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ABSTRACT Full duplex (FD) multiple-input multiple-output (MIMO) relaying can significantly increase
the spectral efficiency of cooperative communication systems. This paper examines the problem of linear
source and relay precoder and destination combiner design for two-way MIMO FD amplify-and-forward
(AF) relay communication systems. The effect of the residual loop interference (LI) due to imperfect LI
cancellation is considered in the design. Two algorithms are proposed to minimize the mean squared error
(MSE) of the received signals at the destinations. The first is a tri-step alternating iterative algorithm and
the second is a bi-step iterative algorithm. The convergence and complexity of these algorithms are analyzed.
Simulation results are presented, which show that the proposed two-way FD system provides approximately
double the achievable rate of the corresponding half-duplex (HD) system when the residual LI is low.
Furthermore, the bi-step algorithm shows comparable performance to the tri-step algorithm and has a lower
computational complexity.

INDEX TERMS Amplify-and-forward (AF), full-duplex (FD), loop interference (LI), MIMO, precoding,
sum achievable rate, two-way relay.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) relay communica-
tion systems have been extensively investigated in recent
years because they can enhance capacity by increasing cover-
age and reliability [1]. In an amplify-and-forward (AF) relay
system, the relay node amplifies the received signal and then
forwards the amplified signal to the destination node. Since
the relay only performs amplification, the complexity of this
strategy is much lower than decode-and-forward (DF), which
is a regenerative relaying scheme. In half-duplex (HD) relay
systems [2]–[4], communications from the source to destina-
tion requires two time slots so the source node transmits only
half of the time, which limits the efficiency.

In contrast to one-way relaying which needs four time slots
to exchange information between a source and destination,
two-way relaying only needs two time slots to complete a
round of information exchange. Therefore, two-way relaying
has a higher efficiency than one-way relaying. Physical-layer
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network coding (PNC) which exploit the self-information at
the nodes has been used with two-way relaying [5]–[9]. There
are two steps in HD two-way relaying communications. First,
the nodes transmit their signals to the relay during the multi-
plexing access (MAC) phase. Then the relay broadcasts (BC)
the received signal to the two nodes. Each node can cancel
the interference they generate from the signal received from
the relay to recover the signal transmitted by the other node.

In [5], a two-way relaying scheme which approaches the
sum capacity of the MIMO cellular two-way relay channel
was investigated. In order to achieve efficient interference-
free decoding at the relay, a non-linear lattice-based
precoding technique was used to compensate for the inter-
stream interference. The sum capacity of the proposed sys-
tem was asymptotically achieved in the high signal-to-noise
ratio (SNR) region. The tradeoff between the capacity and
diversity-multiplexing of the two-way relay channel was
examined in [6]. An iterative algorithm was proposed to
maximize the achievable rate with AF relaying subject to
minimum signal-to-interference-plus-noise ratio (SINR) con-
straints. An energy efficient two-way AF relay system with
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multiple antennas at both the sources and relay was presented
in [7]. The transmit power was minimized while satisfying
the quality of service (QoS) requirements of both sources.
Transmit beamformers and receive combiners were designed
with a zero forcing (ZF) based relay precoding matrix.
In [8], it was shown that the optimal diversity-multiplexing
gain tradeoff can be achieved using a compress-and-forward
(CF) strategy in which the relay quantizes its received signal
and transmits the corresponding codeword.

Multiple-input, multiple-output (MIMO) can be employed
to improve the transmission reliability and enhance the chan-
nel capacity of a wireless communication system. Employing
MIMO in a two-way relay system is an efficient way
to increase the performance over single antenna systems.
In order to fully realize the benefits of MIMO two-
way relaying, precoding should be employed at both the
source nodes and relay by making use of channel state
information (CSI) [10]–[15]. In [10], a nonlinear precoder
design was presented for a MIMO two-way relay system
using minimum mean squared error (MMSE) decision feed-
back equalizers. The design first considers the nonlinear
source precoding at the two sources with a fixed relay pre-
coder, and then considers the joint precoder design to incor-
porate the relay precoder. In [11], a constrained optimization
problem with respect to the relay precoder was formulated
for the general case of multiple relays each with multiple
antennas. Under the assumption that complete CSI is avail-
able at the relays, the problemwas converted to a convex opti-
mization problem with respect to only the non-zero entries of
the relay precoder matrix, which leads to a closed-form relay
precoding solution.

In [12], a low-complexity joint beamforming and power
management scheme was proposed. The beamformer first
aligns the channel matrices of the node pairs and then
decomposes the aligned channel into parallel subchannels.
It was shown that this scheme improves the sum capacity
and can be used to lower the required transmit power. Two
iterative algorithms were proposed in [14] for joint source
and relay precoder design based on the MSE criterion in a
MIMO two-way relay system. In this system, two multiple
antenna source nodes exchange information with the help
of a multiple antenna amplify-and-forward relay. In [15],
the problem of precoder design to suppress co-channel inter-
ference in a multiuser two-way relay system was considered.
The uplink performance including the overall MSE and sum
rate was optimized while maintaining individual downlink
SINR requirements.

While most of the results in the literature focus on half-
duplex relay systems [8]–[15], the development of new signal
processing techniques and antenna designs has made FD
relaying in MIMO systems a reality [16], [17]. A full-duplex
AF relay system under Nakagami-m fading was considered
in [19] and closed-form expressions for the outage probability
and ergodic capacity were derived. In [20], an interference
suppression scheme was developed to mitigate the resid-
ual LI and interference in a multiuser FD relaying system.

Rather than using HD two-way relaying as in [8]–[15], a FD
two-way relay design was presented in [18]. It was shown that
FD relaying can achieve almost double the capacity of HD
relaying if there is no residual LI. In [21], distributed space-
time coding was investigated for a two-way FD relaying net-
work which allows relay communications in both directions
simultaneously. The direct source to destination link was also
considered. A two-way FD relaying system with residual
LI was presented in [22]. Exact and approximate closed-form
expressions were given for the outage probability with both
perfect and imperfect channel state information (CSI). A joint
precoder and combiner design that maximizes the end-to-end
(e2e) performance was investigated in [23]. ZF LI suppres-
sion at the relay was considered and a closed-form solution
was obtained. In [24], rate and outage probability tradeoffs
were examined for full-duplex one-way and two-way relay-
ing systems considering the residual LI. The joint design
of relay and receiver beamforming was considered in [25]
for a full-duplex two-way amplify-and-forward relay system
with imperfect cancellation of the loopback self-interference
by minimizing the mean square error under a relay transmit
power constraint. In the above results, the residual LI was
assumed to have a Gaussian distribution, but a Rician distri-
bution was obtained in [29].

