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ABSTRACT With the fast expansion of renewable energy system installed capacity in recent years,
the availability, stability, and quality of smart grids have become increasingly important. The renewable
energy output forecasting applications have also been developing rapidly in recent years, and such techniques
have particularly been applied in the fields of wind and solar photovoltaic (PV). In the case of solar PV
output forecasting, many applications have been performed with machine learning and hybrid techniques.
In this paper, we propose a high-precision deep neural network model named PVPNet to forecast PV system
output power. The methodology behind the proposed model is based on deep neural networks, and the
model is able to generate a 24-h probabilistic and deterministic forecasting of PV power output based on
meteorological information, such as temperature, solar radiation, and historical PV system output data. The
forecasting accuracy of PVPNet is determined by the mean absolute error (MAE) and root mean square
error (RMSE) values. The results from the experiments show that the MAE and RMSE of the proposed
algorithm are 109.4845 and 163.1513, respectively. The results prove that the prediction accuracy of the
PVPNet outperforms other benchmark models, and the algorithm also effectively predicts complex time
series with a high degree of volatility and irregularity.

INDEX TERMS Deep neural network, photovoltaic output power forecasting, photovoltaic system, renew-
able energy sources.

I. INTRODUCTION
The rapid development of the global economy constantly
raises the demand for energy. Nowadays, the principal energy
resources are oil, coal and natural gas, which apart from being
non-renewable also cause serious environmental pollution,
which further leads to effects such as a greenhouse, acid
rain and ozone depletion, and the combustion of fossil fuels
which is the most serious problem. To confront the shortage
of energy and reduce fossil fuel pollution, scientists have
begun to study renewable and green energy sources, such as
sunlight, wind, water, and geothermal heat. According to an
authoritative technical report of the International Renewable
EnergyAgency (IRENA), there has beenmajor developments
in global solar PV installations in the past 10 years [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Hailong Li.

Over 100 GW solar PV was installed globally in 2017,
the fastest growth in solar PV installations can be observed in
Asia, where newly installed PV systems exceeded 52 GW in
China alone while total installed capacity exceeded 132GW
globally [2], [3]. The photovoltaic energy plants have the
major influence on the power increase in the world energy
system. Currently, the biggest investment in renewable and
green energy resources is a solar farm in Tengger Desert Solar
Park in China. At present, the plant generates up to 1500MW,
and the largest solar array system has been installed in
Zhongwei, Ningxia [4]. According to IEA’s (International
Energy Agency) most optimistic estimate, global solar PV
installed capacity could exceed 1700 GW by 2030 [5].

PV power output depends mainly on the intensity of solar
radiance. Other meteorological conditions such as the atmo-
spheric temperature, wind speed and direction, and humidity,
are also considered as potential parameters for forecasting
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of PV power output. Regarding the time scale, the forecast-
ings can be divided into: ultra-short-term forecastings (a few
minutes to 1 hour ahead), short-term forecastings (1 hour
to several hours ahead), medium-term forecastings (several
hours to 1 week ahead), and long-term forecastings (1week
to 1 year or more ahead) [6]. In terms of the size of a spatial
range, forecasting can be obtained for a single area or a
regional area [7]. In the literature, several forecasting meth-
ods for prediction of a PV output power have been introduced.
The direct forecastingmodels represent the regressionmodels
based on the usage of instantaneous power information which
is established from the associated data [8] such as solar
radiance, module temperature, humidity, wind speed, and so
on. These data are supplied by the PV power plants or from
numerical weather prediction (NWP) data [7], [9]. Model-
ing methods include the artificial neural networks (ANNs)
[10]–[12], support vector machine (SVM) [13], multivariate
regression [14] methods, and other methods [9]. The hourly
solar and PV forecasts for horizons that cover the period
between 0 and 48 hours were developed using a numerical
weather prediction model [15].

In [16], an artificial neural network model for photovoltaic
plant energy forecasting was proposed and analyzed. The
proposed model provides a 24-hour weather forecast on the
hourly level for all the daylight hours of the next day. In [13],
Shi et al. employed the support vector machine to forecast
the PV system output power based on the weather condi-
tions. They used four types of weather conditions: clear sky,
cloudy day, foggy day, and rainy day. A one-day-ahead PV
output power forecasting model was established based on the
SVM algorithm using the weather forecasting information
and data on the previous PV output power. On the other hand,
Bouzerdoum et al. [17] presented a short-term power fore-
casting of a grid-connected photovoltaic plant using a new
hybrid model. Their model combined the seasonal auto-
regressive integratedmoving average (SARIMA)method and
the SVM method. Also, it was shown that the performance
of the hybrid model was better than the performance of both
SARIMA and SVM models. Cervone et al. [18] proposed
an algorithm based on the artificial neural networks and
introduced an analog ensemble to generate 72-hour PV power
forecasting of PV power plants using the input consisted of
a numerical weather prediction model and computed astro-
nomical variables. Dumitru et al. [19] employed the ANN
algorithms for PV power forecasting because many ANN
types such as feed-forward and Elman neural networks are
suitable for PV power forecasting. The key reason the ANNs
are used in PV power forecasting is that ANNs can correct
the behavior of PV system while learning the changes that
occur as a result of PV system external and internal factors
evolution. Gensler et al. [20] employed the combinations of
deep learning method and autoencoder, and long short term
memory algorithms to compare the output power forecasting
of 21 PV power plants using a standard multilayer perceptron
and a physical forecasting model. Abdel-Nasser and Mah-
moud [21] proposed a new deep long short term memory

