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ABSTRACT A typical Chinese remainder theorem (CRT)-based secret sharing (SS) scheme has been pro-
posed by Asmuth and Bloom for several decades, with lower computation complexity compared to Shamir’s
original polynomial-based SS. But when applied to images, CRT-based image secret sharing (CRTISS)
shows many problems, such as lossy recovery, auxiliary encryption, and extra parameters requirement.
We analyze the characteristics of images and ISS and propose a (k, n)-threshold CRTISS based on the
Asmuth and Bloom’s scheme by sharing the high 7 bits of a grayscale secret pixel and embedding the least
significant bit (LSB) into the random integer. The pixel values of a grayscale image are divided into two
parts, which make it possible to share all the secret pixels with no expansion. Our method has the advantages
of (k, n) threshold, lossless recovery, and no auxiliary encryption. The parameters requirement is the same
as that in the Asmuth and Bloom’s original method. Analysis and experiments are provided to validate the
effectiveness of the proposed method.

INDEX TERMS Image secret sharing, Chinese remainder theorem, lossless recovery, (k, n) threshold.

I. INTRODUCTION
Nowadays, people often take many photos and share them
using many social softwares, such as Twitter and Face-
book, or upload them to cloud servers. But the storage of these
private images brings a significant security problem. If stored
in a single information-carrier, they are easily lost or cor-
rupted. And storing multiple copies of these images increases
the danger of security breaches. Image secret sharing (ISS)
provides a solution to the problem. In a (k, n)-threshold ISS
scheme, a secret image is split into n shares, i.e., shadow
images or shadows, which are then distributed to n different
participants. The secret image can be recovered by at least
any k shares while less than k shares give no clues about
the secret, even with the most powerful computing device in
the world. Secret sharing (SS) is also applied to other scenar-
ios, such as digital watermarking, key management, identity
authentication, access control, password transmission and
block chain [1]–[5]. ISS schemes chiefly include visual secret
sharing(VSS) [6]–[8], polynomial-based scheme [9] and the
Chinese remainder theorem-based ISS (CRTISS) [10]–[12].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

VSS, also known as visual cryptography (VC), has the
advantage of low computing requirement in the recov-
ery phase, where we can stack any k or more shares to
get the secret image by naked human eyes. An attacker
can only get a noise-like image with less than k shares.
However, conventional VSS schemes have some draw-
backs, e.g., low image quality, pixel expansion, codebook
design and so on, which are studied in the following
works [13]–[17].

Polynomial-based secret sharing (SS) scheme was first
proposed by Shamir [9], encoding the secret via constructing
a k − 1 degree polynomial to generate n shares. When gath-
ering k or more shares, one can reconstruct the polynomial
by Lagrange interpolation to decode the secret. Inspired by
Shamir’s work, Thien and Lin [18] applied the Polynomial-
based SS to images. Differently, they utilized all the k coeffi-
cients to embed the secret image pixels and reduced the share
size to 1/k of the secret image size. Then, some researchers
carried on the study of polynomial-based ISS to realize more
features, such as multiple decoding options, lossless recovery
and differently weighted shares [19]–[22]. However, for the
sake of some special image features, there still exist chal-
lenges in Shamir’s polynomial-based ISS, including lossy
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recovery, high computation complexity and auxiliary encryp-
tion. Image pixel values range from 0 to 255 and the chosen
modulus in the decoding phase is 251, which means five
pixel values cannot be recovered. So in general there is a
little bit loss in the recovered image. Due to Lagrange inter-
polation in the recovery phase, the computation complexity
is O(k log2 k) [10]. Auxiliary encryption is usually needed
before sharing to eliminate the correlation of image pixels.

