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ABSTRACT Previous studies of speech emotion recognition using either empirical features (e.g., F0, energy,
and voice probability) or spectrogram-based statistical features. The empirical features can highlight the
human knowledge of emotion recognition, while the statistical features enable a general representation,
but they do not emphasize human knowledge sufficiently. However, the use of these two kinds of features
together can complement some features that may be unconsciously used by humans in daily life but have not
been realized yet. Based on this consideration, this paper proposes a dynamic fusion framework to utilize
the potential advantages of the complementary spectrogram-based statistical features and the auditory-based
empirical features. In addition, a kernel extreme learning machine (KELM) is adopted as the classifier to
distinguish emotions. To validate the proposed framework, we conduct experiments on two public emotional
databases, including Emo-DB and IEMOCAP databases. The experimental results demonstrate that the
proposed fusion framework significantly outperforms the existing state-of-the-art methods. The results also
show that the proposed method, by integrating the auditory-based features with spectrogram-based features,
could achieve a notably improved performance over the conventional methods.

INDEX TERMS Speech emotion recognition, auditory-based features, spectrogram-based features,
complementary features, kernel extreme learning machine.

I. INTRODUCTION
Human-computer interaction has become popular in vari-
ous fields, especially for intelligent dialogue systems and
voice assistants, such as Siri, Cortana, and Google Assistant.
In these applications, intention understanding is one of the
key parts of the whole dialog system. Previous research found
that emotion can significantly help machines to understand
user’s intention [1], so accurately distinguishing a user’s
emotion can enable greater interactivity and improve user
experiences. However, speech emotion recognition is still a
challenging task. One of the difficulties is determining how
to extract effective features [2]. Another challenge is that we
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cannot clearly ascertain which model is effective in distin-
guishing emotions [3]. In addition, humans do not express
emotions in a unified way, so the features should have good
robustness for different emotional expressions.

Researchers have proposed various methods for speech
emotion recognition. Among them, the conventional methods
use auditory-based features (e.g., Mel Frequency Cepstrum
Coefficient (MFCC), F0, energy, voice probability, and zero-
crossing rate) for this task. These auditory-based features
are selected based on human auditory perception, so they
have a certain physical meaning. People have focused on
selecting different auditory-based features for a long time [4].
The most commonly used model is to first extract auditory-
based features and then train a classifier to obtain the emotion
labels [5]. There are some traditional methods for speech
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emotion recognition, such as the Gaussian mixture model
(GMM) [6], support vector machine (SVM) [7], hidden
Markov model (HMM) [8] and bidirectional long short-term
memory (BLSTM) [9]. Han et al. [10] proposed the DNN-
ELM model, which utilized a deep neural network (DNN) to
obtain the emotion state probability distribution. In addition,
a simple classifier, the extreme learning machine (ELM),
was then used to obtain the labels. Wang and Tashev [11]
made improvements to the DNN-ELM model, in which the
activation of the last hidden layer of the DNN replaced the
probability distribution that is used to train the ELM. Lee and
Tashev [12] proposed the recurrent neural network (RNN)-
ELM model, which utilized the long contextual effect in
emotional speech. These models have been regarded as the
state-of-the-art models for many years in the field of speech
emotion recognition. However, people’s cognition of speech
emotion recognition is limited [13]. It is difficult to extract
abundant features using priori knowledge alone. Therefore,
the auditory-based features are not sufficiently representative
of emotional information.

With the development of deep learning (DL), there is
a trend in the field of speech processing to use DL
for automatically extracting features from speech signals
[14], [15]. A CNN is adept at extracting local features
from raw input data [16]. The CNN was initially applied
to image field and was regarded as one of the representa-
tive models for image recognition systems [17]. In recent
years, CNNs have been applied to speech processing and
have achieved excellent results [18], [19]. A CNN-based
speech emotion recognitionmodel had been proposed in [20].
This paper utilized CNNs to extract deep acoustic features
from spectrograms and then trained an SVM as classifier.
Lim et al. [21] and Satt et al. [22] proposed the hybrid
CNN-BLSTM model without using any traditional auditory-
based features. Although using the CNN-BLSTM model
on spectrograms derectly has obtained great achievements
and has been regarded as the most commonly used method
for this task over recent years, there are still many prob-
lems that exist in this model. First, the BLSTM model has
a complicated structure and high complexity in training;
therefore, it needs a large amount of training data [23].
For a task with insufficient data, this model tends to fall
into overfitting. Furthermore, there is no sufficiently labeled
public corpus of emotional speech at present [24], [25].
Second, the CNN-BLSTM model adopts a CNN to extract
features automatically, and it uses the spectrogram-based sta-
tistical features alone. Although statistical features can give a
general representation of emotion, they do not emphasize the
human knowledge sufficiently. In addition, previous studies
have indicated that some auditory-based empirical features
(e.g., F0, energy, and voice probability) are very important to
distinguish speech emotion [26].