recurrent neural network algorithm for forecasting the PV
power output. Also, the authors compared their algorithm
with three different methods based on multiple linear regres-
sion, bagged regression trees, and neural networks algorithms
for PV power forecasting. Raza et al. [22] proposed a multi-
variate neural network combinedwith the Bayesian averaging
method for PV output power forecasting. The short-term fore-
casting (24 hours ahead) in different seasons was employed
at the University of Queensland’s for PV power plant from
2014 to 2015.

In [23], the optimized input data was fed to the traditional
ANN and subjected to the short-term prediction process.
Besides, the prediction results of the ANN, ANN-Particle
SwarmOptimization, andANN-FireflyAlgorithmwere com-
pared in detail. The performance analysis showed that the
ANN algorithm could not predict short-term output power by
using only a small amount of input data. Since the local min-
imum value was continuously inserted in the Particle Swarm
Optimization (PSO) method, the required performance could
not be achieved. To solve the problem of falling into a local
minimum [23], the Firefly Algorithm (FA) was proposed as
a new optimization method that was proven to be the most
efficient algorithm for short-term solar prediction. In [24], the
authors proposed a detailed method for predicting PV energy
production using a local sky-imager and neural network. The
proposedmethod reduced the propagation errors by removing
the usual chain of models from irradiation forecast to energy
yield prediction. In [25], a review of the solar PV forecasting
big datamodels including themotivation of project proposals,
and characteristics and quality of the used data, was provided
with the aim to assess the most appropriate and accurate state-
of-the-art technologies to address the forecasting problems.
To consider both physical (NWP meteorological variables)
data and statistical (PV power SCADA records) data inputs,
Eseye et al. [26] proposed a new hybridmethod for short-term
PV power forecasting based on the combination of SVM,
PSO, and Wavelet transform (WT). This method for short-
term solar power forecasting was proven as effective. The
daily MAPE and NMAE values were 4.22% and 0.4% on
average respectively, which was a better result than those
of the other seven forecasting methods; also, the average
calculation time was shortened for 15 seconds.

Gigoni et al. [27] evaluated the difference in the accuracy
between a simple method (GB method) and more complex
methods (the quantile random forest (QRF) and an ensemble
of methods.) Although the authors noted that there was a little
difference in the accuracy (the overall improvement in nMAE
was only about 5%), the improvements were consistent for
all the PV plants over the year, which made them statistically
relevant. The most suitable forecasting method for particular
weather conditions depends on the methodology characteris-
tics; for instance, the GB performs best on cloudy weather,
the QRF is best for intermediate values of the clear sky
index (CSI), and the kNN is most suitable on sunny weather.
On the other hand, the ensemble methods have the advantage
of performing well under all weather conditions. Also, a more
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accurate weather forecast of solar irradiance could improve
prediction accuracy by about 2∼3%. As presented in [28],
a forecasting model used in Luxembourg was able to predict
the expected PV power generation of the region up to 72 hours
ahead. This model employed the solar irradiance based on
hourly numerical weather predictions for PV power forecast-
ing. The algorithm was able to forecast the expected hourly
power production of Luxembourg PV systems by using a
set of physical equations; 23 PV systems were selected to
be reference systems. By comparing the forecasts for the
reference systems with their actual, measured powers during
a 2-year period, it was found that the forecast accuracy of
the model was relatively high. However, to achieve the most
accurate forecast of a PV module power it is necessary to
measure the solar irradiation of the plane of array (POA)
and the surrounding air temperature, but in practice, the POA
irradiation may not be available, and this value can be only
estimated from horizontal solar irradiation.