Because the modular method needs only O(k) opera-
tions [10] to recover every secret pixel, CRTISS has the
advantage of low computation cost, which is important when
considering the big amount of image pixels. Asmuth and
Bloom [10] and Mignotte [11] proposed (k, n)-threshold SS
based on CRT respectively in 1983. Yan et al. [12] firstly
introduced CRT into ISS, which may have a little information
leakage and recovery loss. Shyu and Chen [23] extended
Mignotte’s method to ISS, utilizing a PRNG to encrypt the
pixel values so as to eliminate image pixel correlation. Ulu-
tas et al. [24] proposed a CRTISS based on Asmuth and
Bloom’s scheme by dividing pixel values into two intervals.
Since they didn’t give precise restrictions on the parame-
ters, the (k, n) threshold may be not achieved when the ran-
dom number is too small. Furthermore, it doesn’t consider
pixel value 2 times or more to the interval boundary. Chun-
qiang et al. [25] proposed a CRTISS based on the chaotic
map, involving auxiliary encryption. Chuang et al. extended
the CRTISS proposed by Ulutas to design a (k, n)-threshold
ISS via only sharing the most significant 7 bits to satisfy the
restrictions of CRT. They stored and transmitted the least sig-
nificant bit (LSB) of secret image pixels independently or just
threw them away. So the drawback of their method is that the
recovery secret image is lossy or high transmission cost is
needed. Yan et al. [26], [27] proposed a CRTISS by dividing
the value of the grayscale pixel into two intervals with similar
size and provided precise restrictions and applicable explicit
parameters for the implementations. Their method is with
(k, n)-threshold, no auxiliary encryption and lossless. But
they have to transmit an extra parameter to identify the two
intervals.

In this paper, we propose a (k, n)-threshold CRTISS based
on the Asmuth and Bloom’s method through sharing the
high 7 bits of the grayscale secret pixels and embedding
their LSBs to the lowest bits of the random numbers. Our
method realizes lossless recovery for grayscale imagewithout
auxiliary encryption. Compared to Yan et al.’ scheme, there
is no extra parameter needed to be transformed in our method.
The shares are all noise-like, and the recovered image from
any k−1 or less shares is still noise-like. Pixel values in shares
are approximatively uniformly distributed, which illustrates
the security of our method. Analysis and experiments are
provided to indicate the effectiveness of the proposedmethod.

The rest of the paper is organized as follows. Some basic
requirements are introduced for the proposed method in
section II. In section III, the proposed method is presented
in detail. Then we give the experimental results and compar-
isons in section IV. Finally, section V concludes this paper.

II. PRELIMINARIES
In this section, we give some preliminaries for our work,
including the Chinese remainder theorem, image character-
istics and the Asmuth and Bloom’s CRT-based SS scheme.
For (k, n) threshold ISS, the original secret image S is
encrypted to n shares SC1, SC2, · · · , SCn, and the decrypted
secret image S ′ is reconstructed from t (k ≤ t ≤ n, t ∈ Z+)
shares.

In general, a valid ISS construction for (k, n) threshold
should satisfy the following conditions [7].

1) Security condition: k − 1 or less shares give no clue
about the secret.

2) Recognition condition: any k or more shares can
recover the secret.

A. CHINESE REMAINDER THEOREM (CRT)
CRT aims to solve a set of simultaneous linear congruence
equations. A set of positive integers mi(i = 1, 2, · · · , k) is
chosen subject to gcd

(
mi,mj

)
= 1, i 6= j. Then there exists

only one solution

y≡
(
a1 M1 M

−1
1 +a2 M2 M

−1
2 +· · ·+akMkM

−1
k

)
(mod M),

y ∈ [0,M − 1] for the following linear congruence equations.

y ≡ a1 (mod m1)

y ≡ a2 (mod m2)

· · ·

y ≡ ak−1 (mod mk−1)

y ≡ ak (mod mk) (1)

where M =
∏k

i=1 mi, Mi =
M/

mi and MiM
−1
i ≡

1 (mod mi).
gcd

(
mi,mj

)
= 1, i 6= j ensure every equation in Eq. (1)

will not be eliminated by other equations.
It is remarkable that in [0,M − 1] there exists only one

solution. If k − 1 equations in Eq. (1) are collected, assum-
ing aj is the missing one, we can obtain only one solu-
tion satisfying the k − 1 equations in [0,