In this work, we extend our previous work [27] and
continue to explore complementary features for speech emo-
tion recognition. To solve the first problem, this paper pro-
poses the CNN-KELM model, which uses a CNN to extract

FIGURE 1. Structure of the CNN-BLSTM model.

deep features from spectrograms and then uses a kernel
extreme learning machine (KELM) to distinguish emotions.
The KELM is a learning algorithm for single-hidden layer
feed-forward neural networks (SLFNs) [28], and it is a mod-
ified extreme learning machine (ELM) that was proposed by
Huang et al. [29], [30]. ELM has been applied in various
classification tasks due to the properties of high general-
ization capability and fast training [31], [32]. ELM as a
classifier shows better performance than SVM for speech
emotion recognition [10]. Moreover, ELM can perform well
on small databases. To address the second problem,motivated
by the powerful feature learning ability of some multimodal
deep models [33]–[35], this paper proposes a whole dynamic
fusion framework to utilize the potential advantages of the
complementary spectrogram-based and auditory-based fea-
tures, which is different from [27]. Paper [27] separated
the feature extraction and feature fusion stages, which can-
not guarantee the global optimal in tuning the parameters.
In addition, decision-level fusion is also considered in this
paper. In this way, the proposed framework can comple-
ment some parameters that may be unconsciously used by
humans in daily life, but have not been realized yet. Further-
more, researches found that the raw auditory-based features
are correlated, which results in a small inter-class distance
[36], [37]. To avoid this problem, this paper extracts the
discriminative bottleneck features from the raw auditory-
based features using a deep neural network (DNN). To the
best of our knowledge, it is leading edge work to explore the
complementarity between spectrogram and auditory-based
features. In addition, we adopt a KELM as the classifier to
recognize emotion.

The rest of this paper is organized as follows.
Section II describes the background theory of the baseline
CNN-BLSTM model. The proposed fusion framework is
described in Section III. The experimental results and analy-
sis are presented in Section IV. Finally, Section V gives the
conclusions and prospects.

II. THEORETICAL BACKGROUND
Since extracting features manually has many problems such
as being time-consuming and producing a limited number
of feature categories, people begin to use CNNs to extract
features automatically. In recent years, researchers have com-
monly used CNNs directly on spectrograms to extract deep

VOLUME 7, 2019 75799



L. Guo et al.: Exploration of Complementary Features for Speech Emotion Recognition Based on KELM

FIGURE 2. Proposed fusion framework to integrate the spectrograms and auditory-based features based on KELM.

acoustic features [38], [39], and then the BLSTM method
was adopted to recognize emotions. The CNN-BLSTM
model [22] has become the most commonly used method for
speech emotion recognition at present. In this section, we will
give a detailed introduction to the baseline CNN-BLSTM
model.

Fig. 1 shows the structure of the CNN-BLSTM model.
First, as emotional expression is dynamic, to utilize the
dynamic information, the speech signal is divided into N
fixed length segments. Then speech signals in the segment-
level are transformed into spectrograms by using the Fourier
transform since time-frequency analysis is widely used in the
field of speech signal processing [40]. Next, CNNs are used
to extract deep acoustic features from the spectrograms. The
weights of each CNN feature map are shared, which could
result in reducing the complexity of the network and the
number of parameters. The activations of the full connection
layer are the deep acoustic features that we would like to
obtain. Finally, these deep acoustic features in the segment-
level are fed into the BLSTMmethod to obtain the utterance-
level labels. The main idea of BLSTM is to use the forward
direction LSTM and backward direction LSTM to extract the
contextual hidden information to form the final outputs [41].
This demonstrates that the BLSTM method can make good
use of the contextual information, which is important in the
speech processing field. Therefore, the BLSTM method is
widely used in some sequence-based applications, including
speech processing [42], [43].

Although the CNN-BLSTM model gets good results for
many speech processing tasks, there are still many problems
with this model. First, since the structure of the BLSTM

method is complicated, it is easy to fall into overfitting when
the database is small. Moreover, the CNN-BLSTM model
utilizes the CNN to extract only acoustic features from the
spectrograms, which does not emphasize the human knowl-
edge sufficiently. However, some auditory-based empirical
features (e.g., F0, energy, and voice probability) are key
issues for distinguishing emotions [26].