Moslehi et al. [29] studied different methods for forecast-
ing solar PV output power in order to determine the most
accurate models and provide insight into common forecasting
errors. It was analyzed whether the final forecasting perfor-
mance when different PV forecasting models were applied
in different months was better or worse than when the same
model was applied for a whole year. Namely, a simple annual
model was compared with 12 different successively-applied
monthly models. It was concluded that using a simple annual
model is more efficient than using 12 different monthly mod-
els due to the convenience and simplicity of practical imple-
mentation. Therefore, a simple annual model is sufficient
compared to 12 separate monthly models because it provides
the convenience and simplicity of practical implementation.
Yao et al. [30] proposed a new PV forecasting model based
on the multiple reservoirs echo state network (MR-ESN).
To ensure that the MR-ESN was sustainably applied to the
PV power forecasting, sufficient conditions for transient
stability of PV forecasting model were arranged. Then, a PV
power forecasting example was used to demonstrate that
the proposed model could significantly improve prediction
performance. Authors in literature [31] expressed that the
core problem in establishing weather classification models
is the lack of training datasets (especially data from extreme
weather conditions) and the choice of applied classifiers.
Considering the aforementioned issues, Wang et al. [32]
proposed a forecasting model using weather classifications
based on the convolutional neural networks (CNN) and gen-
erative adversarial networks. Firstly, 33 single weather types
were combined and reclassified into 10 new weather types.
Next, training datasets were enhanced using a data-driven
generation model called the generative adversarial network
for eachweather type. TheCNNwere trained by the enhanced
dataset consisting of original and generated solar radiance
data. The quality of the generative adversarial networks using
the generated data is evaluated, and the authors compared
the forecasting performance of CNN models with that of the
traditional machine learning models such as the support

vector machine, multilayer perceptron, and k-nearest
neighbors algorithm. The authors also examined the forecast
accuracy improvement achieved by the generative adversarial
networks and applied a weather classification to the solar
radiance prediction. The experiment results demonstrated
that the generative adversarial networks could produce high-
quality samples that capture the unique features of the origi-
nal data instead of simply memorizing the training data.

Das et al. [33] reviewed the efficiency of PV power gener-
ation direct forecasting through comprehensive and methodi-
cal measures, the paper discussed the correlation importance
of preprocessing model input data and input-output data. This
review included the performance analysis of different PV
power forecasting methods. Recent studies such as machine-
learning methods based on historical statistics were also
included in the review. The potential benefits of forecast-
ing model optimization were also considered. In addition,
the strengths and weaknesses of various forecasting methods
such as simple and hybrid forecasting models were also
discussed. A mathematical forecasting model was proposed
in [35] in which the model was optimized by the Differen-
tial Evolution and Particle Swarm Optimization (DEPSO)
method and was used for short-term PV power forecasting of
a PV system installed at Deakin University at Victoria Aus-
tralia. The performance of the proposed DEPSO was com-
pared with the Differential Evolution (DE) and the standard
Particle Swarm Optimization (PSO) across three different
time horizons (1-h, 2-h, 4-h), comparison results proved that
the proposed DEPSOmethod wasmore accurate and efficient
than the DE and PSO approaches.

The advantages of machine learning are fast, low cost and
high accuracy. On the other hand, deep learning uses neural
network that is more layered thanmachine learning to analyze
data and find patterns. Deep learning can tolerate high noise
data and integrate seemingly unrelated data sources, and
also explain non-linear relationships in data. Furthermore,
deep learning has the ability for automatic feature extraction,
which is also known as feature learning. Han et al. [34]
proposed an alternative multi-model PV power interval
forecasting model which accounts for seasonal distribu-
tion characteristics in power fluctuation. Seasonal distribu-
tion characteristics of PV power generation output can be
observed over time by first analyzing PV output power, abso-
lute power deviation, and relative variation rates, next, PV
power deterministic forecasting multi-models based on each
season are built on extreme learning machines. Bae et al. [35]
applied ANN and SVM mechanisms to predict seasonal
PV output power using different weather data sources.
Nespoli et al. [36] compared the performances of two 24-hour
ahead forecasting models both based on ANN. The two
methods are trained with the same dataset, and so enables
homogenous comparison which is very rare and valuable
in current research literature. To understand relationships
between weather information and actual PV power output,
Three prediction models based on the ANN, deep neural
network (DNN) and long term memory (LSTM) mechanisms
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are proposed in [37]. The proposed model is based on LTSM
and is particularly intended to find hourly patterns in a day,
and seasonal patterns across a longer period. Experiments
were conducted with real-world datasets and the experiment
results demonstrated that the proposed LSTM-based model
yielded better results than the ANN-based model. In terms of
mean absolute error, the LSTM-based model also performed
50% better than conventional statistical models.

