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ABSTRACT Remote sensing target tracking in the aerial video from unmanned aerial vehicles (UAV) plays
a key role in public security. As the UAV aerial video has rapid changes in scale and perspective, few
pixels in the target region, and multiple similar disruptors, and the main tracking methods in this research
field generally have relatively low tracking performance and timeliness, we propose a remote sensing
target tracking method for the UAV aerial video based on a saliency enhanced multi-domain convolutional
neural network (SEMD). First, in the pre-training stage, we combine the least squares generative adversarial
networks (LSGANs) with a multi-orientation Gaussian Pyramid to augment typical easily confused negative
samples for enhancing the capacity to distinguish between targets and the background. Then, a saliency
module was integrated into our tracking network architecture to boost the saliency of the feature map, which
can improve the representation power of a rapid dynamic change target. Finally, in the stage for generating
tracking samples, we implemented a local weight allocation model to screen for hard negative samples.
This approach can not only improve the stability in tracking but also boost efficiency. The comprehensive
evaluations of public and homemade hard datasets demonstrate that the proposed method can achieve high
accuracy and efficiency results compared with state-of-the-art methods.

INDEX TERMS Visual tracking, multi-domain learning, saliency enhanced, sample augmentation.

I. INTRODUCTION
With the popularization of high-resolution imaging technol-
ogy and the progress of artificial intelligence, target tracking
in remote sensing video received much attention. One of
the important parts is remote sensing target tracking in UAV
aerial video due to its significance in military reconnaissance,
landmonitoring and criminal tracking. Althoughmany object
tracking algorithms [1], [2] have been proposed, there are still
challenges due to the swaying of UAV platforms, which col-
lect videoswith high frequency scale and orientation changes,
few pixels in target region, and the targets are often easily
confused with the background. Furthermore, deep learning
algorithms generally cannot meet the real-time requirements
for UAV processing platforms. Therefore, designing an effec-
tive and robust tracking method for UAV aerial video remains
challenging.

In recent years, many researchers have made efforts to
facilitate target tracking research. Hare et al. [3] presented a
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structured output support vector machine for object tracking.
Kalal et al. [4] proposed a visual tracking algorithm named
TLD by improving an online learning mechanism. However,
they all need to consume huge calculations, which cannot
achieve real-time tracking in the UAV processing platform.
Recent techniques based on correlation filters boost effi-
ciency significantly. Bolme et al. [5] propose the minimum
output sum of squared errors (MOSSE) filter, which works
by finding the maximum cross correlation response between
the model and candidate patch. Henriques et al. [6] improved
adaptive performance for diverse scenarios using multichan-
nel HOG features. Danelljan et al. [7] handled the scale
change of target objects by learning adaptive multiscale cor-
relation filters. However, these methods would generate mul-
tiple suspected responses when considering similar objects
around the target, which usually occurs from the perspective
of UAV platforms.

Recently, it was observed that deep networks have been
successful in visual tracking. Wang et al. [8] developed a
top layer and lower layer to obtain semantic features and
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FIGURE 1. The proposed tracking network.

discriminative information separately for visual tracking.
Zhang et al. [9] proposed simple two-layer convolutional
neural networks to obtain feature maps for the tracker object
for online object tracking. Both of these approaches had
high tracking accuracy. However, they generally boosted per-
formance through the design of the deep structure of the
network, which greatly affects efficiency.

A popular CNN-based tracking algorithm with state-of-
the-art accuracy and speed named MDNet [10] was pre-
sented recently. It pretrains a CNN using a large set of
videos with tracking ground-truths to obtain a generic tar-
get representation that can enhance the adaptability of the
network to various targets. However, from the perspective
of UAV platforms, the target is generally small, and it can
be easily confused with the background as well as become
blurry from frequency scale and orientation changes. Mean-
while, MDNet [10] would produce many negative samples
for training in every tracking frames, which leads to high
computational costs. To address these issues, we propose
a robust tracking approach for UAV videos, and the main
contributions are summarized as follows.