III. THE FUSION FRAMEWORK BASED ON KELM
The proposed framework for speech emotion recognition
is shown by the flowchart in Fig. 2, which consists of
speech segmentation, data preprocessing, deep complemen-
tary feature extraction, and KELM classification. Different
from the CNN-BLSTM model, this fusion framework con-
siders the effects of auditory-based features. Furthermore,
we adopt the CNN-KELM model in this framework; we use
KELM to distinguish emotions because it has properties of
high generalization capability and fast training. Moreover,
the KELM can perform well on small databases. As there
is no sufficiently labeled public corpus of emotional speech
at present [24], [25], in order to get more training data,
we divide speech into several segments. Moreover, we can
use the dynamic information through speech segmentation.
However, choosing a suitable segment size is a challenging
problem for speech emotion recognition. Researchers have
found that a segment speech signal that is greater than 250 ms
includes sufficient emotional information [44], [45]. In this
paper, we use a 265 ms window size and a slide window
of 25 ms to transform an utterance into several segments, and
all the segments in one utterance share the same label.
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The detailed description of the proposed fusion framework
is given as follows.

A. DATA PREPROCESSING
In this section, we would like to finish the extraction of
auditory-based features and spectrograms.We use the openS-
MILE [46] tool to extract the auditory-based features with
384 dimensions proposed in [47]. The selected 16 low-level
descriptors (LLDs) and their first-order derivatives are the
basic features, and then 12 functionals are applied to these
basic features. All of the LLDs and functionals set are shown
in Table 1.

TABLE 1. Auditory-based feature set.

A time-frequency analysis is commonly used in speech
signal processing [40], so we transform the speech signal
into a spectrogram for training the CNN. First, pre-emphasis
is applied to improve the high frequency and better main-
tain the speech information rather than eliminating the noise
completely. Then, the framing and windowing operations are
adopted. In this paper, we use a Hamming windowwith a size
of 16 ms and a 50% overlap. Finally, short time Fourier trans-
form (STFT) with default values for 256 points is adopted
to obtain the spectrogram. As the speech signal is divided
into many fixed-length segments of 265 ms, the size of the
spectrogram is 32× 129.

B. COMPLEMENTARY FEATURE EXTRACTION
The proposed complementary feature extraction method con-
sists of an auditory-based features channel and a spectrogram
channel followed by a merge layer, a fully connected layer,
and a softmax layer.

Since the raw auditory-based features are correlated, which
will reduce the inter-class distance, we should not use these
features directly but rather extract the discriminative fea-
tures from the raw auditory-based features using a DNN.
Therefore, the auditory-based features with 384 dimensions
are fed into DNN to extract the discriminative features, F1.
It is well known that the deep belief network (DBN) is able to
model natural signals [37], and so a DBN consisting of super-
imposed restricted Boltzmann machines (RBMs) is used for
pre-training DNN [48]. Meanwhile, CNNs are adopted to
extact deep acoustic features from the spectrograms. The
structure of the CNN contains the convolutional layer, pool-
ing layer, flatten layer, and fully connected layer, and the
outputs of the fully connected layer are the deep acoustic
features, F2.

Then, the discriminative features, F1, and the deep acous-
tic features, F2, are spliced into a large vector, V , by a merge
layer. The representation is as follows.

V = [F1,F2]. (1)

The last two layers are the fully connected layer and the
softmax layer. Thewhole network is trained by using the error
back propagation technique. By adjusting the parameters,
the auditory-based features and spectrogram can constrain
each other to extract more robust complementary features.
When the model converges to an ideal state, the outputs
of the fully connected layer are the desired complementary
features, F .

In this work, the utterance is divided intoN segments; thus,
all the features that were extracted are segment-level. To get
utterance-level features, we perform the mean-operation as
follows.

F ′i =
1
N

N∑
t=1

F ti , (2)

where F ′i is the feature set of the i-th utterance, N is the
number of segments in utterance i, and F ti is the feature set
of the t-th segment of the i-th utterance. Finally, the fusion
feature set, F ′, is fed into the KELM for speech emotion
recognition.

In fact, we have used max-pooling, min-pooling and mean
pooling to obtain the utterance-level features during our
experiments, while the mean-pooling gave the best result.
Therefore, in this paper, we only give the results of mean-
pooling, which are similar to those of [11] and [35].