An algorithm was presented in [26] to maximize the e2e
performance by jointly optimizing the beamformingmatrix at
an AF relay and the transmit power at the source. If multiple
antennas are employed at both the source and destination,
the channel sum rate increases linearly with the minimum
number of antennas [14]. In contrast to [26] which employs
only a single antenna at the source and destination, this
paper considers a MIMO FD two-way relay system where
the source, relay and destination have multiple antennas.
Further, the AF protocol with physical layer network coding
is employed. As this is a FD system, the residual loop inter-
ference at the relay is considered. Because signals are known
at the source nodes, the LI cancellation at the source nodes
is assumed to be better than at the relay. Thus, the focus here
is on the residual LI at the relay node. The source precoders,
relay precoder and destination combiners are optimized using
the MSE criterion. As the original optimization problem is
highly non-convex and a closed-form solution is intractable,
it is translated into three subproblems which can be solved
iteratively. It is shown that this algorithm converges to an
local optimal solution. Since the computational complexity
of the proposed tri-step iterative algorithm is high, a low
complexity bi-step iterative approach is obtained. Results are
presented which show that this bi-step iterative algorithm
provides performance comparable to that with the tri-step
iterative algorithm, so the complexity-performance tradeoff
is favorable. The sum achievable rate improvement with
FD relaying over HD relaying is illustrated, and the effects
of the residual LI are examined.

The remainder of this paper is organized as follows.
In Section II, the MIMO two-way full-duplex relay sys-
tem model is introduced, and the problem formulation is
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FIGURE 1. The MIMO two-way FD AF relay system model.

presented in Section III. Two iterative algorithms for solv-
ing the proposed optimization problem are developed in
Section IV. The sum mean squared error (MSE) perfor-
mance, sum achievable rate and complexity of the proposed
algorithms are analyzed in Section V. Numerical results are
presented to demonstrate the performance improvement with
FD relaying and precoding. Finally, some conclusion are
given in Section VI.
Notation: Throughout this paper, the following nota-

tion is used. Bold uppercase, bold lowercase and normal
letters denote matrices, vectors and scalars, respectively.
vec(·) denotes matrix vectorization and⊗ denotes the matrix
Kronecker product. tr{·} is the trace of a matrix and IN is
the N × N identity matrix. <{·} and ={·} denote the real and
imaginary parts, respectively.

II. SYSTEM MODEL
We consider a three node, two-way MIMO full-duplex (FD)
relay system. As shown in Fig. 1, two sources S1 and S2,
each equipped with Ns1 transmit and Ns2 receive antennas,
want to exchange messages via a relay R. The relay oper-
ates in full-duplex (FD) mode with physical layer network
coding [26], and has Nr and Nt antennas to receive and
transmit, respectively. The transmit and receive antennas are
assumed to be identical at all nodes. The non-regenerative
relay amplifies the received signals from both source nodes
and then broadcasts the resulting signal to the destinations
simultaneously. Therefore, communications between the two
sources is accomplished in one time slot compared to a
half-duplex (HD) system that requires two time slots. Note
that in the two-way relay system, the source nodes are the
destination nodes during the relay broadcast phase.

Let si[n] ∈ CL×1 represent the L × 1 signal vector trans-
mitted at time n for source node i, i = 1, 2. Without loss
of generality, we assume that L ≤ min{Nsi ,Nt ,Nr }, i = 1, 2.
In addition, it is assumed thatE[si[n]si[n]H ] = IL , where (·)H

represents conjugate transpose (Hermitian) and E denotes
expectation. A linear precoding matrix Bi[n] is applied to the
signal vector si[n] before transmission. The received signal at
the relay can be expressed as

yR[n] = HS1R[n]B1[n]s1[n]+HS2R[n]B2[n]s2[n]

+HLI [n]t[n]+ nR[n], (1)

where HSiR[n] ∈ CNr×Nsi is the ith source to relay channel
matrix, HRSi ∈ CNsi×Nt is the relay to ith destination channel

matrix,HLI [n] ∈ CNr×Nt is the loop interference (LI) channel
matrix, and nr [n] ∈ CNr×1 is an independent and identically
distributed (i.i.d.) noise matrix. After employing a LI cancel-
lation technique, (1) can be written as

yR[n] = HS1R[n]B1[n]s1[n]+HS2R[n]B2[n]s2[n]

+HLI [n]t[n]+ T[n]+ nR[n], (2)

where t[n] is the loop interference at time n, and T[n] =
−HLI [n]t[n] when perfect LI cancellation is applied. How-
ever, in an actual system T[n] = −HLI [n]t̃[n] where t̃[n]
is a noisy version of t[n] due to imperfect LI cancellation.
As discussed in [28], yR[n] can be rewritten as

yR[n] = HS1R[n]B1[n]s1[n]+HS2R[n]B2[n]s2[n]

+HLI [n]1t[n]+ nR[n], (3)

where1t[n] = t[n]− t̃[n] and HLI [n]1t[n] is the residual LI
after imperfect LI cancellation.