(1) In the offline pretraining stage, we propose a typical
easily confused negative sample augmentation strategy by
combining LSGANs [11] with a multi-orientation Gaussian
Pyramid to generate enough valid samples.

(2) For the design of tracking network structure, we embed
a saliency module between convolutional layers and optimize

the arrangement of its functional sub-modules to boost the
saliency of the feature map, which improved the network
representation power for rapid dynamic changes in the target.

(3) In the negative sample generation of tracking frames,
a local weight allocation model is constructed for screening
high-weight negative samples. This strategy can not only
enhance the stability of tracking process but also effec-
tively reduce the invalid samples network that needs to be
learned.

Experimental results demonstrate that the proposed
method can significantly improve tracking accuracy and effi-
ciency compared to the state-of-the-art trackers in a UAV
aerial video.

II. SALIENCY ENHANCED MULTI-DOMAIN
CONVOLUTIONAL NEURAL NETWORK
(SEMD) FOR TRACKING
A. NETWORK ARCHITECTURE
The proposed network consists of convolutional layers,
a saliency module for enhancing the saliency of feature maps,
and fully connected layers for binary classification as shown
in Fig. 1. For offline pretraining, our algorithm pretrains a
CNN to obtain a generic target representation using a large set
of videos with tracking ground-truths. A lot of negative sam-
ples are generated by using typical easily confused negative
sample augmentation for multi-domain learning. For online
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FIGURE 2. Typical easily confused negative sample augmentation. Yellow and red bounding boxes denote the positive and
typical easily confused negative samples needed to augment each frame, respectively. The discriminator and generator are
trained to augment negative samples. The multi-orientation Gaussian Pyramid generates negative samples in different
scales and orientations.

tracking, we manually select tracking single target in the first
frame, the network computes feature maps of these boxes
through a single forward pass. Note that a CNN feature
is refined from the saliency module, which can achieve
suppression of background information effectively. Finally,
the refined feature is fed to three fully connected layers for
classification between targets and the background.

B. TYPICAL EASILY CONFUSED NEGATIVE
SAMPLE AUGMENTATION
It is well known that the effect of pretraining has a vital
influence on the success rate of tracking in a CNN-based
algorithm. MDNet [10] constructs the shared layers, from
which the model that is obtained has useful generic feature
representations and generates positive and negative samples
from different distributions. Although it performs excellently
in the tracking from the widely applied head-up perspective,
it has the opposite effect from the UAV perspective. The
explanation for this result is that the sloshing of UAV plat-
form will provide high frequency scale change of a target.
If we use these different scale samples as pretraining directly,
the tracking accuracy will be greatly compromised. Further-
more, typical easily confused targets in complex scenes are
the main factors affecting tracking performance. Therefore,
it is necessary to augment easily confused negative samples
to enhance the robustness of our network. To deal with this
problem, we use LSGANs [11] to produce similar samples
with different definitions in the single frame. Compared to
MDNet [10], our algorithm is outstanding at distinguishing
a target from a typical ambiguous easily confused object.
Fig. 2 shows the flowchart for augmentation.

Given a frame from a video sequence, the hand-crafted
negative samples with easily confused frames are denoted by
x1, x2 . . . xt, and t is the number of samples that needed to
be augmented. For each x, LSGANs generate samples relying
on discriminator D and a generator G, and we train D and G

through the following function:

min
D
VLSGAN (D) = 0.5E(x)[(D(x)− a)2]

+ 0.5E(z)[(D(G(z))− b)2] (1)

min
G
VLSGAN (G) = 0.5E(z)[(D(G(z))− c)2] (2)

where b and a are the labels for fake data and real data,
respectively, and c denotes the value that G wants to make
D believe fake data, and z is distributed normally.
In addition, we also collect samples with different sizes

and orientations using a Gaussian Pyramid with the goal
of simulating the UAV platform rotation, which generally
appears in complex environments.