C. THE KELM-BASED CLASSIFIER
ELM is a learning algorithm for single-hidden layer neural
networks, which was proposed by Schuller et al. [49] and
Zhu et al. [50]. ELM has been used for many classification
tasks and achieves better results than some of the traditional
classifiers such as SVM [10]. Suppose a network contains n
input layer nodes, l hidden layer nodes and m output layer
nodes, and there are N random samples, (xi, yi) ∈ Rn × Rm,
(i = 1, . . . ,N ). The training process of the ELM method
contains three steps:

The first step is to set the number of hidden layer nodes.
Furthermore, the bias values and weights, w, that are used
for connecting the input layer and hidden layer are randomly
initialized.

The next step is to compute the output matrix, H , of the
hidden layer as follows.

H =


g (w1, b1, x1) . . . g (wl, bl, x1)
g (w1, b1, x2) . . . g (wl, bl, x2)

...
. . .

...

g (w1, b1, xN ) . . . g (wl, bl, xN )


N×L

, (3)

where g(.) is the activation function, and the commonly used
activation function is the sigmoid function.
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Finally, the weights, β, that are between the hidden layer
and output layer are computed using the least squaresmethod,
as shown in (4):

β = HTH , (4)

where HT is the generalized inverse matrix of H .
We can see that the whole training process of ELM

only contains a pseudo-inverse calculation without param-
eter adjustment [51], [52]. The training process finishes in
a single iteration, which is faster than the training time for
conventional back propagation (BP)-based algorithms such
as BLSTM method. KELM is a modification of the original
ELM, which defines the kernel function of the inner product
for the hidden layer outputs, HT and H , and does not need to
give the number of hidden layer nodes. Previous studies have
shown that KELM is better than ELM [28], so in our method,
the KELM is used as the classifier to distinguish emotions.

IV. EXPERIMENTS
A. EXPERIMENTAL DATABASES
The evaluation and comparison of different methods are chal-
lenging due to the lack of a sufficiently labeled public corpus
of emotional speech. In this paper, we use two publicly avail-
able databases of emotional speech, the Berlin Emotional
Database (Emo-DB) [53] and Interactive Emotional Dyadic
Motion Capture database (IEMOCAP) [54]. The following
sections provide detailed descriptions of both databases.

1) EMO-DB DATABASE
The Emo-DB database contains the emotional utterances
produced by 10 German actors (five females/five males);
they read one of 10 pre-selected sentences typical of daily
conversation using different emotional expressions. This
database contains 535 utterances in German with seven
emotions: anger, boredom, fear, disgust, happiness, sadness,
and neutral. All utterances are sampled at 16 kHz and are
approximately 2-3 seconds long.

TABLE 2. Emotion distribution of the Emo-DB database.

Table 2 shows the emotion distribution of this database.
As it is a small database, similar to [21], we adopt ran-
dom 10-fold cross-validation to conduct the experiments in
this paper. In addition, we also conduct speaker-independent
experiments, which are usually adopted in most real appli-
cations [55]. The sentences from 8 speakers are used for
training, and the sentences from remaining 2 speakers are
used for testing.

2) IEMOCAP DATABASE
The IEMOCAP database is one of the most commonly used
corpora for speech emotion recognition; it contains scripted
and improvised dialogs. This database contains approxi-
mately 12 hours of audiovisual data including video, speech,
motion capture of faces and text transcriptions performed by
10 skilled actors. All utterances are sampled at 16 kHz and are
approximately 3-15 seconds long. Each utterance from either
of the actors in the interaction has been evaluated categor-
ically over the set of: angry, happy, sad, neutral, frustrated,
excited, fearful, surprised, and disgusted by three different
human annotators. Since three annotators may give different
labels for an utterance, we use the utterances with at least two
agreed-upon emotion labels for our experiments. In addition,
in this paper, we only select the utterances with labels for four
emotions: neutral, anger, sadness, and happiness, which are
often used in previous studies [56].

TABLE 3. Emotion distribution of the IEMOCAP database.

Table 3 lists the emotion distribution of IEMOCAP
database. This database has five sessions and includes
scripted and improvised utterances. In addition, there are two
speakers for each session, and there is no speaker overlap-
ping between the different sessions. Therefore, we utilize
this setup to conduct the speaker-independent 5-fold cross
validation. In each fold, the data from four sessions is used for
training the model, and the data from the remaining session
is used for testing.

TABLE 4. Important parameters of CNN.