∏k
i=1,i6=j mi − 1],

denoted as y0. Whereas in [0,M − 1], y0 + b
∏k

i=1,i 6=j mi
for b = 1, 2, · · · ,mj − 1 are also the solutions for the
k − 1 equations in Eq. (1). Thus, there are another mj − 1
solutions in [

∏k
i=1,i 6=j mi,M − 1]. The mj − 1 solutions are

corresponding to different possible ak in range of [0,mj−1].
Therefore, any k − 1 equations gain no clue about the exact
solution y, which will be utilized in the proposed scheme to
achieve (k, n) threshold.

B. THE FEATURE ANALYSIS OF AN IMAGE
Digital image has many special features due to its formats.
Images are composed of pixels, and there exists some cor-
relations between pixels, such as structure, texture, edge
and other related information. Even with extreme distortion,
we could get some information from a corrupted image as
well. Thus, ISS should scramble not only the pixel values but
also the correlations between adjacent pixels.
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The pixel value of gray images ranges from 0 to 255, which
brings a little difference between ISS and SS.

1) An image is composed of pixels with a certain cor-
relation between each other, thus the security of an
image protection algorithm should consider at least two
aspects, i.e., single pixel security and region security.
However, a data protecting algorithm in general only
considers data block.

2) Because an image in general contains a big amount
of pixels, the generating and recovering algorithmic
efficiency is more important in ISS design.

3) Images have special storage file structure, which brings
more restrictions in ISS, e.g., the limited range of pixel
value. Therefore, parameters in ISS need to be carefully
chosen to make sure the shares in proper pixel range.

4) As for binary images, one bit represents a pixel while
one byte represent a pixel in gray scale images. It is
easy to generalize ISS to digital data secret sharing,
by dividing the data to single bits or bytes.

5) Secret sharing has the property of ‘‘all-or-nothing’’,
whichmeans loss in data blocksmake them unreadable.
But to ISS, lossy recovery still make sense.

C. ASMUTH AND BLOOM’S CRT-BASED SS SCHEME
Asmuth and Bloom proposed the CRT-based SS scheme
in 1983, which has the advantage of low computation com-
plexity, requiring only O(k) operations.

Asmuth and Bloom’s CRT-Based SS for (k, n) Threshold

Input: Secret s and threshold (k, n).
Output: n shares sc1, sc2, · · · scn and corresponding pri-
vacy modular integers m1,m2, · · ·mn.
Step 1: Choose a set of integers
{s < p < m1 < m2 · · · < mn} satisfying
1) gcd

(
mi,mj

)
= 1, i 6= j.

2) gcd (mi, p) = 1 for i = 1, 2, · · · , n.
3) M > pN
whereM =

∏k
i=1 mi, N =

∏k−1
i=1 mn−i+1 and p is public

among all the participants.
Step 2: Choose a random integer A in

[⌈
N
p

⌉
,
⌊
M
p − 1

⌋]
and let y = s+ Ap.
Step 3: Compute ai ≡ y (mod mi) and let sci = ai for
i = 1, 2, · · · , n.
Step 5: Output n shares sc1, sc2, · · · scn and their corre-
sponding privacy modular integers m1,m2, · · ·mn.

When applied to ISS, it has the problem of only sharing a
limited value range of pixels. As for grayscale image, pixel
values range from 0 to 255. We have 0 ≤ ai ≤ 255
and ai ≤ mi. Since {s < p < m1 < m2 · · · < mn} in Step
1, it is easy to find s < 255. With the increasing of n,
the range of s decrease terribly. Obviously, the essential issue
is to figure out a way to share all the pixels in a grayscale
image.