Accurate forecasting of PV power may be a complex task
due to the weather fluctuating nature. In recent years, artifi-
cial intelligence has been highly valued and applied to many
engineering fields. Here, a deep convolutional neural network
is employed for PV power forecasting in Taiwan. The major
contributions of this paper are as follows: 1) development
of a high-precision PV power forecasting algorithm; 2) per-
formance comparison of several popular algorithms in the
photovoltaic power forecasting; 3) validation of practicality
and feasibility of the proposed ANN algorithm in the PV
power forecasting.

This paper is organized as follows. The hardware electronic
circuit of a photovoltaic system is presented in Section 2.
The architecture of the proposed PVPNet is introduced in
Section 3. The experimental results and results comparison
are provided in Section 4. Finally, the conclusions are given
in Section 5.

II. HARDWARE ELECTRONIC CIRCUIT
A solar cell basically denotes a semiconductor P-N junc-
tion based photodiode whose main function is to convert
sunlight directly into electrical energy. This phenomenon
is called the photovoltaic effect. The operation of a solar
cell denotes the basic principle of the photoelectric effect.
When sunlight strikes solar cell surface, a part of the solar
energy is absorbed by the semiconductor material which will
excite the electrons (negative) and holes (positive). Since the
P-N junction generates a built-in electric field, the P-type
semiconductor electrons move to the upper levels, and N-type
semiconductor holes move to the lower levels. The junction
area forms the positive and negative offset areas. The area
that lacks electrons or holes is generally called the depletion
region. When a depletion region is exposed to the sunlight,
it absorbs the photon energy of appropriate wavelength and
becomes excited producing many electrons and holes. Due to
the built-in electric field, excited electrons freely move to the
N-type semiconductor and excited holes freely move to the
P-type semiconductor. Based on the electrical characteristics
the equivalent circuit model can be established. The solar cell,
PV module, and array model are discussed in the following.
If raw data from solar PV, such as temperature, solar radi-
ation, and output power, are not analyzed through a model
before the monitoring system collects them into the database,
then such data has no practical value for our power prediction
study. Therefore, the mathematical model of the solar PV
system mentioned in this second section is proposed for this
analysis process, to further explain, the math model can assist
in determining the rationality of the data collected by the

monitoring system. We can use this math model to verify
the data collected by the monitoring station, if the collected
datum is not in a reasonable range, we can filter it out as an
error, which can greatly increase the accuracy of the PVPNet
during the training process, and enhance its practicability in
future applications at solar PV power stations.

FIGURE 1. The equivalent circuit of a PV module.

A. PV MODULE AND ARRAY MODEL
In a wide range of applications, a low-level output power
produced by a single solar cell is insufficient. Therefore, solar
cells have to be arranged in a series-parallel configuration so
as to produce enough current, voltage, and power. Another
common problem related to solar cells is that the output power
of only one PV module is unable to provide sufficient power
for many loads. The PV array represents a group of PV mod-
ules connected in series-parallel configuration, and it is used
to generate the required current and voltage. A simplified
model of a typical PV module is presented in Fig. 1, where
Ns cells are connected in series and Np cells are connected in
parallel [38], [39]; the corresponding current is defined by:

Im = NpIph − NpIsat

[
exp

(
qVm

NsAKbT

)
− 1

]
(1)

Obviously, the PV module power Pm can be calculated by:

Pm= ImVm=NpIphVm−NpIsatVm

[
exp

(
qVm

NsAKbT

)
−1
]
(2)

The PV array consists ofN PVmodules connected in series
and M PV modules connected in parallel as shown in Fig. 2.
The current and voltage of the PV array are respectively
defined by:

IA =
M∑
k=1

Isk (3)

VA =
N∑
k=1

Vmk (4)

where Isk is the current of the k th PV module, Vmk is the
voltage of the k th PV module. Additionally, the PV array
power can be obtained by:

PA = IAVA (5)
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FIGURE 2. The PV array configuration consisting of M columns and
N rows [53].

B. PV INVERTER MODEL
In a PV system, a PV array is connected to the inverter whose
function is to convert DC power toAC power. This conversion
is associated with losses which depend on the inverter type,
DC operating power, and AC and DC voltages. The PV array
generates a DC output which is then converted by into a
utility-frequency AC current through an inverter. The AC
current power can then be fed to the commercial electrical
grid or consumed by a local off-grid electrical network. It is
evident that the conversion efficiency of a PV inverter greatly
affects the power system’s AC output power. The PV system
output power can be expressed by:

Psys = ηInv × PA (6)

ηInv =
(
a0 + a1 × pdc + a2 × p2dc

)
/pdc (7)

where ηInv represents the efficiency of a PV inverter, PSys is
the output power of a PV system, Pdc is the DC input of a PV
inverter, and a0, a1, a2 are the coefficients related to the PV
inverter efficiency.