At time n + 1, the full-duplex relay applies a precoding
matrix F[n + 1] ∈ CNt×Nt to the received signal and then
broadcasts the result to the nodes. The received signal at
node i can be expressed as

yi[n+ 1]=HRSi [n+ 1]F[n+ 1]yR[n]+ nDi [n+ 1]

=HRSi [n+ 1]F[n+ 1]HSiR[n]Bi[n]si[n]

+HRSi [n+ 1]F[n+ 1]HSīR[n]Bī[n]sī[n]

+HRSi [n+ 1]F[n+ 1]HLI [n]1t[n]

+HRSi [n+ 1]F[n+ 1]nR[n+ 1]+ nDi [n], (4)

where ī = 2 if i = 1 and ī = 1 if i = 2.
Similar to [15], we assume that the channel characteristics

of each link change very slowly so they can be perfectly
estimated using pilot symbols or training sequences. The
channel HSiR at the relay can be estimated by Si sending a
training sequence. The LI channel HLI can be estimated at
the relay by sending an Nt -symbol pilot sequence. Although
channel reciprocity does not hold exactly, as discussed in [2],
[11], [14], [26] for the purposes of analysis it can be assumed
to hold during the MAC and BC phases so that HSiR = HT

RSi .
As the antennas are identical, the back propagated self-
interference term HRSiFHSiRBisi from (4) can be canceled.
Further, we assume that the channel variations during the
precoder update interval are relatively small so the time index
has no influence on the precoder design and can be omitted.
Therefore, (4) can be expressed as

yi = HRSiFHSīRBīsī +HRSiFHSiRHLI1t+HRSiFnR + nDi .

(5)

A combiner Wi ∈ CNsī×L is employed on the received
signal at node i, so the estimated signal from node ī can be
written as

ŝī =WH
i yi. (6)

Since i.i.d. noisewith zeromean and unit variance is assumed,
E[nRnHR ] = σ 2

n,rINr and E[nDinHDi ] = σ 2
n,d INSi , where
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σ 2
n,r = 1 and σ 2

n,d = 1 are the variances of nR and nDi ,
respectively. The problem now is how to design the linear
precoders Bi and F and the linear combinersWi to minimize
the sum mean squared error (MSE) of the received signals at
the destinations.

III. PROBLEM FORMULATION
In this section, we first formulate the joint source and relay
precoding optimization problem to minimize the sumMSE in
the MIMO two-way relay system. Considering the received
signal (5) and the estimated signal after applying the linear
combiner (6), the MSE at node i can be expressed as

Ji = E[(ŝī − sī)(ŝī − sī)
H ]

= tr{(WH
i HRSiFHSīRBī − INSi )(W

H
i HRSiF

×HSīRBī − INSi )
H
+WH

i CniWi}, (7)

where Cni = σ
2
t HRSiFHSiRHLIHH

LIH
H
SiRF

HHH
RSi +HRSiFF

H

HH
RSi + INDi , and σ

2
t is the variance of 1t.

The problem is to find the matrices F,Bi,Wi such that
the sum MSE at the two destinations is minimized. The
optimization problem can be formulated as

min
Bi,F,Wi,i=1,2

J1 + J2 (8a)

s.t. tr

(
F

(
2∑
i=1

HSiRBiB
H
i H

H
SiR

+σ 2
t HLIHH

LI + INr
)
FH
)
≤ Pr (8b)

tr
(
BiBHi

)
≤ Pi (8c)

where Pi > 0 and Pr > 0 are the power constraints at source
node i and the relay, respectively.

IV. THE PROPOSED ITERATIVE ALGORITHMS
The original optimization problem in (8) is highly non-convex
and a closed-form solution is intractable. Thus, in this section
two algorithms are proposed to solve this problem. One is a
tri-step iterative algorithm and the other is a bi-step iterative
approach with lower computational complexity.

A. TRI-STEP ALGORITHM
A tri-step algorithm [2], [14] is presented here which is
based on alternating optimization that updates one group
of precoders at a time while fixing the others to solve the
corresponding convex subproblems to obtain Bi, F and Wi.
First, given B1, B2 and F, we find the optimal combining
matricesW1 andW2. Since the power constraints in (8b) and
(8c) are not related to the destination combinersW1 andW2,
the optimization problem is unconstrained and so is given by

min
Wi,i=1,2

JW1 + JW2 (9)

where

JWi = tr{WH
i HRSiFHSīRBīB

H
ī H

H
SīR

FHHH
RSiWi

+ INSi −WH
i HRSiFHSīRBī − BHī H

H
SīR

FH

×HH
RSiWi +WH

i CniWi}. (10)

Differentiating JWi with respect to Wi and setting the result
to zero, the optimal combining matrix can be expressed as

Wi = (HRSiFHSīRBīB
H
ī H

H
SīR

FHHH
RSi + Cni )

−1

× HRSiFHSīRBī, i = 1, 2. (11)

This solution is also known as a Wiener filter [2].
Second, the optimal relay precoding matrix F is obtained

by assuming Wi and Bi, i = 1, 2, are fixed and solving the
optimization problem

min
F

J1 + J2

s.t. tr(FKxFH ) ≤ Pr (12)

where Kx =

(
2∑
i=1

HSiRBiB
H
i H

H
SiR + σ

2
t HLIHH

LI + INr

)
,

i = 1, 2. The MSE at Si is

Ji = tr(HH
RSiWiWH

i HRSiFHSīRBīB
H
ī H

H
SīR

FH

−HSīRBīW
H
i HRSiF−HH

RSiWiBHī H
H
SīR

FH

+HH
RSiWiWH

i HRSiFF
H
+WiWH

i

+ σ 2
t H

H
RSiWiWH

i HRSiFHLIHH
LIF

H
+ IL)

= tr(HH
RSiWiWH

i HRSiFKxīF
H
−HSīRBī

×WH
i HRSiF−HH

RSiWiBHī H
H
SīR

FH

+ σ 2
nrH

H
RSiWiWH

i HRSiFF
H
+WiWH

i

+ σ 2
t H

H
RSiWiWH

i HRSiFHLIHH
LIF

H
+ IL) (13)

where Kxī = HSīRBīB
H
ī
HH
SīR

. As with similar problems [14],
(13) is convex so the optimal relay precoder can be obtained
by employing the KKT conditions. The Lagrangian function
of (13) is

L = J1 + J2 + λ(tr(FKxFH )− Pr ), (14)

where λ ≥ 0 is the Lagrange multiplier. Differentiating L
with respect to Fwith Bi andWi fixed and equating the result
to zero gives

∂L
∂F
= HH

RS1W1WH
1 HRS1FKx2 −HH

RS1W1BH2 H
H
S2R

+HH
RS2W2WH

2 HRS2FKx1 −HH
RS2W2BH1 H

H
S1R

+ λFKx +HH
RS1W1WH

1 HRS1F(σ
2
t HLIHH

LI + INr )