III. THE PROPOSED CRTISS METHOD
FOR (K , N ) THRESHOLD
A. OUR METHOD
Here, we propose a novel ISS scheme for (k, n) threshold
based on CRT. The original grayscale secret image S is split
into n shares SC1, SC2, · · · SCn, which will be sent to n dif-
ferent participants with their corresponding privacy modular
integers m1,m2, · · ·mn.
Our method is based on the Asmuth and Bloom’s CRTSS

scheme. In the original scheme, every share has the bigger
value range than the secret, which means only a small range
of pixels can be shared with the requirement of share pixel
ranging in [0, 255]. We propose a solution to share the high
7 bits ([0, 127]), and embed the LSB into the random integer.
The generation Steps are described in Algorithm 1, whose
diagrammatic design concept is shown in Fig. 1. And the
recovery steps are presented in Algorithm 2.

FIGURE 1. Design concept for the proposed method.

For Algorithm 1 and Algorithm 2, we remark that.
1) In Step 1 of our Algorithm 1, the condition
{128 ≤ p < m1 < m2 · · · < mn ≤ 256} is given by
image pixel value range and pN < M . We suggest that
p is as small as possible for security as well as mi is as
large as possible so that the pixel values in shares can
randomly lie in large range.

2) gcd
(
mi,mj

)
= 1 and gcd (mi, p) = 1 aim to satisfy

CRT conditions, where mi may be preserved as the
privacy key for participant SCi. gcd (mi, p) = 1 may
be on account of not only applicable CRT but also
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Algorithm 1 The Proposed CRTISS Method for (k, n)
Threshold

Input: The original secret image S with size of
H × W and threshold parameters (k, n).
Output: n shares SC1, SC2, · · · SCn and corresponding pri-
vacy modular integers m1,m2, · · ·mn.
Step 1: Choose a set of integers {128 ≤ p < m1 <

m2 · · · < mn ≤ 256} subject to
1) gcd

(
mi,mj

)
= 1, i 6= j.

2) gcd (mi, p) = 1 for i = 1, 2, · · · , n.
3) M > pN

where M =
∏k

i=1 mi, N =
∏k−1

i=1 mn−i+1 and p is public
among all the participants.
For each position (h,w) ∈ {(h,w)|1 ≤ h ≤ H , 1 ≤ w ≤
W }, repeat Steps 2-4.
Step 2: Let s = S(h,w). Pick up a random integer A in[⌈

N
p

⌉
,
⌊
M
p − 2

⌋]
.

If A ≡ s mod 2, keep A unchanged; otherwise let A =
A+ 1.
Step 3: Compute x =

⌊ s
2

⌋
, which means sharing the high

7 bits of the pixel. Let y = x + Ap.
Step 4: Compute ai ≡ y (mod mi) and let SCi(h,w) = ai
for i = 1, 2, · · · , n.
Step 5: Output n aharess SC1, SC2, · · · SCn and their
corresponding privacy modular integers m1,m2, · · ·mn.

containing all possible pixel values in the range [0,mi)
in share SCi.

3) In Step 3 of our Algorithm 1, we know A is randomly
picked up from

[⌈
N
p

⌉
,
⌊
M
p − 2

⌋]
, thus N ≤ y < M

in order to obtain (k, n) threshold for y as explained
in Section II-A. A cannot equal to

⌊
M
p − 1

⌋
because

it needs to be modified to A+ 1 in some occasions.
4) In Step 3 of Algorithm 1, we share the high 7 bits of

secret pixels and embed the LSB into the last bit of
the random number. As a result, s can be losslessly
recovered for arbitrary s ∈ [0, 255].

5) In Step 3 of Algorithm 1, A is randomly picked up for
every x, therefore y = x + Ap can enlarge x value
so as to scramble not only the pixel value but also
the correlations between adjacent pixels without auxil-
iary encryption. Since few information can be obtained
from the LSB of grayscale pixels, the correlations of
pixels will not lead to information leakage.

6) In Step 3 of Algorithm 1, y = x + Ap can determine
only one x based on x ≡ y (mod p).