C. PV SYSTEM
A PV system is a type of power generation system designed
to electricity generated from solar energy by means of pho-
tovoltaic cells [40]. The major components of a PV system
include: PV panels whose function is to convert sunlight into
electricity, a PV inverter which is used to convert DC power to
AC power, string isolating switch, cabling, piping, DC circuit
breaker, AC circuit breaker, leakage circuit breaker, and other
electrical components. Strictly defined, a PV array encom-
passes only the ensemble of PV panels, which is the visible

part of the PV system, and does not include any other hard-
ware usually referred to as BOS (Balance-of-System). The
core function of a PV system converts sunlight directly into
electricity. Different types of PV systems include rooftop-
mounted systems, building-integrated systems, and large util-
ity scale power systems, the scale of PV systems could range
from several kilowatts to hundreds or even thousands of
megawatts. The architecture of a monitoring system that can
collect important electrical and meteorological information
about on-grid PV systems is presented in Fig. 3.

FIGURE 3. The structure of an online monitoring system of the on-grid PV
system [7].

FIGURE 4. The structure of the proposed PVPNet.

III. PROPOSED PVPNET
The structure of the proposed PVPNet is shown in Fig. 4.
The CNN structure is applied to the proposed PVPNet. The
convolution in CNN is the method of feature extraction,
this function must rely on continuously learning with large
amounts of data and meet the established conditions as much
as possible to achieve its goal. However, CNN relies on the
optimizer to learn more effectively by using backpropaga-
tion. The CNN generally used for image recognition is a
two-dimensional convolution operation. Since the data that
PVPNet is applied to is one-dimensional data, here wemainly
use one-dimensional convolution layers. The traditional neu-
ral network architecture is simple, and it is harder to grasp
the correlation between adjacent data. Because CNN possess
the concept of weight sharing and stride, the CNN archi-
tecture can more effectively grasp the relationship between
adjacent data and extract its features. Becausemany of CNN’s
weights are shared, the amount of parameters are fewer than
that of the traditional neural network and is easier to train.
However, in general, many studies have used the architecture
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FIGURE 5. The activation functions: (a) sigmoidal function, (b) SELU
function, and (c) ReLU function.

of the Recurrent Neural Network (RNN) for the prediction
of time sequence. Although the PVPNet designed in this
paper is based on CNN, it has higher performance than
RNN. As for the PVPNet optimizer, the Stochastic Gradient
Descent (SGD) is used for parameter optimization. The batch
size of the training process is 32. Since the general Batch
Gradient Descent (BGD) requires all training samples when
updating each parameter, the training process becomes abnor-
mally slow as the number of samples increases, so the SGD is
proposed to solve the drawbacks of BGD. Therefore during
the training process, the speed of SGD is much faster than
BGD. The information on temperature, solar radiation, and
PV system output power in the past 5 days is considered as
a PVPNet input. There are 18 records of temperature, solar
radiation, and PV system output power per day. Therefore,
the input information related to the past 5 days has the size
of 90×3. Here we include three different kinds of information
into the input of PVPNet. It is worth noting that these three
different kinds of information are not superimposed on one
another in the same dimension, but are superimposed in the
second dimension in the feature map. That is to say, the input
shape is not (270, 1), but (90, 3). The reason is that the
characteristics of different data are different, and temperature,
solar radiation, and PV system output power are all time
series data, so that superimposition of the data in the same
dimension will cause the data to lose its time significance.
The benefits of superimposition in the second dimension can
not only preserve the significance of time, but also preserve
the characteristics of various information, and extract feature
independently in different convolutional filters. This is also
one of the major considerations of PVPNet at the time of
its design. Besides, there are 3 one-dimensional convolu-
tion layers in PVPNet, namely Conv1, Conv2, and Conv3,
as presented in Fig. 4. The kernel sizes of Conv1, Conv2, and
Conv3 are 9, 7, and 5, respectively, and the corresponding
numbers of kernels are 32, 64, and 128, respectively. One kind
of the activation functions is a sigmoidal function (sigmoid)
defined by (8) and presented in Fig. 5(a). However, the

Algorithm 1 Deep Learning Algorithm of the Proposed
PVPNet
1: Load the dataset
2: Transform all the values into [0, 1]
3: Split the training data and testing data
4: Reshape the input data to 90×3
5: Initialize the deep neural network
6: For each epoch
7: Shuffle the order of the training data
8: Partition the training data into batches
9: For each batch
10: Feed forward the batch data
11: Calculate the loss value
12: Use SGD to optimize the parameters
13: End
14: End
15: Get the inference results by the testing data
16: Inverse transform the forecasting results to the

original data scale
17: Evaluate the performance of the proposed PVPNet
18: Terminate