+HH
RS2W2WH

2 HRS2F(σ
2
t HLIHH

LI + INr )

= Kr1F(Kx2 + σ
2
t HLIHH

LI + INr )

+Kr2F(Kx1 + σ
2
t HLIHH

LI + INr )

−Kr + λFKx = 0, (15)

where

Kr1 = HH
RS1W1WH

1 HRS1 ,

Kr2 = HH
RS2W2WH

2 HRS2 ,

Kr = HH
RS1W1BH2 H

H
S2R +HH

RS2W2BH1 H
H
S1R.
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From the properties of the vector operators, vec(AXB)) =
(BT ⊗ A)vec(X) and vec(A+ B) = vec(A)+ vec(B), so

vec(Kr )= ((Kx2 + σ
2
t HLIHH

LI + INr )
T
⊗Kr1 )vec(F)

+ ((Kx1 + σ
2
t HLIHH

LI + INr )
T
⊗Kr2 )vec(F).

(16)

The optimal solution is then

F = mat{[(Kx2 + σ
2
t HLIHH

LI + INr )
T
⊗Kr1

+ (Kx1 + σ
2
t HLIHH

LI + INr )
T

⊗Kr2 + (λKH
x )

T
⊗ INr ]

−1vec(Kr )}, (17)

where mat{·} is the inverse operation of vec(·).
In the case λ = 0, we have

F = mat{[(Kx2 + σ
2
t HLIHH

LI + INr )
T
⊗Kr1

+ (Kx1 + σ
2
t HLIHH

LI + INr )
T
⊗Kr2 ]

−1vec(Kr )}, (18)

and

λ(tr(FKxFH )− Pr ) = 0. (19)

If F in (18) satisfies the condition in (19), then (18) is the
optimal relay precoder. Otherwise, let λ > 0 so that

tr(FKxFH ) ≤ Pr . (20)

Substituting (17) into (20) and solving the resulting nonlinear
equation gives

tr(FKxFH ) = Pr . (21)

In this case, F decreases with λ because of the inverse in (17).
The optimal λ that satisfies tr(FKxFH ) = Pr can then be
readily obtained using numerical methods such as bisection
search.

An upper bound on λ can be found by following an
approach similar to that in [14]. Let Kr = E1 + E2
where E1 = Kr1F(Kx2 + σ

2
t HLIHH

LI + INr ) + Kr2F(Kx1 +

σ 2
t HLIHH

LI + INr ) and E2 = λFKx = 0. If F and λ are the
optimal primal and dual solutions of (8), respectively, then

F =
1
λ
E2K−1x , (22)

and

tr(FKxFH ) = tr(
1
λ2

E2K−1x KxK−1x EH2 )

= tr(
1
λ2

E2K−1x EH2 ) = Pr . (23)

On the other hand, if λ > 0 we have

tr
(

1
λ2

KrK−1x KH
r

)
= tr(

1
λ2

(E1 + E2)K−1x (E1 + E2)H )

= tr(
1
λ2

E1K−1x EH1 )+ tr(
1
λ2

E2K−1x EH2 )

+tr(
1
λ2

E1K−1x EH2 )+ tr(
1
λ2

E2K−1x EH1 ) (24)

Applying the matrix property that if Z1 ≥ 0 and Z2 ≥ 0 then
tr(Z1Z2) ≥ 0 gives tr( 1

λ2
E2K−1x EH2 ) ≥ 0, so that

tr(E1FH ) = tr(Kr1FKx2F
H
+Kr2FKx1F

H ) ≥ 0, (25)

tr(E1FH ) = tr(
1
λ2

E1K−1x EH2 ) ≥ 0, (26)

and

tr(
1
λ2

E2K−1x EH1 ) ≥ 0. (27)

Since all the terms in (24) are greater than or equal zero, it can
be concluded that

tr(
1
λ2

KrK−1x KH
r ) ≥ Pr , (28)

so λ ≤

√
KrK−1x KH

r
Pr

which is an upper bound on λ.
Third, the optimal source precoders Bi, i = 1, 2, are

derived using the previously obtained F and Wi. From (8b),
updating the source precoder can affect the power constraint
at the relay. Thus the relay power constraint in (8b) should be
included, so (8) is rewritten as

min
Bi,i=1,2

JB1 + JB2

s.t. tr(BiBHi ) ≤ Pi

tr(
2∑
i=1

HH
SiRF

HFHSiRBiB
H
i ) ≤ P̄r (29)

where P̄r = Pr − tr(F(σ 2
t HLIHH

LI + INr )F
H ). Now let

KOi = HH
SiRF

HFHSiR, (30)

JBi = tr{KSi1BiB
H
i − 2<(KSi2Bī)+KSi3}, (31)

KSi1 = HH
SīR

FHHH
RSiWiWH

i HRSiFHSiR, (32)

KSi2 = WH
i HRSiFHSīR, (33)

KSi3 = WH
i CniWi + INSi . (34)

Applying the trace operator identity tr{ABCD} =

(vec(D)T )T (CT
⊗ A)vec(B) gives

JBi = b̂Hī Ôib̂ī − 2<{âTi b̂ī} + tr{KSi3}, i = 1, 2, (35)

where Ôi = IN ⊗ KSi1, âi = vec(KT
Si2

) and b̂i = vec(Bi).
Because Ôi is positive semidefinite (PSD), (34) can be trans-
formed into

JBi =‖ Ô
1
2
i b̂ī ‖

2
2 −2<{â

T
i b̂ī} + tr{KSi3}, i = 1, 2. (36)

To eliminate the <{·} operation, let bi = [<{b̂Ti },={b̂
T
i }]

