [21,22, . . . ,2L] ∈ RL denotes the ideal
weight vector. S(x) = [S1(x), S2(x), . . . , SL(x)]/

∑L
i=1 Si(x)

represents the fuzzy basis function vector and L stands for the
number of fuzzy rules with L > 0.
Lemma 5 ( [3]): There exists real numbers xi, i =

1, 2, . . . , n and g ∈ (0, 1],

(|x1| + . . .+ |xn|)g ≤ |x1|g + . . .+ |xn|g (12)

III. FINITE-TIME ADAPTIVE FUZZY CONSENSUS
STABILIZATION CONTROL PROTOCOL DESIGN
In this subsection, by combining recursive backstepping
design method and approximation ability of fuzzy logic
systems (Part A) with Lyapunov-based logic switching rule
(Part B), the finite-time adaptive consensus stabilization con-
trol protocol is established for unknown nonlinear leaderless
multi-agent systems (1) with unknown output dead-zone.
Then, with the developed control protocol, the output states
yi(i = 1, 2, . . . , k) of all the follower nodes can be
faster reach the finite-time state synchronization. Meanwhile,
the state synchronization error between any adjacent follow-
ers converges to a small region of zero when time tends to T0.
For the convenience of design, a constant with the

Euclidean norm is defined as:

θi = max{‖ 2i,m ‖
2
; 0 ≤ m ≤ n}, (13)

where2i,m are the FLSweight vectors. θi > 0, since ‖ 2i,m ‖

is the Euclidean norm. θ̂i represents the estimated error of θi,
where θ̃i = θi − θ̂i.

A. CONTROL PROTOCOL DESIGN
Step 1. Considered the following coordinate transformation:

si,1 = yi − yj = Di(xi,1)− Dj(xj,1), i ∈ 9, j ∈ Ni (14)

where 9 = {1, 2, . . . , k}, si,1 stands for the synchronization
error of neighborhood node. Then, we have

ṡi,1 = Ḋi(xi,1)[xi,2 + fi,1(xi,1)]− Ḋj(xj,1)[xj,2 + fj,1(xj,1)]

≤ Ḋi(xi,1)[xi,2 + fi,1(xi,1)] (15)

Denote s = [s1,1, . . . , sk,1]T . Construct a Lyapunov function
as

V1 =
1
2
sTLs+

k∑
i=1

˜θ2i

2qi

=
1
4

k∑
i=1

[∑
j∈Ni

aij(si,1 − sj,1)2
]
+

k∑
i=1

˜θ2i

2qi
(16)

Based on (15), a direct calculation gives

dV1
dt
= sTLṡ−

k∑
i=1

1
qi
θ̃i
˙̂
θi

=

k∑
i=1

[∑
j∈Ni

aij(si,1 − sj,1)
]

× Ḋi(xi,2 + fi,1(xi,1))−
k∑
i=1

1
qi
θ̃i
˙̂
θi (17)

Set

υi,1 =
∑
j∈Ni

aij(si,1 − sj,1), i ∈ 9 (18)

Then

dV1
dt
=

k∑
i=1

υi,1Ḋi(xi,2 + fi,1(xi,1))−
k∑
i=1

1
qi
θ̃i
˙̂
θi (19)

A simple calculation gives

dV1
dt
=

k∑
i=1

υi,1Ḋi(xi,2 + fi,1(xi,1))−
k∑
i=1

1
qi
θ̃i
˙̂
θi

=

k∑
i=1

[
υi,1Ḋi(xi,2 − x∗i,2)

]
+

k∑
i=1

υi,1Ḋix∗i,2

+

k∑
i=1

υi,1Ḋifi,1(xi,1)−
k∑
i=1

1
qi
θ̃i
˙̂
θi. (20)

Since the system state function fi,1(xi,1) is unknown, it brings
great difficulties for practical applications. According to the
excellent approximation properties of FLS, then, fi,1(xi,1) can
approximated by a FLS as

fi,1 = 2T
i,1Si,1(Xi,1)+ δi,1(Xi,1), |δi,1(Xi,1)| ≤ εi,1 (21)
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where Xi,1 = xi,1, δi,1(Xi,1) refers to the accuracy and εi,1 is a
design parameter and εi,1 > 0. Using Young’s inequality and
the Euclidean norm of ‖ 2i,m ‖