sigmoidal function may cause the gradient vanishing
problem. Therefore, in the PVPNet, the scaled exponential
linear unit (SELU) function [41] is chosen as an activation
function of the convolution layers. The SELU function is
defined by (9) and presented in Fig. 5(b). The performance
of SELU activation function was validated in [41], and the
values of λ and α in [41] were λ = 1.05, α = 1.67.
Moreover, to save the most important information and reduce
the feature size, there are three pooling layers in the PVPNet,
namely Polling1, Polling2, and Polling3. The size of all
polling layers is set to 2. After three convolution layers and
three pooling layers, the feature map is flattened into one
dimension. With the aim to avoid the overfitting problem,
the dropout method [42] with a dropout rate of 0.15 is used
in the flattening layer. The fully connected network is applied
at the end of the PVPNet. To cut off the negative forecasting
results, because the photovoltaic system cannot have the neg-
ative power values, the rectified linear unit (ReLU) function
is chosen as an activation function of the output layer. The
ReLU function is given by (10) and illustrated in Fig. 5(c).
Finally, the PVPNet output represents the forecast result of
the photovoltaic system power for the next day.

sigmoid(x) =
1

1+ e−x
(8)

SELU(x) = λ
{
x if x > 0
αex − α otherwise

(9)

ReLU(x) = max(0, x) (10)

The pseudo code of the proposed PVPNet is given in
Algorithm 1. The first step is the dataset loading. To fit the
suitable range, the data are normalized in the range [0, 1]. The
data are divided into two parts, the training data and testing
data. The training data are used for CNN model training,
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and testing data are used to evaluate the CNN model perfor-
mance. Because the input data include information on three
parameters, namely, the temperature, solar radiation, and AC
energy, recorded during the past five days, the data should be
grouped to obtain the input with the size of 90×3. After the
data preprocessing is done, the proposed deep neural network
is initialized. In every epoch, the training data are shuffled and
then partitioned into batches. Here, the batch size is 32 which
means that there are 32 records in one batch. All the training
batches are fed to the CNN model as an input, and the loss
value is obtained. The loss function of the PVPNet is the root
mean squared logarithmic error (RMSLE). Besides, the SGD
method is chosen for optimization of CNNmodel parameters.
After the training process is completed, the final forecasting
results are obtained by the testing data. The final forecasting
results are denormalized, i.e., transformed to the original
scale. Lastly, the performance of the proposed PVPNet is
evaluated.

IV. EXPERIMENTAL RESULTS
This section includes two parts, the description of data and
description of experimental results. To validate the perfor-
mance of the proposed CNNmodel comprehensively, the per-
formances of several popular machine learning methods,
namely the support vectormachine (SVM) [43]–[46], the ran-
dom forest (RF) [47], [48], the decision tree (DT) [49], [50],
the multilayer perceptron network (MLP) [51], and the long
short term memory network (LSTM) [52] are compared with
the performance of the proposed PVPNet.

A. DATA DESCRIPTION
The data consisted of samples containing the information on
module temperature, solar radiance, and PV system output
power. These samples were defined by the resolution of the
thermometer, radiometer, and digital power meter, which
determined the predictability of the dataset. The computer
monitoring system of the PV power system collected data
including module temperature, solar radiance, and PV sys-
tem output. An ISO 9060 Class 2 radiometer was used to
capture at least one data record per minute, and an A/D
signal converter was applied to enable network storage to the
Gateway. The data were transmitted to back-end servers daily
via Internet connection through the Internet File Transfer
Protocol (FTP) protocol from the network gateway. The used
datasets of Taiwan that contain the module temperature, solar
radiance, and PV system output power are presented in Fig. 6.
As shown in Fig. 6, the weather characteristic of Taiwan, i.e.,
a high uncertainty of temperature and solar radiation, may
influence the forecasting results.

B. EXPERIMENTAL RESULTS
Solar PV output power is closely related to temperature and
solar radiation, in particular, the climate in Taiwan is dis-
tinctly divided into four seasons. There are often thunder-
storms in the summer and typhoons in summer and autumn.
This unique and diverse climatic condition has representative

FIGURE 6. The solar energy dataset: (a) temperature, (b) solar radiation,
and (c) PV system output power.