T ,
i = 1, 2. This gives

JBi = bTī Oibī − 2aTi bī + tr{KSi3}, i = 1, 2. (37)

where Oi = ÕT
i Õi with Õi =

<{Ô 1
2
i } −={Ô

1
2
i }

={Ô
1
2
i } <{Ô

1
2
i }

, and
ai =

[
<{âTi } −={â

T
i }
]T , i = 1, 2. In addition, for the

power constraints in (29) we have tr{BiBHi } = bTi Êibi with
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Êi = I2L2×2L2 , i = 1, 2, and tr{Ko1B1BH1 + Ko2B2BH2 } =
bH1 Ê3b1 + bH2 Ê4b2, where Ê3 = ẼT3 Ẽ3 and Ê4 = ẼT4 Ẽ4 are
positive semidefinite matrices with

Ẽ3 =

[
<{(IN ⊗KO1 )

1
2 } −={(IN ⊗KO1 )

1
2 }

={(IN ⊗KO1 )
1
2 } <{(IN ⊗KO1 )

1
2 }

]
, (38)

and

Ẽ4 =

[
<{(IN ⊗KO2 )

1
2 } −={(IN ⊗KO2 )

1
2 }

={(IN ⊗KO2 )
1
2 } <{(IN ⊗KO2 )

1
2 }

]
. (39)

The resulting optimization problem has the form

min
b

bTOb− aTb+ tr{KS13 +KS23}

s.t. aTE1b ≤ P1,bTE2b ≤ P2
aTE3b ≤ P̄r (40)

where O =
[
O2 0
0 O1

]
, a = [2aT2 , 2a

T
1 ]
T , b = [bT1 ,b

T
2 ]
T ,

E1 =

[
Ê1 0
0 0

]
, E2 =

[
0 0
0 Ê2

]
, and E3 =

[
Ê3 0
0 Ê4

]
. Note

that the term tr{KS13 + KS23} does not affect the optimiza-
tion result and so can be ignored. Since E1, E2, E3 and O
are positive semidefinite, the problem can be transformed
into a convex QCQP problem and efficiently solved using
CVX [27]. The algorithm to solve the optimization prob-
lem (8) is summarized in Algorithm 1.

Algorithm 1 Tri-Step Iterative Algorithm to Design Bi,
F and Wi

1: Initialize the algorithm with B(n)
i =

√
Psi
L IL ,

F(n)
=

√
Pr

tr(
∑2

i=1 HSiRB
(n)
i (HSiRB

(n)
i )H+INr )

INr ,

i = 1, 2, and set n = 0.
2: Update W(n)

i using (11) with F(n) and B(n)
i .

3: Update F(n+1) using (17) and (28) withW(n)
i and B(n)

i .
4: Update B(n+1)

i by solving the problem (40)
5: using W(n)

i and F(n+1).
6: If

(sum_MSE(n)
− sum_MSE(n+1))/sum_MSE(n) > ε,

go to step 2.
7: End

B. BI-STEP ITERATIVE ALGORITHM
The tri-step iterative algorithm presented above provides
good performance according to the results presented in
Section V, but the computational complexity is high due
to the number of iterations required for convergence.
In this section, a bi-step iterative algorithm to obtain the
source and relay precoding matrices is presented which has
lower computational complexity than the tri-step algorithm.
Applying the combiner (11) at the destinations, the MSE of

the signal estimate at node i in (7) is a function of Bi and F
given by

Ji = tr{[INSi +HiC−1ni H
H
i ]
−1
}, (41)

where Hi = HRSiFHSīRBī. Thus, the joint source and relay
precoder optimization problem for the proposed two-way
full-duplex relaying system is

min
Bi,F,i=1,2

J1 + J2 (42a)

s.t. tr

(
F

(
2∑
i=1

HSiRBiB
H
i H

H
SiR

+σ 2
t HLIHH

LI + INDi

)
FH
)
≤ Pr (42b)

tr(BiBHi ) ≤ Pi (42c)

In this iterative algorithm, the source and relay precoders are
found by solving two convex subproblems.

Assuming source matrices Bi satisfying (42c) are given,
and eliminating the constraint in (42c), the relay matrix F is
optimized by solving the following problem

min
F,i=1,2

J1 + J2 (43a)

s.t. tr

(
F

(
2∑
i=1

HSiRBiB
H
i H

H
SiR

+σ 2
t HLIHH

LI + INDi

)
FH
)
≤ Pr (43b)

It was proven in [13] that the optimal precoding in one-
way relaying has parallel channels between the source and
relay. Then, singular value decomposition (SVD) can be used
between the relay and destination to match the eigenchannels
in the two communication hops. Similar to the approach
in [14], a heuristic channel parallelization method for bidi-
rectional communications can be employed which uses gen-
eralized singular value decomposition (GSVD) for the MAC
phase and SVD for the BC phase. Applying GSVD for the
MAC phase channel pair (HS1R)

H , (HS2R)
H gives

HS1R = Vh0h1U
H
h1 , (44)

HS2R = Vh0h2U
H
h2 , (45)

where Vh is a nonsingular Nr × Nr complex matrix, UH
h1

and
UH
h2
are L×L unitary matrices, and 0h1 = [0T(Nr−L)×L ,3

T
h1
]T

and 0h2 = [3T
h2
, 0T(Nr−L)×L]

T where 3h1 and 3h2 are L × L
nonnegative diagonal matrices.

For the BC phase, since the superimposed signal is simul-
taneously transmitted from the relay to both nodes, a virtual
point-to-point MIMO channel Hrs = [(HRS1 )

T , (HRS2 )
T ]T

can be established. Employing SVD on Hrs gives

Hrs = Vg0gUH
g , (46)

whereVg andUg are 2Nr×2Nr and Nt×Nt unitary matrices,
respectively, 0g = [3T

g , 0
T
(2Nr−Nt )×Nt

]T , and3g is an Nt×Nt
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nonnegative diagonal matrix. Employing SVD on HRS1 and
HRS2 gives

HRS1 = Vg10gU
H
g , (47)

HRS2 = Vg20gU
H
g , (48)

where Vg1 = Vg(1 : Nr , 1 : 2Nr ) and Vg2 = Vg(Nr +
1 : 2Nr , 1 : 2Nr ). Note that Vg1 and Vg2 are not uni-
tary matrices. Based on the solution of a similar problem
in [14, (29)], the optimal relay precoding matrix obtained by
solving problem (43) is

F = Ug3FV−1h , (49)

and the ith source precoder is

Bi = Uhi3BiVBi , i = 1, 2. (50)