2, if ai,1 > 0, we have

υi,1fi,1 ≤
θi

2a2i,1
υ2i,1S

T
i,1Si,1 +

a2i,1
2
+
υ2i,1

2
+
ε2i,1

2
(22)

Using assumption 1, substituting (21) and (22) into (20)
produces

dV1
dt
=

k∑
i=1

υi,1Ḋi(xi,2 + fi,1(xi,1))−
k∑
i=1

1
qi
θ̃i
˙̂
θi

≤

k∑
i=1

[
υi,1Ḋi(xi,2 − x∗i,2)

]
+

k∑
i=1

υi,1Ḋix∗i,2

+

k∑
i=1

η(
θi

2a2i,1
υ2i,1S

T
i,1Si,1 +

υ2i,1

2
)

+ kσi,1 −
k∑
i=1

1
qi
θ̃i
˙̂
θi (23)

where σi,1 = η(
a2i,1
2 +

ε2i,1
2 ).

Select the virtual control protocol for the unknown
time-varying dead-zone

x∗i,2 = −0iυ
r2
i,1n− η

θ̂i

2a2i,1
υ2i,1S

T
i,1Si,1 − η

υ2i,1

2

:= −0iυ
r2
i,1β1 − η

θ̂i

2a2i,1
υ2i,1S

T
i,1Si,1 − η

υ2i,1

2
(24)

where β1 = n, ri = 1 + (i − 1)τ, i = 1, . . . , n + 1, τ =
−R+even/R

−

odd . Define 0i := κiϒ(i), where the switching
functions κi ∈ {−1,+1} is related to the tunable parameter i
and designed later, ϒ(·) ≥ 0 is a function that increases with
the parameter i. For the purposes of convenience, we assumed
that parameter i is fixed, so κi and ϒ(i) are also fixed.
Based on virtual control protocol (24), the time derivative

of V1 is described as

dV1
dt
≤ −n

k∑
i=1

υ2+τi,1 +

k∑
i=1

[υi,1Ḋi(xi,2 − x∗i,2)]

−

k∑
i=1

(Ḋi0i − 1)υ1+r2i,1 β1

−

k∑
i=1

1
qi
θ̃i(
˙̂
θi − η

qi
2a2i,1

υ2i,1S
T
i,1Si,1)+ kσi,1 (25)

Step 2. Define υi,2 = x1/r2i,2 − x
∗

i,2
1/r2 , i ∈ 9, and choose the

following Lyapunov function:

V2 = V1 +
k∑
i=1

∑
z∈Ni

Wz, z = 2, .., n (26)

where

Wz =

∫ xi,z

x∗i,z

(
e1/rz − x∗i,z

1/rz
)2−rz

de

From the Proposition 1 in [3], we have

dV2
dt
≤ −n

k∑
i=1

υ2+τi,1 +

k∑
i=1

[
υi,1Ḋi(xi,2 − x∗i,2)

]
−

k∑
i=1

(Ḋi0i − 1)υ1+r2i,1 β1 −

k∑
i=1

1
qi
θ̃i(
˙̂
θi

− η
qi

2a2i,1
υ2i,1S

T
i,1Si,1)+ kσi,1 +

k∑
i=1

υ
2−r2
i,2

(
xi,3

+ fi,2(x i,2)
)
+ (2− r2)

k∑
i=1

∂
[
− x∗i,2

1/r2
]

∂xi,1
ẋi,1

×

∫ xi,2

x∗i,2

(
e1/r2 − x∗i,2

1/r2
)1−r2

de (27)

We will estimate each term of the above inequality (27).
First, according to Lemmas 1 and 2, the following result
holds:

|υi,1Ḋi(xi,2 − x∗i,2)| ≤ |υi,1| · |η| · |(x
1/r2
i,2 )r2 − (x∗i,2

1/r2 )r2 |

≤ 21−r2 |η| · |υi,1| · |υi,2|r2

≤
1
3
υ2+τi,1 + ϕ1υ

2+τ
i,2 (28)

where constant ϕ1 > 0.
For the term of unknown function fi,2(x i,2), from the

Assumption 2, there exists C1 functions γi,m(x i,m) ≥ 0,
where 2 ≤ m ≤ n,

|fi,2(x i,2)| ≤ |(υi,1|r2 + |υi,2|r2 )γi,2(x i,2) (29)

then we have

|υ
2−r2
i,2 fi,2| ≤ |υi,2|2−r2

( 2∑
z=1

|υi,z|
1+2τ

)
γi,2(x i,2)