significance when analyzing the correlation between solar
PV output data and meteorological data. When the seasons
change, the temperature and solar radiation rate also show
dramatic changes, which makes Taiwan a valuable field for
solar PV research testing and verification. The relationship
between temperature, solar radiation, solar PV output and
seasonal variation of this monitoring station can be clearly
seen in Figure 7. The forecasting results of the SVM, RF,
DT, MLP, LSTM, and the proposed PVPNet are presented
in Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, and Fig. 12,
respectively, and the comparison of all obtained experimental
results is presented in Fig. 13. In order to achieve short-
term PV forecasting, the input of all the models consisted of
information on temperature, solar radiation, and PV system
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output power in the past 5 days, and the output was the PV
system output power for the next day. Since the frequency of
data retrieval is per hour, deducting hours without daylight,
the amount of input data is 90 pieces in the range of 5 days.
In addition, PVPNet considers three kinds of information:
temperature, solar radiation, and PV system output power, so
the total amount of input data is as much as 90 x 3 pieces.
The PVPNet prediction result is not only a single data, but
the hourly prediction results of the PV system output power
of the next day. The length of input and output is feasible and
practical for PVPNet applications in short-term PV forecast-
ing. As shown in Figs. 9-14, all the machine learning methods
could handle the PV power forecasting problem. However,
the forecasting error of the MLP, DT, and SVM was higher
than of the other methods. On the other hand, the performance
of the LSTM and RF was obviously better than of the MLP,
DT, and SVM. The LSTM model was a recurrent neural
network, which considered the time sequence relation of
the input data. Therefore, the LSTM achieved good results
in time series modeling. The RF was a model ensemble
technique, and it could be treated as many combinations
of the DTs. The experimental result demonstrated that the
model ensemble technique was effective in the PV power
forecasting. Even though all the machine learning methods
had certain advantages, the proposed PVPNet achieved an
excellent result in the PV output power forecasting.

TABLE 1. The experimental results regarding the MAE.

The performances of the methods were also evaluated
regarding MAE and RMSE, which were calculated by (11)
and (12), respectively. Table 1 gives the MAE performance,
and Table 2 gives the RMSE performance. Therewere 11 tests
involved in the experiment. The records of the previous four
months were used as the training data, and the records of
the two following months were used as the testing data. The
training data was used only for model training, and the testing
data was used only for model testing. The samples included
in the training and testing data were all different in all the
eleven conducted tests. The methods ranking regarding the
MAE was as follows: PVPNet (109.4845), RF (116.0071),
LSTM (124.0605), DT (140.3067), SVM (147.3763), and
MLP (196.6816). On the other hand, the methods ranking
regarding the RMSE was as follows: PVPNet (163.1513),
LSTM (164.1908), RF (167.5256), SVM (185.2254),
DT (206.6184), and MLP (224.9958). According to the
experimental results, the LSTM and RF achieved a good

TABLE 2. The experimental results regarding the RMSE.

result in terms of both MAE and RMSE. The forecasting
ability of the SVM, DT, and MLP was slightly inferior.
However, the proposed PVPNet achieved the best perfor-
mance. The obtained results verified the practicality and
feasibility of the PVPNet in the photovoltaic system power
forecasting.

MAE =
1
N

N∑
n=1

∣∣yn − ŷn∣∣ (11)

RMSE =

√√√√√ N∑
n=1

(
yn − ŷn

)2
N

(12)

As can be seen in Fig. 14, although the PVPNet prediction
results were closest to the actual, measured values, the predic-
tion results of all the machine learning methods followed the
same trend. In summary, all the machine learning methods
could solve the problem of short-term photovoltaic power
forecasting. Among the SVM, RF, and DT which are ones
of the most widely used machine learning algorithms, the RF
had the best performance, but the SVM and the DT also had
certain advantages and disadvantages.

The operation concept of the RF is evolved from the DT,
and it is equivalent to the combination of multiple DT algo-
rithms. Compared with the SVM, the operation of the RF is
much simpler; however, in the short-term photovoltaic power
forecasting, the RF has better predictive performance than the
SVM. Moreover, the complexity of the operational concept
does not necessarily affect the prediction performance. In the
experiments, the MLP, the LSTM, and the PVPNet had com-
pletely different performances. As can be seen in Table 1 and
Table 2, the RMSE of the MLP was much higher than that
of the LSTM and the PVPNet. This means that the short-
term photovoltaic power forecasting is a complex process
requiring a more complex neural network architecture to
achieve good results. The LSTM is generally good at dealing
with the time sequence problems, so it was natural that it
achieved better results than the MLP. However, the PVPNet
based on CNN achieved the best results.

As well known, the application of the CNNs in image
recognition is very common and well executed. Besides,
a two-dimensional CNN is generally used in image recog-
nition. On the other hand, in this work, we use a one-
dimensional CNN and apply it to the time sequence problem.
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TABLE 3. The comparison of recent works on PV power forecasting [33].

Also, we use three types of information, namely temperature,
solar radiation, and output power, as a CNN model input.
A one-dimensional CNN only strides along the time direction
but does not stride toward the ‘‘thickness’’ of the three data
sequences. The application of 1D CNN method is relatively
rare in the prediction of time series, but in this paper, it shows
superior results over all the other tested methods, which
is one of the main contributions of this paper. Compared
with the MLP and LSTM, CNN has another advantage, that
is, it requires fewer training parameters. Namely, since the
LSTM requires more parameters, its training process is slow.
On the other hand, an MLP does not have the weight sharing
feature of a CNN, so it has more training parameters than
CNN. Another benefit of CNN is that fewer parameters are
needed to obtain a more accurate prediction performance.