Then, the generated samples of 0.7k-th, 2.2k-th, 6.5k-th
and 10k-th iterations were considered as an octave (first
octave is 10k-th iteration), and we use Gaussian filtering to
produce another sample in every octave as follows:

G(r) =
1

2πσ 2 exp(−
r2

2σ 2 ) (3)

r =
√
x2 + y2 (4)

where r denotes the row and column numbers of the samples,
x and y, respectively, and σ is set to 2.5 empirically.

Furthermore, for adjacent octaves, we employ sampling
to change the size of the next octave to 1/4 of the previous
octave, and we rotate all samples every 90 degrees.

Through this approach, the multi-orientation Gaussian
Pyramid is constructed to collect negative samples in different
scales and orientations from multiple perspectives. Specially,
We mainly select the objects with similar appearance charac-
teristics and sizes to the target for augmentation, such as the
roof (red bounding box) shown in Fig. 2.

C. SALIENCY MODULE IN A NETWORK
As discussed earlier, MDNet uses a shallow network con-
sidering the real-time requirements. However, from the
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FIGURE 3. The saliency module.

perspective of a UAV platform, remote sensing scenes usu-
ally have few pixels in target region and have complex
backgrounds. Therefore, it is necessary to enhance feature
saliency. CBAM [12] is a lightweight and general module
that can be integrated into any CNN architectures seamlessly
with negligible overheads, and it can boost feature saliency.
It consists of two sub-modules, namely, the Channel attention
module and Spatial attention module, as shown in Fig. 3.

Given a featuremapF∈RC
∗H∗W as input, CBAM sequen-

tially infers a channel attention map Mc ∈ RC
∗1∗1 and a

spatial attention map Ms ∈ R1∗H∗W . The overall attention
process can be summarized as follows:

F ′ = MC (F) • F (5)

F ′′ = MS (F ′) • F ′ (6)

where • denotes element-wise multiplication, andMc(F) and
Ms(F) is computed as follows:

MC (F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F))) (7)

MS (F) = σ (f 7×7([AvgPool(F));MaxPool(F)])) (8)

where σ denotes the sigmoid function, MLP is the weight
of average-pooling and max-pooling, and f7×7 represents a
convolution operation with a filter size of 7 × 7.
As validated in the general network architecture, feature

saliency can be boosted throughMc andMs in turn. However,
the pixels in target region are generally very few in UAV
aerial video, so it is particularly vital to enhance the initial
feature saliency. We add an adaptive convolution layer after
average-pooling of Mc to change the output channel of the
previous convolution layer to twice the original, which can
tune the channel adaptively to ensure the subsequent process
is running smoothly.Meanwhile, only channel attentionmod-
ule Mc is embedded after the second convolution layer to
give consideration to both timeliness and tracking accuracy.
We provide experimental results with different arrangements
in Section IV.

D. HARD NEGATIVE SAMPLE SCREENING BASED
ON LOCAL WEIGHT ALLOCATION
In the sample generation stage of every tracking frame,
MDNet collects 200 negative samples from the whole image.
However, in the remote sensing target tracking from the
UAV perspective, the relative displacement between frames
is limited. On the other hand, easily confused objects around
targets are generally the main factor for performance degra-
dation rather than distant objects. To screen valuable nega-
tive samples, a local weight allocation is constructed, which
accelerates the hard negative mining as follows:

d = e−(
si
100 )

2/2σ 2 (9)

where si denotes the distance between the i-th negative sam-
ple centre and the target centre of the previous frame, and σ
is set to 2.5 empirically.

The distance d represents the value of the negative sam-
ple for network training. Setting the threshold T (taken as
0.007 empirically ) when a d satisfies the following:

d < T (10)

the negative sample is retained and vice versa. Finally, all
valuable samples are screened out. Then, an efficient hard
negative mining technique is incorporated in the learning
procedure andwe got the highest score of 48 negative samples
and re-entered the network for fine-tuning the fully con-
nected layers, which can make the network become more
discriminative.