Substituting (47) and (48) in (41) gives

Ji = tr{[IL + (HRSiFHSīRBī)(σ
2
t HRSiFHLIHH

LIF
HHH

RSi

+HRSiFF
HHH

RSi + IDi )
−1(HRSiFHSīRBī)

H ]−1}. (51)

Due to the similarity between J1 and J2, we focus on the
derivation of J1 and the results for J2 can be obtained using
the same approach. Substituting (44)-(50) in (51) gives

J1 = tr{[INs1 + (Vg10g3F0h23B2V
H
B2 )

H

× (Vg10g3FV−1h (σ 2
t HLIHH

LI + INr )

×V−Hh 3H
F 0

H
g V

H
g1 + IND1 )

−1

× (Vg10g3F0h23B2V
H
B2 )]
−1
} (52)

Denoting BhLI = V−1h (σ 2
t HLIHH

LI + INr )V
−H
h and Bgi =

(VgiV
H
gi )
−1 gives

J1 = tr{[IL + (3B20h23F0g)(0g3FBhLI3F0g

+Bg1 )
−1(0g3F0h23B2 )]

−1
} (53)

It is obvious that the MSE covariance matrix in (53) is not
diagonal since BhLI is a non-diagonal matrix. To solve this
issue, letC = 0g3FBhLI3F0g+Bg1 , andD = 3B20h23F0g
so that

J1 = tr{[IL + DC−1D]−1}

= tr{IL − (IL + D−1CD−1)−1}, (54)

where the matrix inversion lemma (I + A−1)−1 = I − (I +
A)−1 has been applied. Since tr{A−1} ≥

∑
i[A(i, i)]

−1 for
any positive definite square matrix A, we have

J1 ≤ IL −
L∑
i=1

[(IL + D−1CD−1)(i, i)]

= tr{IL − (IL + D−13cD−1)−1}

= tr{[IL + D3−1c D]−1}, (55)

so

J1 ≤ Ju1 = tr{[IL + (0g3F0h23B2 )(0g3F3BhLI
3F0g

+ 3Bg1
)−1(0g3F0h23B2 )]

−1
}, (56)

where 3BhLI
and 3Bg1

are diagonal matrices containing the
diagonal entries of BhLI and Bg1 , respectively. Now the upper
bound in (56) has a diagonal structure, so the precoders can
be obtained by minimizing this bound. Assuming Pk = 32

k
for k ∈ {h1, h2,F, g,B2,B2}, the upper bound in (56) can be
reformulated as

Ju1 =
L∑
n=1

(
1+

pngp
n
h2
pnFp

n
B2

λnBg1
+ pngp

n
Fλ

n
BhLI

)−1
, (57)

where the pnk are the diagonal entries of Pk and λnk , k ∈
{Bg1 ,Bg2 ,B1,B2,BhLI } are the diagonal entries of 3k . The
precoder design can then be simplified to the following opti-
mization problem

min
pF

Ju1 + J
u
2 (58a)

s.t.
L∑
n=1

pnF (p
n
h1p

n
B1 + p

n
B2p

n
h2 + λ

n
BhLI

) ≤ Pr (58b)

This problem is convex and thus can be solved using the KKT
conditions. The Lagrangian function of (58) is

L =
L∑
n=1

[
λnBg1
+ pngp

n
Fλ

n
BhLI

λnBg1
+ pngp

n
Fλ

n
BhLI
+ pngp

n
h2
pnFp

n
B2

+

λnBg2
+ pngp

n
Fλ

n
BhLI

λnBg2
+ pngp

n
Fλ

n
BhLI
+ pngp

n
h1
pnFp

n
B1

]

+µ

[
L∑
n=1

pnF (p
n
h1p

n
B1 + p

n
B2p

n
h2 + λ

n
BhLI

)− Pr

]
, (59)

whereµ ≥ 0 is the Lagrange multiplier. Taking the derivative
with respect to pnF gives

∂L
∂pnF
=

2∑
i=1

−(λnBgi
pnhīp

n
gp
n
Bī
)

(λnBgi
+ pngp

n
Fλ

n
BhLI
+ pngp

n
hī
pnFp

n
Bī
)2

+µ(pnh1p
n
B1 + p

n
B2p

n
h2 + λ

n
BhLI

) = 0 (60)

and the complementarity condition can be expressed as

µ

[
L∑
n=1

pnF (p
n
h1p

n
B1 + p

n
B2p

n
h2 + λ

n
BhLI

)− Pr

]
= 0. (61)

From (60) and (61) we have

pnF = max[0,Root(f n)],∀n, (62)

where Root(f n) denotes the maximum real root of

f n = µ(pnh1p
n
B1 + p

n
B2p

n
h2 + λ

n
BhLI

)

=

2∑
i=1

λnBgi
pnhīp

n
gp
n
Bī

(λnBgi
+ pngp

n
Fλ

n
BhLI
+ pngp

n
hī
pnFp

n
Bī
)2
, (63)

and µ should be chosen to satisfy

L∑
n=1

pnF (p
n
h1p

n
B1 + p

n
B2p

n
h2 + λ

n
BhLI

) = Pr . (64)

This can be efficiently solved numerically as follows.

76464 VOLUME 7, 2019



Y. Shao, T. A. Gulliver: Precoding Design for Two-Way MIMO Full-Duplex Amplify-and-Forward Relay Communication Systems

To find the optimal relay precoder F in (49), 3F must be
found. The diagonal entries of3F are given by pnF from (62),
and (63) can be expressed as

f n = µ(pnh1p
n
B1 + p

n
B2p

n
h2 + λ

n
BhLI

)

−

λnBg1
pnh2p

n
gp
n
B2

[λnBg1
+ pnF (p

n
gλ

n
BhLI
+ pnh2p

n
gp
n
B2
)]2

−

λnBg2
pnh1p

n
gp
n
B1

[λnBg2
+ pnF (p

n
gλ

n
BhLI
+ pnh1p

n
gp
n
B1
)]2
= 0. (65)

This can be rewritten as

f n = (pnF )
4[T n(Sn1 )

2(Sn2 )
2)]+ (pnF )