≤
1
3
υ
1+r2
i,1 + υ

1+r2
i,2 γi,2(x i,2) (30)

Due to the complexity of virtual control x∗i,2 in (24), that
brings great difficulty for our design. In order to overcome
this issue, we adopted a power integrator approach as follow-
ing:

There exists someC1 functions Em,l(x i,m),where 2 ≤ m ≤
n, 1 ≤ l ≤ m− 1, such that∣∣∣∣∂

[
−x∗i,2

1/r2
]

∂xi,1
ẋi,1

∣∣∣∣ ≤ (|υi,1|r2 + |υi,2|r2)E2,1(x i,2). (31)

Additionally, using Lemma 1∣∣∣ ∫ xi,2

x∗i,2

(
e1/r2 − x∗i,2

1/r2
)1−r2

de
∣∣∣ ≤ |υi,2|1−r2 |xi,2 − x∗i,2|
≤ 21−r2 |υi,2|1−r2 |υi,2|r2

≤ 2|υi,2|. (32)

based on Lemma 2 and above inequality, we have∣∣∣∣(2− r2)∂
[
−x∗i,2

1/r2
]

∂xi,1
ẋi,1

∫ xi,2

x∗i,2

(
e1/r2 − x∗i,2

1/r2
)1−r2

de

∣∣∣∣
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≤ 2(2− r2)|υi,2|
( 2∑
z=1

|υi,z|
r2
)
E2,1(x i,2)

≤
1
3
υ
1+r2
i,1 + υ

1+r2
i,2 hi,2(x i,2) (33)

Substituting (28), (30) and (33) into (27) results into

dV2
dt
≤ −(n− 1)

k∑
i=1

υ2+τi,1 −

k∑
i=1

(Ḋi0i − 1)υ1+r2i,1 β1

−

k∑
i=1

1
qi
θ̃i(
˙̂
θi − η

qi
2a2i,1

υ2i,1S
T
i,1Si,1)+ kσi,1

+

k∑
i=1

υ
2−r2
i,2 xi,3 +

k∑
i=1

υ2+τi,2

[
ϕ1 + (γ2(x i,2)

+ hi,2(x i,2))
]
. (34)

Let f ′i,2(x i,2) = γi,2(x i,2) + hi,2(x i,2). Meanwhile, due to 2 +
τ = 1+ r2, set υ

2+τ
i,2 ≤ υi,2. Based on the FLS, the unknown

function f ′i,2(x i,2) can be expressed as

f ′i,2 = 2
T
i,2Si,2(Xi,2)+ δi,2(Xi,2), |δi,2(Xi,2)| ≤ εi,2 (35)

where Xi,2 = [x i,2, vi,2]T , note that the definition of vi,2 is
similar to x i,2. δi,2(Xi,2) refers to the approximation error and
εi,2 is a design parameter and εi,2 > 0. ByYoung’s inequality,
if given a ai,2 > 0, we have

υi,2f ′i,2 ≤ η(
θi

2a2i,2
υ2i,2S

T
i,2Si,2 +

a2i,2
2
+
υ2i,2

2
+
ε2i,2

2
) (36)

A virtual controller is selected as

x∗i,3 = −υ
r3
i,2[n− 1+ ϕ1]− η

θ̂i

2a2i,2
υ2i,2S

T
i,2Si,2 − η

υ2i,2

2

:= −υ
r3
i,2β2 − η

θ̂i

2a2i,2
υ2i,2S

T
i,2Si,2 − η

υ2i,2

2
(37)

which satisfies that

dV2
dt
≤ −(n− 1)

k∑
i=1

(
υ2+τi,1 + υ

2+τ
i,2

)
−

k∑
i=1

(Ḋi0i − 1)υ1+r2i,1 β1

+

k∑
i=1

υ
2−r2
i,2 [xi,3 − x∗i,3]−

k∑
i=1

( 1
qi
θ̃i(
˙̂
θi

−

2∑
z=1

η
qi

2a2i,z
υ2i,zS

T
i,zSi,z)

)
+ kσi,2 (38)

where σi,2 = σi,1 + η(
a2i,2
2 +

ε2i,2
2 ).