III. IMPLEMENTATION DETAILS
A. TARGET CANDIDATE GENERATION
In order to estimate the target position in each frame, a lot of
target candidates sampled around the previous target position
are evaluated using our tracking network, and we obtain their
positive scores and negative scores from the network. The
optimal target is given by finding the candidate with the
maximum positive score.
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FIGURE 4. Screening of samples. The yellow and blue bounding boxes denote the ground-truth and negative samples,
respectively.

B. OFFLINE PRETRAINING
For multi-domain learning with K training sequences,
we train the network for 100K iterations, and the learn-
ing rates are set to 0.0002 for convolutional layers and
0.0015 for fully connected layers. For each iteration of offline
pretraining, we collect 50 positive and 200 negative sam-
ples from every frame, where positive and negative sam-
ples have overlap ratio r ≥ 0.7 and r ≤ 0.5 IOU overlap
ratios with ground-truth bounding boxes, respectively. For
bounding-box regression, we use 1000 training samples with
the same parameters as MDNet, and a minibatch is composed
of 128 examples—32 positive and 96 negative samples. Note
that our tracking network is trained by using Stochastic Gra-
dient Descent (SGD) and receives a 107× 107 RGB input.

C. ONLINE LEARNING
Similarly, for online learning, we collect 40 positive and
48 negative samples with r ≥ 0.7 and r ≤ 0.3 IOU overlap
ratios with the estimated target bounding boxes, respectively.
The weight decay and momentum are set to 0.0004 and
0.75, respectively. The learning rates are set to 0.0002 for
convolutional layers and 0.0015 for fully connected layers.
Note that we train the fully connected layers for 40 iterations
at the initial frame of a new remote sensing test sequence.

IV. EXPERIMENTS
In this section we present our results for multiple datasets
with comparisons to state-of-the-art tracking algorithms for
UAV123 and a homemade dataset, and analysed the perfor-
mance of our tracker through ablation studies and exper-
iments with different arrangements of CBAM functional
sub-modules.

A. EVALUATION METHODOLOGY
We evaluated our tracker, denoted by SEMD, with two
datasets including (1) UAV123 [13] and (2) a homemade
dataset with an average of 23 seconds per video. There
are seventy fully annotated HD videos with challenging
scenes captured from a UAV in the homemade dataset.
Apart from a small number of the challenges of conventional
datasets, these video sequences main suffer from further

difficulties such as target region has few pixels, rapid changes
in scale and perspective, and multiple easily confused dis-
ruptors, and the homemade dataset contains a wide variety
of targets including cars, trucks and persons. For compar-
ison, we employed several state-of-the-art trackers includ-
ing ECO [14], MDNet [10], SRDCF [15], MCPF [16],
BACF [17], PTAV [18], CFNet [19] and DSST [7]. These
algorithms were implemented in PyTorch with a 3.5 GHz
Intel Core I7-7800X and NVIDIA Titan V GPU.

We follow the evaluation protocol presented in a standard
benchmark [20], where the performance of trackers is evalu-
ated based on two criteria: centre location error and bounding
box overlap ratio, and the performance is visualized using
precision and success plots. The two plots are generated by
computing ratios of successfully tracked frames at a set of
different thresholds in the two metrics. The ranks of trackers
are determined by the accuracy at the 20-pixel threshold
in the precision plot. In the success plot, the Area Under
Curve (AUC) scores of individual trackers are used to rank
the trackers. Note that we used the same parameters for all of
the tested datasets.

B. EXPERIMENTS ON DIFFERENT ARRANGEMENTS
OF CBAM FUNCTIONAL SUB-MODULES
To verify the effectiveness of the proposed arrangement of
channel attention and spatial attention sub-modules men-
tioned in Section II, we compared five different approaches
embedded after the two convolution layers, as shown
in Table 1. Let J1 and J2 denote the first and second con-
volution layer, respectively. Then, C and S denote channel
attention and spatial attention sub-modules, respectively.