B. EXPERIMENTAL SETUP
To get more training data, the utterances are divided into
several segments, and all segments in the same utterance
share the same label. However, it is an open problem to
choose the length of a segment. Researchers have shown that
a segment longer than 250 ms contains enough emotional
information [44], [45]. Similar to [10], in this work, the length
of a segment is set to be 265 ms. We also attempted longer
segments such as 3 s [22] and 655ms [39], and did not achieve
better results. This outcome means that segment of 265 ms
is more suitable for our method. Moreover, we conducted
many trials with different numbers of hidden layer nodes,
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layers, etc., to select the optimal structure for all the com-
parison methods. The parameters that are used in CNN in
this work are shown in Table 4. The CNN contains two
convolutional layers, two max-pooling layers, a flatten layer,
a fully connected layer, and a dropout layer. There are two
pairs of alternate convolutional layer with a size of 5× 5 and
max-pooling layer with a size of 2× 2; the number of filters
for these two convolutional layers are 32 and 64, respectively.
After the last max-pooling layer, all the feature maps are
changed to one dimensional vector by the flatten layer. Then
follows a fully connected layer with 1024 hidden units, which
contain the deep acoustic features. In addition, to avoid over-
fitting, a dropout layer with a factor of 0.5 is used before the
output layer.

As the database and the selected utterances are different
in most studies, we cannot compare them under different
conditions. To make the experimental results more convinc-
ing, our experimental setup is consistent with that of [10].
Furthermore, for other comparison methods, we attempted
many times to choose the optimal parameters under the
same conditions. All the experimental methods are listed as
follows.
• CNN-BLSTM: This is the baseline model of this paper.
The structure of the CNN, as shown in Table 4, is uti-
lized to extract deep acoustic features with 1024 dimen-
sions from the segment-level spectrograms. Then, these
segment-level features are fed into the BLSTM method
to recognize the emotion with utterance-level label.
After many trials on Emo-DB and IEMOCAP databases,
the selected optimal structure of BLSTM method con-
tains two hidden layers, and each layer has 200 nodes.

• CNN-ELM: It is a novel method for speech emo-
tion recognition that was introduced in our previous
work [27]. This model is used to verify the effect of the
ELM classifier by comparing it with the CNN-BLSTM
model. This model uses CNN to extract deep acoustic
features from the spectrograms. Then, the ELM is used
as a classifier to recognize emotion. For the ELM struc-
ture, the number of hidden layer nodes is set to 2100 for
the Emo-DB database; meanwhile the number of hidden
layer nodes is set to 100 for the IEMOCAP database.

• CNN-KELM: This is the adopted method for speech
emotion recognition in this work. We adopt KELM
as the classifier to distinguish emotions. For Emo-DB
database, the KELM parameters, including the regular-
ization coefficient and kernel parameter, are all set to
100. For IEMOCAP database, the regularization coef-
ficient and kernel parameter of the KELM are set to
10000 and 10, respectively.

• DNN-ELM: This is a commonly used model that
uses only auditory-based features, which used to be
compared with spectrogram-based methods. All the
auditory-based features with 384 dimensions are fed into
theDNN to extract discriminative features. The structure
of the DNN contains four hidden layers, and each layer
has 512 nodes. Then, mean-pooling is performed to

obtain the utterance-level features. Finally, these dis-
criminative features are fed into the ELM to distinguish
emotions. The number of hidden layer nodes for the
ELM is set to 2100 and 100 for Emo-DB and IEMOCAP
databases, respectively.

• DNN-KELM: This method is used to verify KELM by
comparing it with the DNN-ELM model. This model
uses DNN to extract features from the auditory-based
features and then adopts the as the classifier. The
structure of the DNN contains three hidden layers,
and each layer has 512 nodes. For Emo-DB database,
the regularization coefficient and kernel parameter of the
KELM are set at 10 and 1, respectively. For IEMOCAP
database, all the parameters of the KELM are set at 1.

• Decision-Level Fusion: To compare with the proposed
feature-level fusion framework, we also consider the
decision-level fusion method. First, we use the KELM
to calculate the classification scores for the different
types of features including the auditory-based bottleneck
features, Score1, and the spectrogram-based deep acous-
tic features, Score2. Then, the scores are fused to form
a decision rule for the classification [57]. A weighted
summation is adopted in terms of the obtained class
score values as follows.

S = max {a · Score1+ (1− a) · Score2)} , (5)

where a(0 < a < 1) defines the weight between
two kinds of features. After repeated experiments,
the weights for Emo-DB and IEMOCAP databases are
0.4 and 0.6, respectively.

• The Proposed Fusion Framework Based on KELM:
This framework uses the CNN structure, as shown
in Table 4, to extract the deep acoustic features from the
spectrograms and uses the DNN to extract the auditory-
based discriminative features. The structure of the DNN
contains three hidden layers, each having 512 nodes,
followed by a merge layer, a fully connected layer with
1024 nodes, and a softmax layer. The outputs of the
fully connected layer are the complementary features.
Finally, these complementary features are fed into the
KELM to distinguish emotions. For Emo-DB database,
the regularization coefficient and kernel parameter of the
KELM are set to 10000 and 10, respectively, and the
regularization coefficient and kernel parameter are set
to 100 and 1000 for IEMOCAP database.