Inductive Step: For i = 1, . . . , k, according to the defi-
nition of virtual controller, such as υi,2 = x1/r2i,2 + x∗i,2

1/r2 .

At step m − 1, assume that there exists a set of positive
constants β1, . . . , βm−1, and a C1 Lyapunov function

Vm−1 = V1 +
k∑
i=1

∫ xi,2

x∗i,2

(
e1/r2 − x∗i,2

1/r2
)2−r2

de

+ · · · +

k∑
i=1

∫ xi,m−1

x∗i,m−1

(
e1/rm−1

− x∗i,m−1
1/rm−1

)2−rm−1
de (39)

such that

dVm−1
dt

= −(n− m+ 2)
k∑
i=1

(
υ2+τi,1 + υ

2+τ
i,2 + . . .

+ υ2+τi,m−1

)
−

k∑
i=1

(Ḋi0i − 1)υ1+r2i,1 β1

+

k∑
i=1

υ
2−rm−1
i,m−1 [xi,m − x∗i,m]+ kσi,m−1

−

k∑
i=1

( 1
qi
θ̃i(
˙̂
θi −

m−1∑
z=1

η
qi

2a2i,z
υ2i,zS

T
i,zSi,z)

)
(40)

where σi,m−1 = σi,m−2 + η(
a2i,m−1

2 +
ε2i,m−1

2 ).
Next, we will proven the above inequality (40) also holds

at step m. Select Lyapunov function as

Vm = Vm−1 +
k∑
i=1

∫ xi,m

x∗i,m

(
e1/rm − x∗i,m

1/rm
)2−rm

de (41)

By (41), along system (1), we get

dVm
dt
≤ −(n− m+ 2)

k∑
i=1

(
υ2+τi,1 + υ

2+τ
i,2 + . . .

+ υ2+τi,m−1

)
+

k∑
i=1

υ
2−rm−1
i,m−1 [xi,m − x∗i,m]

−

k∑
i=1

( 1
qi
θ̃i(
˙̂
θi −

m−1∑
z=1

η
qi

2a2i,z
υ2i,zS

T
i,zSi,z)

)

+ (2− rm)
k∑
i=1

m−1∑
l=1

∂[−x∗1/rmi,m ]

∂xi,l
ẋi,l

∫ xi,m

x∗i,m

(
e1/rm

− x∗i,m
1/rm

)2−rm
de−

k∑
i=1

(Ḋi0i − 1)υ1+r2i,1 β1

+ kσi,m−1 (42)

Similar to (28), it can be found that

|υ
2−rm−1
i,m−1 (xi,m − x∗i,m)| ≤ 21−rm |υi,m−1|2−rm−1 |υi,m|rm

≤
1
3
υ2+τi,m−1 + ϕmυ

2+τ
i,m (43)

where ϕm stands for a constant and ϕm ≥ 0.
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The computation of term (∂[−x∗1/rmi,m ]/∂xi,l)ẋi,l in (42) is
similar to (33), and given as follows:∣∣∣∣(2− rm)∂

[
−x∗i,m

1/rm
]

∂xi,l
ẋi,l

∫ xi,m

x∗i,m

(
e1/rm

− x∗i,m
1/rm

)1−rm
de

∣∣∣∣
≤ 2(2− rm)|υi,m|

( m∑
z=1

|υi,z|
rm
)
Em,l(x i,m)

≤
1
3

m−1∑
z=1

υ
1+r2
i,z + υ

1+r2
i,m hi,m(x i,m) (44)

Similarly, substituting (43) and (44) into (42), one has

dVm
dt
≤ −(n− m+ 2)

k∑
i=1

(
υ2+τi,1 + υ

2+τ
i,2 + . . .