As presented in Section II, embeddingC and S after J1, and
only embedding C after J2 can achieve higher tracking accu-
racy and speed. Regarding the cause of this result, we think
that in the subsequent tracking process after J1, we should
pay more attention to the target itself rather than the location
of the target. In other words, this outcome occurred because
two functional sub-modules, channel and spatial, compute
complementary attention and focus on ‘what’ and ‘where’,
respectively. Considering this result, we think in a tracking
network for a remote sensing target, the key is determining
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TABLE 1. Impacts of different arrangements of CBAM functional sub-modules.

TABLE 2. Internal comparison results.

how to enhance the saliency of target features and distinguish
the target from background better, which represents ‘what’.
Therefore, ‘where’ should not be the focus of our discussion
of ‘two-category’ tracking.

C. ABLATION STUDY
We perform several studies on UAV123 [13] to investigate the
effectiveness of individual components in the proposed track-
ing algorithm. In this study, we used a small amount of the
homemade UAV remote sensing dataset and UAV123 dataset
for pretraining, and then remove them during testing.

Table 2 presents several options implemented in the
network, where ‘Augmentation’, ‘Saliency module’, and
‘Weight allocation’ denote our proposed three mechanisms.
According to our experiments, using all three mechanisms
is helpful for improving success and precision rates the
most. Therefore, the results prove that each component
makes a meaningful contribution to tracking performance
improvement.

D. EVALUATIONS ON UAV123 AND HOMEMADE
UAV DATASET
We analysed our algorithm using two different datasets,
including (1) a UAV123 dataset that consists of 50 fully
annotated videoswith various challenging attributes, and (2) a
fully annotated dataset we built by collecting remote-sensing
videos taken by UAV and selecting some of them for

pretraining then removing them during evaluation. We added
some videos that had certain characteristics, including few
pixels in target region, rapid changes in scale and perspective,
and multiple easily confused disruptors. Fig. 5 and Fig. 6
show the results of the nine trackers for UAV123 and the
homemade dataset, respectively. The results clearly show that
SEMD outperforms all the tested trackers significantly in
different datasets. These outcomes can be attributed to the
introduction of typical easily confused sample augmentation,
a saliencymodule and sample screening based on threemech-
anisms of local weight allocation. Typical easily confused
sample augmentation can enhance the capacity to distinguish
between a target and background undermulti-scale andmulti-
rotation orientations in a remote sensing scene. The saliency
module boosted feature saliency by embedding lightweight
and general modules. Sample screening based on local weight
allocation can screen valuable negative samples for training.
All three mechanisms can improve the success and precision
rate to a certain extent. Note that in the homemade dataset,
our algorithm is more obviously ahead of other algorithms.
This result occurred because most of the collected videos in
this dataset contain challenging scenes from the perspective
of UAV, and our approach focuses on solving these issues as
described above.

Table 3 and Table 4 present the overall performance of
trackers of the experiment, including our algorithm, in terms
of success rate, precision rate at 20 pixels, and speed
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FIGURE 5. Quantitative results for UAV123 [14].

FIGURE 6. Quantitative results for a homemade dataset.

TABLE 3. Quantitative comparisons for UAV123.