B. PERFORMANCE ANALYSES
This subsection will show the performances of the proposed
method by theoretically analyzing the security and lossless
recovery. In Theorem 1, we will prove that the proposed
scheme is a valid (k, n) threshold ISS construction. Prior to
the proof of Theorem 1, some Lemmas are given.

Algorithm 2 Secret Image Recovery of the Proposed Scheme
Input:k shares SCi1 , SCi2 , · · · SCik , their corresponding
privacy modular integers mi1 ,mi2 , · · ·mik and p.
Output: A H × W recovered secret image S ′.
Step 1: For each position (h,w) ∈ {(h,w)|1 ≤ h ≤ H , 1 ≤
w ≤ W }, repeat Steps 2-3.
Step 2: Let aij = SCij (h,w) for j = 1, 2, · · · , k . To solve
the following linear equations by the Chinese remainder
theorem.

y ≡ ai1
(
mod mi1

)
y ≡ ai2

(
mod mi2

)
· · · (2)

y ≡ aik−1
(
mod mik−1

)
y ≡ aik

(
mod mik

)
Step 3: Compute A =

⌊
y
p

⌋
. Let x ≡ y (mod p). s′ = x ×

2+ (A mod 2). Set S ′(h,w) = s′.
Step 4: Output the recovered secret image S ′.

Lemma 1: Each share generated by our method gives no
clue about the secret image.

Proof 1: From y = x+Ap and ai ≡ y (mod mi), we will
prove SCi(h,w) = ai is random in range [0,mi).
When A is fixed, since x represents the pixel value of the

secret image, we can assume x is random in range [0, 127].
Due to ai ≡ (x+Ap) (mod mi), we have ai is random in range
[0,mi).

On the other hand, when x is fixed, gcd (mi, p) = 1, thus
Ap (mod mi) can cover all possible values in range [0,mi)
as long as the continuous interval of A has the least size
of mi. Assume we have x + Ap ≡ ai (mod mi) and x +
A′p ≡ ai (mod mi), so Ap ≡ A′p (modmi). Then we get
that mi|(Ap − A′p), i.e., (A − A′)p is a multiple of mi. Since
(p,mi) = 1, (A − A′) must be a multiple of mi. With the
A increasing, we can have x + Ap (mod mi) can cover all
possible values in range [0,mi) as well. As a result, we have
ai is random in range [0,mi).
A special case is needed to be discussed here. When

we share the high 7 bits of a grayscale pixel, i.e. x, and
embed the LSB into the random integer A, every x is cor-
responding to two different pixels indeed. When x is fixed,
to cover the range of share pixels [0,mi), the available num-
bers of integer A should be greater than or equal to 2mi.
As for (2, n) threshold, A ranges in

[⌈
N
p

⌉
,
⌊
M
p − 2

⌋]
, i.e.[⌈

mn
p

⌉
,
⌊
m1×m2

p − 2
⌋]

, which does not meet the require-
ment. Therefore, some pixel values will not appear in shares,
while the rest values will still be shared randomly. When
k > 2, the range of A meets the requirement and all pixel
values in shares can be covered.

Thus, the Lemma is proved to be met.
Lemma 2: In the proposed scheme, any k or more shares

can recover the secret losslessly.
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Proof 2: Since x represents the high 7 bits of pixels in
the secret image, we will prove any k or more shares can
recover x losslessly.
In order to recover x, we only need to find y due to x ≡

y (mod p) or x ≡ y (mod p)+ p.
When ai1 , ai2 , · · · aik are given, according to CRT, there

exists only solution y modulo N1 =
∏k

j=1 mij since N1 ≥ M .
Finally we can uniquely determine y and x based on Step 3 of
our Algorithm 2.
Lemma 3: In the proposed scheme, k − 1 or less shares

give no clue about secret.
Proof 3: When k − 1 shares pixels ai1 , ai2 , · · · aik−1 are

given, according to CRT then all we have is y0 modulo
N2 =

∏k−1
j=1 mij , where y0 ∈ [0,N2 − 1]. On one hand,

the true y ∈ [N ,M − 1], which is absolutely different from
above y0. On the other hand, since N ≥ N2,N ≤ y < M
and gcd (N2, p) = 1, in [N2,M − 1], y0 + b