+ υ2+τi,m−1

)
+

k∑
i=1

υ
2−rm−1
i,m−1 [xi,m − x∗i,m]

−

k∑
i=1

( 1
qi
θ̃i(
˙̂
θi −

m−1∑
z=1

η
qi

2a2i,z
υ2i,zS

T
i,zSi,z)

)

+

k∑
i=1

υ
2−rm
i,m xi,m+1 +

k∑
i=1

υ2+τi,2

[
ϕ1 + . . .+ ϕm

+ (γi,m(x i,m)+ hi,m(x i,m))
]
+ kσi,m. (45)

According to f ′i,m(x i,m) = γi,m(x i,2)+ hi,m(x i,m). Meanwhile,
due to 2 + τ = 1 + r2, set υ

2+τ
i,m ≤ υi,m. Based on the FLS,

the unknown function f ′i,m(x i,m) can be approximated by a
FLS as

f ′i,m=2
T
i,mSi,m(Xi,m)+δi,m(Xi,m), |δi,m(Xi,m)|≤εi,m (46)

where Xi,m = [x i,m, vi,m]T , δi,m(Xi,m) refers to the approxi-
mation error and εi,m is a design parameter and εi,m > 0. By
Young’s inequality, if given a ai,m > 0, we have

υi,mf ′i,m ≤ η(
θi

2a2i,m
υ2i,mS

T
i,mSi,m +

a2i,m
2
+
υ2i,m

2
+
ε2i,m

2
) (47)

Clearly, chosen a virtual control protocol as

x∗i,m+1 = −υ
rm+1
i,m [n− m+ 1+ ϕm]

− η
θ̂i

2a2i,m
υ2i,mS

T
i,mSi,m − η

υ2i,m

2

:= −υ
rm+1
i,m βm − η

θ̂i

2a2i,m
υ2i,mS

T
i,mSi,m − η

υ2i,m

2
(48)

then

dVm
dt
≤ −(n− m+ 1)

k∑
i=1

(
υ2+τi,1 + υ

2+τ
i,2 + . . .

+ υ2+τi,m

)
−

k∑
i=1

(Ḋi0i − 1)υ1+r2i,1 β1

+

k∑
i=1

υ
2−rm
i,m [xi,m+1 − x∗i,m+1]+ kσi,m

−

k∑
i=1

( 1
qi
θ̃i(
˙̂
θi −

m∑
z=1

η
qi

2a2i,z
υ2i,zS

T
i,zSi,z)

)
(49)

where σi,m = σi,m−1 + η(
a2i,m
2 +

ε2i,m
2 ).

Similarly, there exists constant gain βn, when step m equal
to step n, the following result holds:

dVn
dt
≤ −

k∑
i=1

(
υ2+τi,1 + . . .+ υ

2+τ
i,n

)
−

k∑
i=1

(Ḋi0i

− 1)υ1+r2i,1 β1 +

k∑
i=1

υ
2−rn
i,n [xi,n+1 − x∗i,n+1]

−

k∑
i=1

( 1
qi
θ̃i(
˙̂
θi−

n∑
z=1

η
qi

2a2i,z
υ2i,zS

T
i,zSi,z)

)
+kσi,n (50)

where σi,n = σi,n−1 + η(
a2i,n
2 +

ε2i,n
2 ).

Select the virtual control protocol for multi-agent systems

x∗i,n+1 := −υ
rn+1
i,n βn − η

θ̂i

2a2i,n
υ2i,nS

T
i,nSi,n − η

υ2i,n

2
(51)

Let

ui = x∗i,n+1

:= −υ
rn+1
i,n βn − η

θ̂i

2a2i,n
υ2i,nS

T
i,nSi,n − η

υ2i,n

2
(52)

Based on the above derivation, then the actual control proto-
col as follows:

ui = −βnυ
rn+1
i,n

= −βn

[
x

1
rn
i,n + η

θ̂i

2a2i,n−1
υ2i,n−1S

T
i,n−1Si,n−1 + η

υ2i,n−1

2

+β
1
rn
n−1

[
x

1
rn−1
i,n−1 + . . .+ 0

1
r2
i β

1
r2
1

[∑
j∈Ni

aij(Di(xi,1)