TABLE 4. Quantitative comparisons for the homemade dataset.

for two datasets, respectively. Although SEMD has higher
complexity than MDnet, the proposed method outperforms
MDnet in the processing speed. We think the reasons can be

summarized as follows: (1) we adopt two update strategies as
in MDNet: short-term and long-term for improving adaptive-
ness and robustness of target, respectively. Long-term updates
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FIGURE 7. Qualitative results of the proposed method for challenging sequences (person, car, truck, car2).

are performed in regular intervals using the positive samples
collected for a long period of time, and short-term updates
are triggered to fine-tune the weights of the fully connected
layers, whenever the score of the estimated target is below a
threshold. However, UAV platforms often collect videos with
short-term occlusion, rapid perspective changes and multiple
similar disruptions, which can easily make the target scores
below 0.5. Under this situation, there will be high compu-
tational costs for the network updating. Therefore, it is par-
ticularly important to make the network more discriminative.
Benefitting from the typical easily confused negative samples
augmentation and the saliencymodule, the network can better
identify target and background. It means that the score of

estimated target will be relatively high, which can avoid
high computational costs producing by short-term updates.
Moreover, thanks to the introduction of local weight alloca-
tion model, we can use fewer and more valuable negative
samples to predict target. (2) compared with the MDNet,
the extra structure of our algorithm is mainly the saliency
module, which is acknowledged as a lightweight module.
It has little impact on the network speed compared with the
computational costs generated in other tracking stages.

Moreover, we also illustrated the qualitative results of
multiple algorithms on a subset of sequences in Fig. 7. Our
method shows consistently better performance for different
challenging scenes, including orientation change, few pixels
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FIGURE 8. Failure cases for the proposed method. Red and green bounding boxes denote the ground-truth and our
result, respectively.

in target region and scale change. However, in over-complex
large size scenes, the tracking task occasionally fails with a
small target with many similar disturbances around, as shown
in Fig. 8. We believe that this failure occurred because our
three mechanisms cannot play a vital role in a situation in
which the saliency of the target features is very insufficient,
and other algorithms cannot solve this problem well either.

V. CONCLUSIONS
This paper presents a saliency enhanced multi-domain con-
volutional neural network for achieving stable and efficient
target tracking in an UAV aerial video. First, we employed
a typical easily confused negative samples augmentation
strategy by combining LSGANs with a multi-orientation
Gaussian Pyramid to make the network more discriminative.
Then, a saliency module was embedded to improve network
representation power. Finally, we constructed a local weight
allocation model for improving timeliness. The experiments
demonstrated that the proposed method can achieve high
accuracy and efficiency results compared to state-of-the-art
algorithms. The performance for a homemade dataset with
challenging scenes from the perspective of UAV especially
showed that our algorithm was more advanced than other
algorithms that focus on solving these problems. However,
as shown above, our method is inefficient in situations where
the small target with many similar disturbances around.
Therefore, we will consider introducing dynamic trajectory
prediction for future research.

REFERENCES
[1] K. B. Logoglu, H. Lezki, M. K. Yucel, A. Ozturk, A. Kucukkomurler,

B. Karagoz, A. Erdem, and E. Erdem, ‘‘Feature-based efficient moving
object detection for low-altitude aerial platforms,’’ in Proc. IEEE Int. Conf.
Comput. Vis. Workshop, Venice, Italy, Oct. 2017, pp. 2119–2128.

[2] C. Fu, R. Duan, and D. Kircali, ‘‘Onboard robust visual tracking for UAVs
using a reliable global-local objectmodel,’’ Sensors., vol. 16, no. 9, p. 1406,
Jul. 2016.

[3] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng, and S. L. Hicks,
‘‘Struck: Structured output tracking with kernels,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Barcelona, Spain, Nov. 2011, pp. 263–270.

[4] Z. Kalal, K. Mikolajczyk, and J. Matas, ‘‘Tracking-learning-detection,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1409–1422,
Jul. 2012.

[5] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, ‘‘Visual object
tracking using adaptive correlation filters,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), San Francisco, CA, USA, Jun. 2010,
pp. 2244–2250.

[6] J. F. Henriques, R. Caseiro, P.Martins, and J. Batista, ‘‘High-speed tracking
with kernelized correlation filters,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015.