∏k−1
j=1 mij for

b = 1, 2, · · · ,mik − 1 are also the solutions for the collected
k − 1 equations in Eq. (3). Thus, there are another mik − 1
solutions in [N2,M − 1], corresponding to every different
possible aik in range of [0,mik − 1]. Thus k−1 or less shares
give no clue about the secret.
Theorem 1: Our method is a valid ISS construction

for (k, n) threshold.
Proof 4: Based on the above Lemmas, the mentioned

conditions are satisfied.

IV. EXPERIMENTAL RESULTS AND ANALYSES
In this section, experiments and analyses are performed to
evaluate the effectiveness of our method.

A. IMAGE ILLUSTRATION
Fig. 2 gives the experimental results for (2, 3) threshold,
where p = 128,m1 = 251,m2 = 253,m3 = 255 and
the grayscale secret image is in Fig. 2 (a). Figs. 2 (b-d)
illustrate the 3 shares SC1, SC2 and SC3, which are noise-
like. Figs. 2 (e-h) exhibit the recovered secret images with
any 2 or 3 shares based on CRT, from which the secret
images recovered from k = 2 or more shares can be recog-
nized, where CRT (SC1, SC2) indicates the recovered secret
image S ′ from SC1 and SC2 by CRT. In addition, we have
H∑
h=1

W∑
w=1

∣∣S(h,w)− S ′(h,w)∣∣ = 0, therefore the recovered

secret image is lossless by CRT.
Fig. 3 shows shares histogram analysis of the proposed

CRTISS method corresponding to Fig. 2. For each share,
the pixel values are approximately uniform distribution
in [0,mi − 1], which tells that each share gives no clue about
the secret image.

Fig. 4 demonstrates the experimental results for (4, 4)
threshold, where p = 131,m1 = 247,m2 = 251,m3 =

253,m4 = 255 and the gray secret image is displayed
in Fig. 4 (a). Figs. 4 (b-e) indicate the generated 4 shares,
which are also noise-like. Figs. 4 (f-h) denote the recov-
ered secret image with any t (2 ≤ t ≤ 4) based on CRT
recovery. When t < 4 shares are collected, there is no

FIGURE 2. Experimental example of the proposed CRTISS method
for (k, n) threshold, where k = 2, n = 3. (a) Secret image. (b) SC1. (c) SC2.
(d) SC3. (e) CRT(SC1 SC2). (f) CRT(SC1, SC3). (g) CRT(SC2, SC3).
(h) CRT(SC1, SC2, SC3).

FIGURE 3. Shadow images histogram analysis of the proposed CRTISS
method in Fig. 2. (a) Histogram of SC1. (b) Histogram of SC2.
(c) Histogram of SC3.

clue about the secret image. While when 4 shares are col-
lected, the secret image are recovered losslessly according
to CRT.

Fig. 5 gives the experimental results for (3, 5) threshold,
where p = 128,m1 = 245,m2 = 247,m3 = 249,m4 =

251,m5 = 253 and the gray secret image is presented
in Fig. 5 (a). Figs. 5 (b-f) show the 5 shares, which are also
noise-like. Figs. 5 (g-j) illustrate the recovered gray secret
image with any t (2 ≤ t ≤ 5) (taking the first t shares as an
example) by CRT recovery. When t < k shares are collected,
there is no clue about the secret image. While when k or more
shares are collected, the secret image are reconstructed loss-
lessly by CRT.