−Dj(xj,1))
]]]rn+τ

− η
θ̂i

2a2i,n
υ2i,nS

T
i,nSi,n − η

υ2i,n

2
. (53)

Meanwhile, the adaption parameter law ˙̂θi is selected as

˙̂
θi =

n∑
z=1

η
qi

2a2i,z
υ2i,zS

T
i,zSi,z − zi,0θ̂i (54)

where zi,0 ≥ 0.
Substituting (51), (53) and (54) into (50), then

dVn
dt
≤ −

k∑
i=1

(
υ2+τi,1 + υ

2+τ
i,2 + . . .+ υ

2+τ
i,n

)
(55)
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where

Vn = V1 +
k∑
i=1

(∫ xi,2

x∗i,2

(
e1/r2 − x∗i,2

1/r2
)2−r2

de

+ · · · +

∫ xi,n

x∗i,n

(
e1/rn − x∗i,n

1/rn
)2−rn

de
)
. (56)

Next, we will analyze the ultimate boundedness of Lya-
punov function candidate Vn. Based on s = [si,1, . . . , sk,1]T ,
one has

k∑
i=1

υ2i,1 = (L1/2s)TL(L1/2)s

≥ %̂1sTLs (57)

where %̂1 is a positive constant. Moreover, using Lemma 1,
for 2 ≤ l ≤ n, we can obtained∣∣∣ ∫ xi,l

x∗i,l

(
e1/rl − x∗i,l

1/rl
)2−rl

de
∣∣∣ ≤ |υi,l |2−rl |xi,l − x∗i,l |
≤ 22−rl |υi,l |2−rl |υi,l |rl

= 22−rlυ2i,l . (58)

Substituting (57) and (58) into (56), the following relation
holds:

Vn ≤ ω
k∑
i=1

(υ2i,1 + υ
2
i,2 + . . .+ υ

2
i,n) (59)

where ω is a positive constant. Combined (55) with the above
analysis, it is easy to see that

dVn
dt
≤ −ω−

2+τ
2 V

2+τ
2

n −

k∑
i=1

(Ḋi0i,1 − 1)υ1+r2i,1 β1 (60)

B. LYAPUNOV-BASED LOGIC SWITCHING LAW
In order to overcome the unknown control gain arising from
unknown output dead-zone and analyze the finite-time con-
sensus stability of such systems (1), where the unknown
dead-zone exists in the output channel of multi-agent. Based
on the parameter i is adjustable, hence, we provided the fol-
lowing logic switching rule to overcome the obstacle aroused
by output dead-zone.

s0 =

{
i, if V1(x(t)) ≤ h̄(t, ti, xi,m(ti), π), t ≥ ti
i+ 1, otherwise

(61)

where π stands for a positive constant. V1(x(t)) is derived
from (7), meanwhile h̄(t, ti, xi,m(ti), π) = [(V1(x(ti)) +
π )1−ζ − 0.25(1 − ζ )(t − ti)][1/(1−ζ )] for ti ≤ t ≤ ti +
[4(V1(x(ti)) + π )1−ζ /(1 − ζ )], h̄(t, ti, xi,m(ti), π) = 0, oth-
erwise. The set of the switching time is defined by:

ti+1 := inf{t|t > ti,V1(x(t)) > h̄(t, ti, xi,m(ti), π)}. (62)

However, for the output dead-zone of each subsystem,
we can see that the signs of Ḋi have two cases, i.e., either

positive (represented by +1) or negative (represented by -
1). The multi-agent systems (1) have k subsystems. There-
fore, the signs of the dead-zone Ḋi have 2k possible cases
which can be explicitly considered. Generally, represented
by κ (0), κ (1), . . . , κ (2

k
−1). Finally, for t ∈ [t0,+∞), i =

0, 1, 2, . . . , the switching vector is established as

κ(t) =


0(i)κ (0), if i = ϑ · 2k

0(i)κ (1), if i = ϑ · 2k + 1
...

...