In [33], a detailed comparison of different PV power fore-
casting methods was provided. In this work, we selected
several common forecasting methods with the same fore-
cast horizon and compared them with the proposed PVPNet.
The comparison results are shown in Table 3. The forecast
error was used as a performance indicator. As can be seen
in Table 3, all the methods achieved good results.

The ANNs are widely used in PV power forecasting. Many
studies used ANN architecture in the prediction models.
Thus, an ANN has a great contribution to the PV power

forecasting research field. However, although CNN is a type
of ANNs [46], it is rarely used in PV power forecasting.
On the other hand, we use a one-dimensional CNN for
PV power forecasting, which is different from the general
practice. Comparing the proposed method with the com-
mon machine learning algorithms, it is found that the pro-
posed model has better performance than the other tested
methods. In [33], it can be found that the 24-hour-ahead
forecast horizon is very common in the field of PV power
forecasting. Therefore, the importance of short-term photo-
voltaic power forecasting is evident. The proposed method
has excellent performance, and accordingly the considerable
contributions.

The experiment in this paper is divided into training data
experiment and testing data experiment, there is no duplicate
information between training data and testing data. In the
process of training, training data is used to train the model
and testing data is not included in the training process.
A performance comparison is conducted after the model
training is completed and the test is performed. It is fair to
use testing data for performance testing, because in the real
world the future information to be predicted is unknown.
Therefore, there is no way in incorporate currently unknown
information into the training material. We believe it is more
reasonable to use testing data that has not been used in the
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FIGURE 7. The forecasting results of the SVM.

FIGURE 8. The forecasting results of the RF.

training process for performance analysis. Since the training
data has already made the model aware of all the answers
during training, themodel usually performswell with training
data. Yet in many cases, the performance in training data can
be misleading, if the model is over-trained and overfitting
occurs, the model prediction may perform poorly in actually
applications. This is also the main reason why this model
verifies its accuracy with testing data.

There are clear seasonal differences in Taiwan’s climate,
when the seasons change, the temperature and solar radia-
tion also show dramatic changes. PV forecasting at a time
when the seasonal change is more severe will have more
uncertainties. Each forecasting model has its own advantages
and disadvantages, and random processes may occurs in the

FIGURE 9. The forecasting results of the DT.

FIGURE 10. The forecasting results of the MLP.

training processes of eachmodel which will slightly affect the
final performance. A few models performed better than the
PVPNet at some points in time, the climate characteristics
and random processes during training are among some of
the factors that might have made an impact on the results.
Therefore, 11 different tests were conducted in the exper-
iment of this paper. Although PVPNet did not obtain the
lowestMAE andRMSE in each test, the results of a single test
cannot be used to judge the overall performance of the model.
It is more reasonable to use the average performance as the
scoring standard. Therefore the average MAE and RMSE are
the most important indicators for judging the effectiveness
of the model. On average, PVPNet performed better than the
more common machine learning algorithms. Therefore, the
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FIGURE 11. The forecasting results of the LSTM.

FIGURE 12. The forecasting results of the proposed PVPNet.

experiment proves the validity and feasibility of the PVPNet
proposed in this paper.

V. CONCLUSIONS
This paper proposes a powerful deep convolutional neural
network model (PVPNet) for short-term forecasting of a
photovoltaic system output power. The proposed network is
validated by experiments with the real collected data. The
information on temperature, solar radiation, and PV sys-
tem output power in the past five days is considered as an
input of the proposed PVPNet, while its output is the PV
system output power for the next 24 hours. In the experi-
ment, 2015 solar energy dataset was used. The performance
of the proposed network was evaluated by the comparison
with the commonly used, popular machine learning methods

FIGURE 13. The comparisons of all the obtained forecasting results.

such as SVM, RF, DT, MLP, and LSTM. The comparison
was conducted regarding the MAE and RMSE. According
to the comparison results, the performance of the proposed
PVPNet was better than of the other algorithms. In addition,
the feasibility and practicality of the proposed algorithmwere
validated successfully.

According to the all obtained results, it can be concluded
that the proposed PVPNet algorithm can reduce the monitor-
ing expenses, the initial cost of hardware components, and the
long-term maintenance costs of the future PV farms. Simul-
taneously, the results verify that the proposed PVPNet algo-
rithm for short-term forecasting has strong generalization
ability and robustness, and achieves a very good forecasting
performance.

APPENDIX
See Figs. 7–13.
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