C. ANALYSIS OF THE DIFFERENT FEATURES
To analyze the effects of different features, Fig. 3 shows
their visualization maps. All types of features are listed as
following:
• Raw Auditory-Based Features: These features with
384 dimensions consist of the LLDs and their statistical
features, which are shown in Table 1.

• Discriminative Features: The discriminative features
with 512 dimensions are extracted by the DNN from the
raw auditory-based features.
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FIGURE 3. Visual distributions of the different features. (a) Raw auditory-based features. (b) Discriminative features.
(c) Spectrogram-based features. (d) Complementary features.

• Spectrogram-Based Features: These deep acoustic
features with 1024 dimensions are extracted from the
spectrograms using the CNN.

• Complementary Features: The complementary fea-
tures with 1024 dimensions are extracted by the
fusion framework from the auditory-based features and
spectrograms.

We use data from the Emo-DB database for the fea-
ture analysis. First, we need to reduce the features to two
dimensions. There are many techniques for dimensionality
reduction; among them, the t-distributed stochastic neighbor
embedding (t-SNE) [58] is a commonly used method for
dimensionality reduction. In particular, the t-SNE technique
has been successfully applied for visualization. In this paper,
we use an optimization of t-SNE called fast t-SNE [59]
for dimensionality reduction. Then, we illustrate the distri-
butions of the seven emotions using different colors in a
two-dimensional plane.

From Fig. 3(a), we can see that the data distributions of
the different classes are significantly overlapped, and it is
difficult to distinguish the different emotions. Furthermore,
the boundaries of the different emotions in Fig. 3(b) are
clearer than those in Fig. 3(a). In particular, there is clear
boundary between anger and sadness. This results indicates
that the discriminative features are more effective than the

raw auditory-based features for speech emotion recognition,
so it is necessary to extract the discriminative features using
the DNN. Fig. 3(c) shows that most of the classes are clus-
tered together, especially for anger, sadness, and boredom
classes. However, the distributions of fear and happiness
are rather scattered. In addition, there is a large inter-class
distance in each emotion. Fig. 3(d) performs the best perfor-
mance among those types of features. First, there are clear
contours for sadness, anger, boredom, and fear. Furthermore,
the inter-class distances in Fig. 3(d) are less than those of
other features. To summarize, the complementary features
show strong discriminative ability for emotions.

D. RESULTS AND DISCUSSION
In this work, we use two common evaluation criteria [22] to
validate the overall effect of the proposed fusion framework,
as following:
• Weighted accuracy (WA) - this is the classification accu-
racy for the whole test set.

• Unweighted accuracy (UA) - the classification accu-
racy for each emotion is first calculated and then
averaged.

The evaluation results for Emo-DB and IEMOCAP
databases are illustrated in Table 5 and Table 6, respectively,
and some conclusions can be drawn as following:
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TABLE 5. Accuracy of Emo-DB database.

TABLE 6. Accuracy of IEMOCAP database.

1) As shown in Table 5, the results of the random 10-fold
cross validation are better than those of the speaker-
independent experiments because normalizing features
on a per-speaker basis can significantly improve the
performance [60]. Furthermore, we can observe that
they show a consistent trend in all the methods.
This outcome means that the proposed method is
still effective under the speaker-independent condition.
Therefore, in the following experiments, we only report
the results of the random 10-fold cross validation for
Emo-DB database.

2) The spectrogram-based methods (i.e., CNN-BLSTM,
CNN-ELM, and CNN-KELM) all outperform the
perceptual feature-based methods (i.e., DNN-ELM,
and DNN-KELM) for Emo-DB database, but for
IEMOCAP database, the spectrogram-based methods
are not better than perceptual feature-based methods.
We believe the reason is that the utterances of the
IEMOCAP database contain more noise and silent seg-
ments [54], so CNN cannot extract effective emotion-
relevant features from spectrograms with noise and
silence. In addition, there are differences in size, anno-
tations, speech quality, speaker, etc., for these two
corpora.