3[T n(2Rn2)(S
n
1 )

2Sn2
+ (2Rn1)(S

n
2 )

2Sn1 ]+ (pnF )
2[T n((Rn1)

2(Sn2 )
2

+ (Sn1 )
2(Rn2)

2
+ 4Rn1R

n
2S

n
1S

n
2 )− Q

n
1(S

n
2 )

2

−Qn2(S
n
1 )

2]+ (pnF )[T
n(2(Rn1)

2Rn2s
n
2

+ 2Rn1(R
n
2)

2sn1)− (2Qn1R
n
2s
n
2 + 2Qn2R

n
1s
n
1)]

+T n(Rn1)
2(Rn2)

2
− Qn1(R

n
2)

2
− Qn2(R

n
1)

2
= 0, (66)

where

T n = µ(pnh1p
n
B1 + p

n
B2p

n
h2 + λ

n
BhLI

),

Qn1 = λ
n
Bg1
pnh2p

n
gp
n
B2 ,

Qn2 = λ
n
Bg2
pnh1p

n
gp
n
B1 ,

Rn1 = λ
n
Bg1
,

Rn2 = λ
n
Bg2
,

Sn1 = pngλ
n
BhLI
+ pnh2p

n
gp
n
B2 ,

Sn2 = pngλ
n
BhLI
+ pnh1p

n
gp
n
B1 .

pnF is the maximum real root of the polynomial in (66). The
precoder F in (49) is then obtained using 3F .
The next task is to obtain Bi using the optimal relay pre-

coder F from (49). Using the identity

tr{[Im+Am×nBn×m]−1}= tr{[In+Bn×mAm×n]−1} + m− n,

the objective function (41) can be expressed as

Ji = tr{[IL +HH
i C
−1
ni Hi]−1} + Nt − L

= tr{[IL + C
−

1
2

ni HiHH
i C
−

1
2

ni ]−1} + Nt − L

= tr{[IL + C
−

1
2

ni HRSiFHSīRBīB
H
ī H

H
SīR

FHHH
RSiC

−
1
2

ni ]−1}

= tr{[IL + FiQīF
H
i ]
−1
}, (67)

where

Cni = σ
2
t HRSiFHLIHH

LIF
HHH

RSi +HRSiFF
HHH

RSi + INDi ,

Qi = BīB
H
ī
, and Fi = C

−
1
2

ni HRSiFHSīR. Using the above
results, the original optimization problem can be transformed
into

min
Qi

tr{[IL+F1Q2FH1 ]
−1
}+tr{[IL+F2Q1FH2 ]

−1
} (68a)

s.t. tr{(Q1(HH
S1RF

HFHS1R)

+ (Q2(HH
S1RF

HFHS1R)} ≤ P̄r (68b)

tr{BiBHi } ≤ Pi (68c)

where P̄r = Pr − tr(F(σ 2
t HLIHH

LI + INr )F
H ).

We now introduce positive semidefinite (PSD) matricesX1
and X2 that satisfy

[IL + F1Q2FH1 ]
−1
≤ X1, (69a)

[IL + F2Q1FH2 ]
−1
≤ X2, (69b)

and using the Schur complement gives[
X1 IL
IL IL + F1Q2FH1

]
� 0, (70a)[

X2 IL
IL IL + F2Q1FH2

]
� 0, (70b)

whereX � 0 means thatX is PSD. Since the sum of two PSD
matrices with the same dimensions is still PSD, letX = X1+

X2 so that problem (68) can be converted to the following
PSD programming optimization problem

min
Qi,X

tr{X} (71a)

s.t.
[
X1 IL
IL IL + F1Q2FH1

]
� 0 (71b)[

X2 IL
IL IL + F2Q1FH2

]
� 0 (71c)

tr{(Q1(HH
S1RF

HFHS1R)

+ (Q2(HH
S2RF

HFHS2R)} ≤ P̄r (71d)

tr{Qi} ≤ Pi (71e)

Qi ≥ 0, i = 1, 2 (71f)

The CVX software package [27] can be used to solve prob-
lem (71). Then the source and relay precoding optimization
problem given in (42) can be solved using the iterative algo-
rithm given in Algorithm 2.

Algorithm 2 Bi-Step Iterative Algorithm to Design Bi
and F

Initialize the algorithm with B(n)
i =

√
Psi
L IL , i = 1, 2,

and set n = 0.
F(n) is first solved with (49) and (62) using
B(n)
i .

Update the subproblem (71) using F(n) to obtain B(n+1)
i .

If (sum_MSE(n)
− sum_MSE(n+1))/sum_MSE(n) > ε,

go to step 2.
End

C. CONVERGENCE ANALYSIS AND COMPLEXITY
COMPARISON
1) CONVERGENCE ANALYSIS
The tri-step algorithm can be shown to converge as follows.
It is obvious that the subproblems are convex. It then follows
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TABLE 1. Average number of iterations and average CPU time required for convergence.

that each update of Bi, F andWi will decrease or at least not
increase the value of the objective function, and thus the itera-
tive algorithm converges to at least a local optimum solution.
Similarity, the two subproblems in the bi-step algorithm are
convex, so each update of Bi and F will decrease or at least
not increase the value of the objective function, and thus the
bi-step iterative algorithm also converges to at least a local
optimum solution.

2) COMPLEXITY COMPARISON
The number of iterations required for convergence for the two
algorithms is given in Table 1 for the same tolerance ε =
0.001. The parameters used are Ns1 = Ns2 = Nt = Nr = 2
and SNRs−r = 30 dB with SNRr−d set to 0, 5, 10, 15, 20, 25
and 30 dB. The residual loop interference level is set to 10 dB
and the number of trials is 1000. These results show that the
proposed tri-step algorithm requires more iterations when the
SNR is high. When the SNR is 10 dB or less, the algorithms
require a similar number of iterations, but the results for this
region are not important as the performance is poor. The aver-
age CPU time for the two iterative algorithms is also given
in Table 1. The simulations were conducted on a Lenovo
Thinkpad T470 laptop with an Intel core i7-7500U 2.70 GHz
processor. These results show that the bi-step algorithm takes
less time than the tri-step algorithm. Thus in terms of the
tradeoff between complexity and performance, the bi-step
algorithm is a better solution.