To illustrate the pixel values of shares are totally ran-
dom in the range of [0,mi], we share a black image with
every pixel at 0. Fig. 6 demonstrates the experimental results
for (2, 3) threshold, where p = 128,m1 = 251,m2 =

253,m3 = 255. Figs. 6 (a-c) display the generated 3 shares,
followed by their histogram images in Figs. 6 (d - f). It is
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FIGURE 4. Experimental example of the proposed CRTISS method
for (k, n) threshold, where k = 4, n = 4. (a) Secret image. (b) SC1. (c) SC2.
(d) SC3. (e) SC4. (f) CRT(SC1, SC2). (g) CRT(SC1, SC2, SC3).
(h) CRT(SC1, SC2, SC3, SC4).

FIGURE 5. Experimental example of the proposed CRTISS method
for (k, n) threshold, where k = 3, n = 5. (a) Secret image. (b) SC1. (c) SC2.
(d) SC3. (e) SC4. (f) SC5. (g) CRT(SC1;SC2). (h) CRT(SC1, SC2, SC3).
(i) CRT(SC1, SC2, SC3, SC4). (j) CRT(SC1, SC2, SC3, SC4, SC5).

noticeable that some pixel values don’t appear in shares and
the numbers of other values are very close, consistent with 1.
What’s more, when k > 2, the distribution of share pixels is
approximately uniformly distributed, shown in Fig 7, where
the black image is shared for (3, 3) threshold with p =
128,m1 = 251,m2 = 253,m3 = 255.
Based on the above results we can conclude that:
-The shares are noise-like, therefore the proposed scheme

has no cross interference of secret image in single share.
-When t < k shares are collected, there is no information

of the secret image could be gained, which shows the security
of the proposed scheme.

-When t(k ≤ t ≤ n) shares are recovered by CRT, the
secret image could be reconstructed losslessly by CRT.

-CRTISS method for (k, n) threshold is achieved.

FIGURE 6. Experimental example of sharing the black image
for (k, n) threshold, where k = 2, n = 3. (a) SC1. (b) SC2. (c) SC3.
(d) Histogram of SC1. (e) Histogram of SC2. (f) Histogram of SC3.

FIGURE 7. Experimental example of sharing the black image
for (k, n) threshold, where k = 3, n = 3. (a) SC1. (b) SC2. (c) SC3.
(d) Histogram of SC1. (e) Histogram of SC2. (f) Histogram of SC3.

TABLE 1. Available parameters of m1, m2 · · · , mn.

B. AVAILABLE PARAMETERS
Some available parameters of m1,m2 · · · ,mn for different
thresholds are shown in Table 1, which are applied in our
above experiments as well. The parameter p is better to
be 128 or 131. The user can also search other parameters
according to specific applications.

C. COMPARISONS WITH RELATED WORKS
We will give the comparisons with some typical related
CRTISS schemes [23]–[25], [27], [28]. We focus on the char-
acteristics of auxiliary encryption, lossless recovery, (k, n)
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TABLE 2. Comparisons with the related CRTISS schemes.

threshold and extra parameters transmission, which have a
great influence on the applications of CRTISS. Since these
characteristics are difficult to be evaluated with objective
indicators, we only give the qualitative analyses to illustrate
the better performance of our scheme.

In ISS, correlations between pixels have to be eliminated;
otherwise, there would be information leakage in the shares,
e.g., outline of objects. To scramble the pixel value as well
as the correlations of adjacent pixels, Shyu et al. [23] and Hu
et al. [25] both utilized auxiliary encryption in their methods.
Since the computation complexity of CRT is relatively low
and an image has the characteristic of big data amount, aux-
iliary encryption may bring unacceptable computation price.
In our method, a random number A is generated to break the
correlations. A is randomly picked up for every x, i.e., the
high 7 bits of a pixel, and y = x + Ap can enlarge x so as
to scramble not only the pixel value but also the correlations
between adjacent pixels without auxiliary encryption.