[7] M. Danelljan, G. Häger, F. Khan, andM. Felsberg, ‘‘Accurate scale estima-
tion for robust visual tracking,’’ in Proc. Brit. Mach. Vis. Conf., Sep. 2014,
pp. 1–5.

[8] L. J. Wang, W. L. Ouyang, X. G. Wang, and H. C. Lu, ‘‘Visual tracking
with fully convolutional networks,’’ in Proc. IEEE 15th Int. Conf. Comput.
Vis., Dec. 2015, pp. 3119–3127.

[9] K. Zhang, Q. Liu, Y. Wu, and M.-H. Yang, ‘‘Robust visual tracking via
convolutional networks without training,’’ IEEE Trans. Image Process.,
vol. 25, no. 4, pp. 1779–1792, Apr. 2016.

[10] H. Nam and B. Han, ‘‘Learning multi-domain convolutional neural net-
works for visual tracking,’’ in Proc. CVPR, Jun. 2016, pp. 4293–4302.

[11] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, ‘‘Least
squares generative adversarial networks,’’ inProc. IEEE Int. Conf. Comput.
Vis., Oct. 2017, pp. 2813–2821.

[12] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, ‘‘CBAM: Convolutional block
attention module,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018,
pp. 3–19.

[13] M. Mueller, N. Smith, and B. Ghanem, ‘‘A benchmark and simulator for
UAV tracking,’’ in Proc. ECCV, Oct. 2016, pp. 445–461.

[14] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, ‘‘ECO: Effi-
cient convolution operators for tracking,’’ in Proc. CVPR, Jul. 2017,
pp. 6638–6646.

[15] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg, ‘‘Learning spa-
tially regularized correlation filters for visual tracking,’’ in Proc. ICCV,
Dec. 2015, pp. 4310–4318.

[16] T. Zhang, C. Xu, and M.-H. Yang, ‘‘Multi-task correlation particle filter
for robust object tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jul. 2017, pp. 4335–4343.

[17] H. Galoogahi, A. Fagg, and S. Lucey, ‘‘Learning background-aware corre-
lation filters for visual tracking,’’ inProc. ICCV, Oct. 2017, pp. 1135–1143.

[18] H. Fan and H. Ling, ‘‘Parallel tracking and verifying: A framework for
real-time and high accuracy visual tracking,’’ in Proc. ICCV, Oct. 2017,
pp. 5486–5494.

[19] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. Torr,
‘‘End-to-end representation learning for correlation filter based tracking,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 2805–2813.

[20] Y.Wu, J. Lim, andM. H. Yang, ‘‘Object tracking benchmark,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848, Sep. 2015.

[21] J. Wan, T. Hayat, and F. E. Alsaadi, ‘‘Adaptive neural globally asymptotic
tracking control for a class of uncertain nonlinear systems,’’ IEEE Access,
vol. 7, pp. 19054–19062, 2019.

[22] I. Jung, J. Son, M. Baek, and B. Han, ‘‘Real-time MDNet,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 89–104.

VOLUME 7, 2019 76739



F. Bi et al.: Remote Sensing Target Tracking in UAV Aerial Video Based on Saliency Enhanced MDnet

[23] J. Ma, W. Sun, G. Yang, and D. Zhang, ‘‘Hydrological analysis using
satellite remote sensing big data and CREST model,’’ IEEE Access, vol. 6,
pp. 9006–9016, 2018.

[24] Q. Wang, Z. Teng, J. Xing, J. Gao, W. Hu, and S. Maybank, ‘‘Learning
attentions: Residual attentional siamese network for high performance
online visual tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2018, pp. 4854–4863.

FUKUN BI was born in Yunnan, China, in 1982.
He received the B.S. and M.S. degrees in electrical
engineering from Qingdao University and Yunnan
University, in 2004 and 2008 respectively, and the
Ph.D. degree in target detection and recognition
from the Beijing Institute of Technology, in 2011.