0(i)κ (2
k
−1), if i = ϑ · 2k + 2k − 1

(63)

where the number of period ϑ := (i/2k ), and i = 0, 1, 2, . . .
According to the above backstepping design procedure,

themain conclusions of this paper are summarized as follows:
Theorem 1 (Finite-Time Adaptive Fuzzy Consensus Stabi-

lization Regulation Protocol): For unknown nonlinear leader-
less multi-agent systems (1) with unknown output dead-zone,
if the control protocol (53), parameter adaptive law (54),
logic switching rule (61) and candidate switching vector (63)
are selected, then there exists a time constant T0, such
that the control objective is achieved for state synchroniza-
tion of each follower when time tends to T0. Meanwhile,
the state synchronization error of each follower converges
to a small region of zero, i.e., limt→T0 |yi(t) − yj(t)| =
limt→T0 |Di(xi,1) − Dj(xj,1)| = 0,∀t ≥ T0. We also can
called that the origin ofmulti-agent systems (1) is semi-global
finite-time stable (SGFTS).
Remark 5: The conventional consensus methods about

unknown control directions are based on Nussbaum-type
function. By combining backstepping and Nussbaum-type
gains, [45], [62] successfully addressed the adaptive consen-
sus problem for multi-agent systems with unknown control
directions. It is well known that the Nussbaum-type gains are
conservative. Therefore, these results will be infeasible in the
study of finite-time adaptive consensus stabilization.
Remark 6: Different from Nussbaum-type approaches,

Lyapunov-based logic switching approaches have the advan-
tage to reduce the conservativeness to analyze and synthesize
closed-loop systems under the unknown control direction.
More recently, several similar results have been reported
on the finite-time adaptive control for nonlinear plants with
unknown control directions [4], [50], [51]. In contrast with
these results, the main advantages of our scheme can be listed
as: i) we have fully considered the effects of the dead-zone
in the output channel; and ii) we do not need to assume
the structural parameters are nonlinearly parameterized, and
hence, less restriction on the systems is required.

IV. SIMULATION RESULTS
In this section, two simulation examples are conducted to
further verify our theoretical results.
Example 1: Consider a five-agent systems with unknown

output dead-zones, the dynamic of each follower is modeled
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TABLE 1. Parameters of dead-zone in Example 1.

FIGURE 2. Information exchange topology of Example 1.

as follows:

ẋi,1 = xi,2 + fi,1(x i,1),

ẋi,2 = xi,3 + fi,2(x i,2),

ẋi,3 = ui + fi,3(xi,3),

yi = Di(xi,1). (64)

where fi,1(x i,1) = cos(xi,1) + xi,1/(1 + x2i,1), fi,2(x i,2) =
(1/xi,1) sin(xi,2) and fi,3(xi,3) = x2i,1xi,2xi,3 are unknown
nonlinear functions. The parameters of output dead-zones are
listed in Table 1.

In order to verify the validity of Theorem 1, five fol-
lowers are initialized as: x1(0) = [2, 0,−2]T , x2(0) =
[−2.6, 0, 1.1]T , x3(0) = [5,−1,−1]T , x4(0) = [−4, 0, 1]T ,
x5(0) = [1, 1,−2]T . The adjacency weighted of communi-
cation graph topology (see Fig. 2) are chosen to be d1 =
[0.01, 0.1, 0.09, 0.04, 0.05]T . The control design parameter
are set as a1,1 = a1,2 = 2, a1,3 = 3, a2,1 = 4, a2,2 = a2,3 =
2, a3,1 = 2, a3,2 = a3,3 = 4, a4,1 = 2, a4,2 = 3, a4,3 =
4, a5,1 = 2, a5,2 = 3, a5,3 = 1, qi = 200, zi,0 = 10, θ̂i =
[0.2, 0.2, 0.2, 0.2, 0.2]T , i = 1, . . . , 5, η = 2. Meanwhile,
the gains of control protocol ui are selected asβ1 = 3,β2 = 2,
β3 = 4 and τ = −10/11.
The simulation results are shown in Figs. 3-8. Based on

Fig. 3, it is clear that although the output dead-zone nonlin-
earities exist in the multi-agent systems, the proposed control
protocol can guarantee that the finite-time state synchroniza-
tion of closed-loop system. Besides, from Fig. 7, it is found
that the synchronization performance between any adjacent
followers is also achieved when time tends to T0. Therefore,
the effectiveness our theoretical results is verified.
Example 2: In the second example, a simulation is con-

ducted for the practical multi robotic manipulator systems

FIGURE 3. State xi,1 of Example 1.