3) Both the CNN-ELM and CNN-KELM models per-
form better than the CNN-BLSTM model on Emo-
DB and IEMOCAP databases. For Emo-DB database,
the CNN-KELMmodel outperforms the CNN-BLSTM
model in terms of UA and WA by an absolute 4.41%
(from 86.66% to 91.07%) and 4.3% (from 87.66%
to 91.96%), respectively. For IEMOCAP database,
the CNN-KELM achieves an absolute 3.97% (from
51.44% to 55.41%) and 3.43% (from 50.41% to
53.84%) improvements over the CNN-BLSTM model
in terms of UA and WA. The results prove that the
proposed CNN-KELM model is effective for emotion
recognition and KELM/ELM models are excellent

classifiers, at least in this work. We think there are
two reasons contribute to these results. First of all,
as a relatively abundant number of features have been
extracted by the CNN, the emotional utterances can
be classified by a simple static classifier. Furthermore,
KELM/ELM can perform well on small databases.
Meanwhile, we can see that using the KELM as a
classifier is better than the ELM on both spectrogram-
based and perceptual feature-based methods, so the
KELM is used as the classifier in our proposed fusion
framework.

4) Although the decision-level fusion framework obtain
better performances than other comparison methods,
it still performs worse than the proposed feature-
level fusion framework on Emo-DB and IEMOCAP
databases. We think the reason is that decision-level
fusion cannot capture themutual correlation among dif-
ferent types of features because auditory-based features
and spectrogram-based features are independent in this
framework.

5) For Emo-DB database, the results of the proposed
feature-level fusion framework are better than those
of the other methods in terms of UA and WA. For
example, the proposed fusion framework outperforms
the state-of-the-art model, the CNN-BLSTM, by an
absolute 5.79% (from 86.66% to 92.45%) and 5.24%
(from 87.66% to 92.90%) in terms of UA and WA,
respectively.We think it is because the utterances of the
Emo-DB database are clean and the labels are uncon-
troversial. In addition, the CNN can extract relatively
rich and effective features from clean spectrograms.
Finally, the fusion framework can extract more robust
complementary features based on the spectrogram-
based features and auditory-based features, which can
highlight the weights of the emotion-relevant features.

6) For IEMOCAP database, the proposed feature fusion
model based on KELM obtains the best results in
terms of UA and WA. Compared with the CNN-
BLSTM model, the fusion framework achieves an
absolute 6.55% (from 51.44% to 57.99%) and 6.14%
(from 50.41% to 56.55%) improvement in terms of
UA and WA, respectively. In addition, the proposed
model also performs better than the perceptual features-
based methods. For example, the fusion framework
outperforms DNN-KELM by an absolute 2.71% (from
55.28% to 57.99%) and 2.02% (from 54.53% to
56.55%) in terms of UA and WA, respectively. From
the above results, we can see that the fusion framework
is effective on IEMOCAP database, which indicates
that the spectrogram-based features and auditory-based
discriminative features are complementary.

To evaluate the effects for each emotion, we give the F1 for
all the methods. The F1 score is the most commonly used
evaluation criterion for testing accuracy because it has a bal-
ance between recall (R) and precision (P). Equation (6) gives
the expression for F1. Table 7 and Table 8 give the F1 results
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TABLE 7. F1 (%) of each emotion for Emo-DB database.

TABLE 8. F1 (%) of each emotion for IEMOCAP database.

for Emo-DB and IEMOCAP databases, respectively.

F1 =
2 · P · R
P+ R

. (6)

From Table 7, we can see that for Emo-DB database,
the proposed feature-level fusion framework performs best in
the boredom, neutral and sadness classes. For utterances with
labels of fear, disgust, happiness and anger, the F1 scores of
the fusion framework are not the best, but the results are still
significantly better than those of the baseline CNN-BLSTM
model. CNN-ELM performs best in the fear and disgust
classes, indicating that using ELM as the classifier is useful
for speech emotion recognition. Additional, the decision-
level fusion method obtains the best results in the happiness
and anger classes. Furthermore, the fusion framework outper-
forms the state-of-the-art method, the CNN-BLSTM model,
by an absolute 5.5% (from 87.49% to 92.99%) in terms of the
average F1.

From Table 8, we can see that for IEMOCAP database,
the feature-level fusion framework achieves the best results
in most of the emotion classes (i.e., anger, sadness, and
happiness) and especially in the sadness class where it out-
performs the CNN-BLSTM model by an absolute 10.41%
(from 50.43% to 60.84%). In addition, for neutral and
happiness classes, the decision-level fusion method per-
forms best. In terms of the average F1, our methods
(‘‘CNN-ELM’’, ‘‘CNN-KELM’’, ‘‘Decision-level fusion’’,
‘‘Feature-level fusion’’) each obtain a better performance
than the CNN-BLSTM model, and the proposed feature-
level fusion framework significantly outperforms the CNN-
BLSTM and DNN-KELM models by an absolute 6.61%
(from 51.12% to 57.73%) and 2.45% (from 55.28% to
57.73%), respectively. The results indicate that the decision-
level fusion framework and feature-level fusion framework
are effective in IEMOCAP database. In addition, we can
observe that the extracted complementary features are more

FIGURE 4. Confusion matrices for Emo-DB database. (a) CNN-BLSTM.
(b) The fusion framework.

useful for distinguishing emotions than the decision fusion
strategy.