From 2011 to 2014, he was engaged in post-
doctoral research at PekingUniversity. Since 2014,
he has been an Associate Professor with the North
China University of Technology. He wrote more

than 30 articles andmore than 10 inventions. He applied for 12 patents (three
of them for national defense). His research interests include target detection
and recognition, moving target tracking, and remote sensing image process-
ing. He is an IETmember, a Director of the China High-tech Industrialization
Research Association, and an External Expert of Leiko Defense Strategic
Development Committee.

Mr. Bi honors the National Defense Technology Invention and the
National Science and Technology Invention Award.

MINGYANG LEI received the B.S. degree
from the North China University of Technology,
Beijing, China, in 2017, where he is currently
pursuing the M.S. degree with the School of Elec-
tronic Information Engineering.

His current research interests include digital
image processing and deep learning in remote
sensing image. He holds two patents.

Mr. Lei received the award in the Zhongguancun
Civil-Military Integration Competition. He was

invited to give an oral presentation at the IET conference venue.

YANPING WANG was born in Shandong, China,
in 1976. He received the B.S. and M.S. degrees
in mechanical and electrical engineering from the
Beijing Institute of Technology, in 2001, and the
Ph.D. degree in signal processing from the Insti-
tute of Electronics, Chinese Academy of Sciences,
in 2004.

From 2003 to 2014, he was a Researcher with
the Institute of Electronics, Chinese Academy of
Sciences. From 2015 to 2017, he was a Researcher

with the China Academy of Safety Science and Technology. Since 2017,
he has been a Professor with the North China University of Technology.
He authored more than 70 articles and more than 30 inventions. His research
interests include ground-based radar imaging, remote sensing image intelli-
gent information processing, and synthetic aperture radar. He is a national
expert in production safety, a member of signal processing branch of the
China electronics society and the member of the Editorial Board of Signal
Processing in china.

Dr. Wang awards and honors the China Excellent Patent Award and the
first prize of Science and Technology Award of the China Occupational
Safety and Health Association.

DAN HUANG was born in BaoTou, China,
in 1983. She graduated from the Experimental
Class of the Beijing Institute of Technology, and
received the Ph.D. degree in target detection and
recognition, in 2011.

Since 2011, she has been with the China
Research and Development Academy of Machin-
ery Equipment, and became anAssociate Research
Fellow, since 2013. Since 2014, she has been an
Adjunct Master Tutor at Henan Polytechnic Uni-

versity. Since 2011, she has been a reviewer of IET Radar, Sonar and
Navigation. She was mainly engaged in the basic theory and engineering
technology research of target detection and identification. She had published
more than 30 academic papers in SCI/EI journals and conferences, applied
for more than 20 national invention patents, and applied for more than
20 software copyrights.

Dr. Huang was a recipient of the second prize of the Science and Technol-
ogy Progress Award of the weapon group company.

76740 VOLUME 7, 2019


	INTRODUCTION
	SALIENCY ENHANCED MULTI-DOMAIN CONVOLUTIONAL NEURAL NETWORK (SEMD) FOR TRACKING
	NETWORK ARCHITECTURE
	TYPICAL EASILY CONFUSED NEGATIVE SAMPLE AUGMENTATION
	SALIENCY MODULE IN A NETWORK
	HARD NEGATIVE SAMPLE SCREENING BASED ON LOCAL WEIGHT ALLOCATION

	IMPLEMENTATION DETAILS
	TARGET CANDIDATE GENERATION
	OFFLINE PRETRAINING
	ONLINE LEARNING

	EXPERIMENTS
	EVALUATION METHODOLOGY
	EXPERIMENTS ON DIFFERENT ARRANGEMENTS OF CBAM FUNCTIONAL SUB-MODULES
	ABLATION STUDY
	EVALUATIONS ON UAV123 AND HOMEMADE UAV DATASET

	CONCLUSIONS
	REFERENCES
	Biographies
	FUKUN BI
	MINGYANG LEI
	YANPING WANG
	DAN HUANG