V. SIMULATION RESULTS
In this section, the performance of the proposed optimization
algorithms is studied through numerical simulation. Flat-
fading MIMO channels are considered so the entries of HS iR
and HRS i are i.i.d. complex Gaussian random variables with
zero mean and unit variance, As in the literature, the entries of
HLI are i.i.d. complex Gaussian random variables with zero
mean and variance σ 2

LI .
The received SINR at node S1 is

21 =

Ps1
Nt1

∥∥HRS1FHS2R
∥∥2

σ 2
t
∥∥HRS1FHLI

∥∥2 + ∥∥HRS1F
∥∥2 + IND1

, (72)

and the received SINR at node S2 is

22 =

Ps2
Nt2

∥∥HRS2FHS1R
∥∥2

σ 2
t
∥∥HRS2FHLI

∥∥2 + ∥∥HRS2F
∥∥2 + IND2

. (73)

The achievable rates are given by R1 = log2 det[INr + 21]
and R2 = log2 det[INr + 22], respectively, where det(A)

FIGURE 2. Tri-step algorithm sum MSE versus SNRsi−r with
SNRr−di

= 30 dB.

denotes the determinant of A. Therefore, the sum achievable
rate of the proposed two-way FD relay system can be written
as Rsum = R1 + R2.

The performance of the proposed precoding algorithms for
a two-way MIMO full-duplex relaying system is examined
in terms of the sum mean squared error (MSE) and the sum
achievable rate. The results are compared with those of the
corresponding half-duplex (HD) relay system. Note that the
precoding algorithms for the HD system are the same as for
the FD system except that the residual LI term is zero. Further,
the achievable rate for the HD system is reduced by half
because two time slots are required for information exchange
between the two nodes. The signal-to-noise ratios (SNRs)
of the source-to-relay and relay-to-destination channels are
SNRsi−r =

Psi
Nt

and SNRr−di =
Pr
Nr
, respectively. For simplic-

ity, it is assumed that perfect channel state information (CSI)
is available for all channels. Further, Ns1 = Ns2 = Nt =
Nr = L = 2 is assumed in all simulations. The extension
to the case with more than 2 antennas is straightforward.
All the results are averaged over 1000 trials with indepen-
dent channel realizations. As discussed in [17], the residual
LI can vary from 0 dB to 15 dB larger than the channel noise.
Therefore, the residual LI levels considered here are 0 dB,
5 dB and 10 dB. The convergence tolerance for the tri-step
iterative algorithm is set to ε = 10−6 and the maximum
number of iterations is 30.

Fig. 2 presents the sum MSE of the proposed tri-step
iterative method versus SNRs−r with SNRr−d = 30 dB. It is
clear that the FD system has a higher sum MSE than the
HD system due to the existence of residual LI. Further,
the sum MSE increases as the residual LI level increases.

76466 VOLUME 7, 2019



Y. Shao, T. A. Gulliver: Precoding Design for Two-Way MIMO Full-Duplex Amplify-and-Forward Relay Communication Systems

FIGURE 3. Tri-step algorithm sum achievable rate versus SNRsi−r with
SNRr−di

= 30 dB.

FIGURE 4. Tri-step algorithm sum MSE versus SNRr−di
with

SNRsi−r = 30 dB.

Fig. 3 presents the achievable rate of the HD and FD
systems. The FD system sum achievable rate is twice that
of the HD system when the LI is canceled completely. The
FD system outperforms the HD system when SNRs−r ≥
17 dB for all levels of residual LI. Further, when the residual
LI level is greater than 5 dB, the HD system outperforms the
FD system only when SNRs−r < 10 dB. The HD system
outperform the FD system when the residual LI is great
than 10 dB and SNRs−r < 17 dB.
Figs. 4 and 5 present the sum MSE and sum achievable

rate with a fixed SNR of 30 dB between the source and relay
and an SNR between the relay and destination from 0 dB to
30 dB. The sum MSE in Fig. 4 is better than that in Fig. 2 in
the low SNRr−d region because a higher transmit power at
the relay results in greater residual LI. Fig. 5 shows that the
sum achievable rate of the FD system is always higher than
that of the HD system for the residual LI levels considered.

Figs. 6 and 7 present the sum MSE and achievable rate for
the proposed bi-step algorithm with a fixed SNR of 30 dB
between the source and relay and an SNR between the relay
and destination from 0 dB to 30 dB. In Fig. 6, the HD system
has a higher sum MSE than the FD system for all residual

FIGURE 5. Tri-step algorithm sum achievable rate versus SNRr−di
with

SNRsi−r = 30 dB.

FIGURE 6. Bi-step algorithm sum MSE versus SNRr−di
with

SNRsi−r = 30 dB.

FIGURE 7. Bi-step algorithm sum achievable rate versus SNRr−di
with

SNRsi−r = 30 dB.

LI levels. The sum MSE of the FD system is degraded as
the residual LI level increases. Fig. 7 shows that the sum
achievable rate of the FD system is greater than that of the
HD system for all values of residual LI.
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FIGURE 8. Sum achievable rate for the tri-step and bi-step algorithms.

Fig. 8 presents the sum achievable rate for the proposed tri-
step and bi-step iterative algorithms. This shows that the rates
of the two algorithms are comparable. This performance-
complexity tradeoff is an important consideration in the
design of practical MIMO FD relay systems.

VI. CONCLUSION
In this paper, locally optimal source and relay precoding and
destination combiner design was considered for MIMO two-
way full-duplex (FD) relay communication systems. To make
the optimization problem tractable, two efficient MSE based
algorithms were developed to obtain the source and relay
precoding and destination combining matrices. The tri-step
iterative algorithm provides optimal solutions to the three cor-
responding subproblems, while the bi-step iterative algorithm
provides optimal solutions to the two corresponding subprob-
lems. The convergence of the algorithms was examined, and
the effect of the residual loop interference at the relay on
the sum achievable rate was evaluated. Simulation results
were presented which demonstrate that both algorithms out-
perform the corresponding HD relay system in terms of sum
achievable rate and sum MSE.
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