FIGURE 4. States xi,2 of Example 1.

FIGURE 5. States xi,3 of Example 1.

with unknown output dead-zone. The dynamic of such sys-
tems is described as follows:

Miq̈i + Biq̇i + Ni sin(qi) = Ui
yi = Di(qi) (65)

where q denotes the angle, while q̇, and q̈ represent the
velocity and acceleration of the robotic manipulator, respec-
tively. Ui is the input electromechanical torque. Mi = 1
N·m denotes the moment of inertia, Bi = 1 N(ms)/rad
denotes the viscous friction coefficient, Ni = 10 represents
a positive constant related to the product of mass and gravity
acceleration. We believe that there exists output dead-zone
in the output channel of the robotic manipulator. For the
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FIGURE 6. The control protocol ui of Example 1.

FIGURE 7. The synchronization error δi of Example 1.

FIGURE 8. The parameter adaptive law θ̂i of Example 1.

convenience of analysis, by setting xi,1 = qi and xi,2 = q̇i.
Then, the dynamics of multi robotic manipulators can be
rewritten as follows:

ẋi,1 = xi,2

ẋi,2 =
Ui
Mi
−
Bixi,2
Mi
−
Ni sin(xi,1)

Mi
yi = Di(xi,1) (66)

Reuse the fuzzy membership functions established in
Example 1. A finite-time adaptive consensus control strategy
in Theorem 1 is applied to Example 2.

The output dead-zones are similar to Example 1 but
i = {1, 2, 3, 4}. Initialize the state variables as

FIGURE 9. Information exchange topology of Example 2.

FIGURE 10. The output trajectories of Example 2.

FIGURE 11. The control protocol ui of Example 2.

x1(0) = [1.8, 0.1]T , x2(0) = [−2.6, 0.2]T , x3(0) =
[4.5,−1]T , x4(0) = [−4.3, 0]T . The adjacency weighted of
communication graph topology (see Fig. 9) are chosen to be
d2 = [0.1, 0.04, 0.09, 0.04]T . The design parameters of the
plant are set to a1,1 = a1,2 = 3, a2,1 = 4, a2,2 = 2, a3,1 =
1, a3,2 = 3, a4,1 = 2, a4,2 = 4, qi = 200, zi,0 = 8, θ̂i =
[0.25, 0.25, 0.25, 0.25]T , i = 1, . . . , 4, η = 1. Meanwhile,
the gains of control protocol ui are selected as β1 = 2.3,
β2 = 1.2, β3 = 3.2 and τ = −10/11.
Fig. 10-Fig. 13 show the simulation results. The trajec-

tories of the ith subsystem output yi = Di(xi,1) is given
in Fig. 10. We can see that state synchronization of each
robotic manipulator subsystem is achieved under the effect
of output dead-zone. In addition, from the Fig. 12, it is
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FIGURE 12. The synchronization error δi of Example 2.

FIGURE 13. The parameter adaptive law θ̂i of Example 2.

quite obvious that the synchronization errors converge to a
region around the origin when time tends to T0. Therefore,
the effectiveness our theoretical results is verified.

V. CONCLUSION
We have proposed a finite-time adaptive fuzzy concen-
sus stabilization scheme for unknown nonlinear leaderless
multi-agent systems with unknown output dead-zone in
the output channel. By employing a Lyapunov-based logic
switching rule and using the recursive backstepping design
method and the universal approximation ability of fuzzy logic
systems, the problem of unknown virtual control coefficient is
handled and the finite-time adaptive concensus stabilization
is also resolved, respectively. It is proved that the finite-time
adaptive fuzzy concensus stabilization scheme can guarantee
that state synchronization of each follower when time tends
to T0. Meanwhile, the synchronization errors between any
adjacent followers also converge to a region around the zero
in a finite time. Finally, simulation are conducted to further
verify our theoretical results.

How to cope with the finite-time adaptive concensus sta-
bilization for unknown nonlinear multi-agent systems with
unknown unmodeled dynamics [63] is an open problem,
which will be our future work.
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