Finally, to analyze the relation between each emotion class,
we give the confusion matrices. Fig. 4 and Fig. 5 give the
confusion matrices for Emo-DB and IEMOCAP databases,
respectively. The abscissa is the detected label and the ordi-
nate is the actual label.

Fig. 4 shows the confusion matrices of CNN-BLSTM and
the proposed feature-level fusion framework for Emo-DB
database. We can see that much confusion is concentrated
between the happiness and anger classes; as seen in Fig. 4(a),
there are approximately 30% happiness utterances detected
as anger. Although our model makes a great improvement on
happiness recognition, there are still approximately 18% hap-
piness utterances detected as anger in Fig. 4(b). We assume
the reason is that both happiness and anger have the high
energy and arousal [61]. However, there are few anger
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FIGURE 5. Confusion matrices for IEMOCAP database. (a) CNN-BLSTM.
(b) The fusion framework.

utterances detected as happiness. This is mainly because the
anger utterances have the highest proportion in this database.
In addition, we found that the confusion between the boredom
and neutral classes is mutual. Fig. 4(a) shows that there are
approximately 8.6% boredom utterances detected as neutral
and 8.8% neutral utterances detected as boredom.We assume
this result is because both the boredom and neutral emotions
have the peaceful mood and low arousal [61]; it is difficult to
distinguish them, while our method can significantly weaken
the confusion between them.

Fig. 5 shows the confusion matrices for IEMOCAP
database. Much confusion is concentrated between the happi-
ness and neutral/anger classes. Different from Fig. 4, the con-
fusion between happiness and anger is mutual. Furthermore,
the proposed method achieves a higher accuracy than the
CNN-BLSTM model in all classes. However, the improve-
ment in the anger emotion is limited. We assume this result is
because there is a low percentage of anger utterances in this
database.

To summarize, the proposed fusion framework is effec-
tive for speech emotion recognition, which indicates that
the spectrogram-based features and auditory-based features
are complementary to some extent. However, the results
for IEMOCAP database are obviously worse than those for
Emo-DB database. There are three reasons for this. First,
the speech quality is different. The IEMCOAP database

contains much noise and silent segments [54]. In addition,
the IEMOCAP database contains scripted and improvised
utterances, and as the script text exhibits strong correlation
with the labeled emotions, it may give rise to lingual content
learning, which has a side effect on speech emotion recogni-
tion [62]. Finally, there are three different human annotators,
whichmay give rise to different labels. Therefore, some labels
are controversial.

V. CONCLUSIONS AND PROSPECTS
In this paper, we focused on improving speech emotion
recognition by using complementary features. To utilize the
potential advantages of two types of features (i.e., the
spectrogram-based statistical features and auditory-based
empirical features), we proposed a dynamic fusion frame-
work to extract the complementary features based on spec-
trograms and the auditory-based features. In addition, the
CNN-KELMmodel was adopted in this work, which utilized
the KELM as the classifier to distinguish emotions since the
KELM can perform well on small databases. After obtain-
ing the utterance-level feature by using mean-operation,
the complementary features were fed into the KELM. In
this paper, to build a better fusion framework, we also
considered the decision-level fusion strategy. Experiments
were conducted on Emo-DB and IEMOCAP databases. The
experimental results showed that the CNN-KELM model
was effective for speech emotion recognition. Furthermore,
the proposed feature-level fusion framework outperformed
the decision-level fusion model. This is because a frame-
work using feature-level fusion can capture the mutual cor-
relation among the different types of features. The results
also demonstrated that the fusion of these two kinds of
features (i.e., spectrogram-based features and auditory-based
features) performed better than using either one alone. This
results means that these two kinds of features are comple-
mentary to some extent. Furthermore, the proposed fusion
framework can also be used for other similar tasks such as
language recognition, speaker recognition, dialog act detec-
tion, and spoken language recognition.

To further improve speech emotion recognition, some
aspects of this model should be improved. First, we will
have a stricter requirement in selecting the auditory-based
features. In addition, as emotional expressions are dynamic,
it is important to capture the key emotional segments in the
stage of feature extraction.
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