In Ulutas et al.’s ISS [24] based on the Asmuth and
Bloom’s scheme, the image pixels are divided into two inter-
vals in order to obtain the lossless recovery. But they did
not specify the range of the parameters. If A is in range of[
0,
⌊
M
p − 1

⌋]
, x can be recovered with k−1 even less shares,

which is not consistent with (k, n)-threshold. Furthermore,
the case of x > 2p is not considered, which may lead to
lossy recovery. Yan et al.’s method [27] is also based on the
Asmuth and Bloom’s scheme through dividing the pixels into
two intervals. They do give specific restrictions on the range
of random number and p, making sure (k, n)-threshold will be
achieved. But they need to share the parameter T to recover
the secret image. In our method, only p, shares and their
corresponding modular integers are going to be distributed,
which is also required in Ulutas et al.’s and Yan et al.’s
methods too.

In Chuang et al. [28]’s simple CRTISS, the high 7 bits
of pixel are shared, the same as our method. But they have
to store the LSB and distribute them to every participant,
which brings a high price. Otherwise, they would suffer from
a lossy recovery. We choose to embed the LSB into the last
bit of the random integer, and therefore lossless recovery is
achieved. Besides, they did not provide explicit restrictions on
the parameters and the parameters in their experiments did not
satisfy the proposed requirements. We specify the parameters
and give some applicable examples in our method.

The comparison can be summarized in Table 2, and the
advantages of our method are as follows:

FIGURE 8. Experimental example of CRTISS method for (k, n) threshold,
where k = 3, n = 5 and A in

[
0,

⌊
M
p − 2

⌋]
. (a) Secret image. (b) SC1.

(c) SC2. (d) SC3. (e) SC4. (f) SC5. (g) CRT (SC1, SC2).
(h) CRT (SC1, SC2, SC3). (i) Histogram of CRT (SC1;SC2).

1) It is a (k, n)-threshold ISS scheme without auxiliary
encryption, which usually brings high computation
complexity.

2) Less parameters need to be shared but lossless recovery
is achieved, reducing the storage and transmission cost.

3) We give specific restrictions on the parameters as well
as some applicable choice.

D. DISCUSSION
In the proposed scheme, the random integer A is chosen
from

[⌈
N
p

⌉
,
⌊
M
p − 2

⌋]
, in order to achieve (k, n) threshold.

However, in the practical ISS application, we can enlarge the
interval of A to

[
0,
⌊
M
p − 2

⌋]
. The probability of picking up

A from
[
0,
⌈
N
p

⌉]
is
⌈
N
p

⌉
/
⌊
M
p − 2

⌋
. It approximates to N

M ,

which is smaller than 1
p . An attacker has the probability of less

than 1
p to recover a single secret pixel with k−1 shares. Since

an image contains a large numbers of pixels, the security
drawbacks can be ignored. Fig. 8 shows the sharing result
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for (3, 5) threshold, where p = 128,m1 = 245,m2 =

247,m3 = 249,m4 = 251,m5 = 253 and A ranges in[
0,
⌊
M
p − 2

⌋]
. Figs. 8(b-f) show the noise-like shares and (g)

is the recovered result with only two shares, SC1 and SC2. Its
histogram image is still approximately uniformly distributed,
shown in Fig. 8 (i), which means we get nothing from the
two shares. Of course, the secret image can be recovered
losslessly with at least three shares, shown as Fig. 8 (h).

We suggest n less than 6. When n is bigger, it becomes
harder to find suitable moduli. Since the range of shared pix-
els is limited to the corresponding modulus, worse distributed
shares will be generated with the smaller modulus.

V. CONCLUSION
In this paper, we propose a (k, n)-threshold the Chinese
remainder theorem-based image secret sharing (CRTISS)
scheme. We study the features of images and analyze the
obstacles to apply the Asmuth and Bloom’s secret sharing
(SS) method to ISS, including pixel value range, the cor-
relations between adjacent pixels and so on. The proposed
solution is to share the high 7 bits of pixels and embed the
LSB into the random integer. We achieve the properties of
(k, n) threshold, lossless recovery and no auxiliary encryp-
tion. Some applicable parameters are also provided. The
effectiveness of our method is illustrated through theoretical
proof and typical experiments. Future work may focus on
using compact sequences of co-primes, which are easier to
generate and may have better features.
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