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ABSTRACT Stroke is a standout amongst the most imperative reasons of incapacity on the planet. Due to
partial or full paralysis, the majority of patients are compelled to rely upon parental figures and caregivers
in residual life. With post-stroke rehabilitation, different types of assistive technologies have been proposed
to offer developments to the influenced body parts of the incapacitated. In a large portion of these devices,
the clients neither have control over the tasks nor can get feedback concerning the status of the exoskeleton.
Additionally, there is no arrangement to detect user movements or accidental fall. The proposed framework
tackles these issues utilizing a brain-controlled lower limb exoskeleton (BCLLE) in which the exoskeleton
movements are controlled based on user intentions. An adaptive mechanism based on sensory feedback
is integrated to reduce the system false rate. The BCLLE uses a flexible design which can be customized
according to the degree of disability. The exoskeleton is modeled according to the human body anatomy,
which makes it a perfect fit for the affected body part. The BCLLE system also automatically identifies the
status of the paralyzed person and transmits information securely using Novel-T Symmetric Encryption
Algorithm (NTSA) to caregivers in case of emergencies. The exoskeleton is fitted with motors which
are controlled by the brain waves of the user with an electroencephalogram (EEG) headset. The EEG
headset captures the human intentions based on the signals acquired from the brain. The brain-computer
interface converts these signals into digital data and is interfaced with the motors via a microcontroller.
The microcontroller controls the high torque motors connected to the exoskeleton’s joints based on user
intentions. Classification accuracy of more than 80% is obtained with our proposed method which is much
higher compared with all existing solutions.

INDEX TERMS Artificial skin, assistive technologies, brain-computer interface (BCI), electroencephalo-
gram (EEG), brain-controlled exoskeleton, paralyzed, stroke.

I. INTRODUCTION
Stroke is an important reason of physical disability in devel-
oped countries, and in fact the third most common reason [1].
Almost 80% of survivors of stroke have experienced move-
ment impairment on one side of the body [2-3]. Hand or arm
impairment is particularly disabling and persistent, and lead
to reduced quality of life [3-4]. Many of the stroke survivors

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohammad Zia Ur Rahman.

have a less physical disability by the end of the first three
months (almost in all cases). Nearly, 35% of survivors having
an initial paralysis of the leg do not regain the basic and
essential function, and 20 to 25% of all the survivors are
not able to walk without complete physical assistance [5].
Within six months, nearly 65% of patients are unable to use
the affected hands for doing common life activities. Most of
the patients are thus forced to be dependent on others in the
remaining part of life.
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Exoskeleton has emerged as one of the major solutions
for the above-said problem. The exoskeleton can be used
for providing rehabilitation training and also for walking
assistance to patients affected by post-stroke disability. The
traditional methods used for controlling the movement of
exoskeleton are accelerometers, potentiometers and different
types of sensors. In recent years’ researchers are focused
on EEG signals as the method for controlling the robotic
action. Wheelchairs and robotic arms are controlled by using
human brain signals [6]. The quality of life among people
with physical disability can be improved by interacting with
BCI controlled robot [7]. Home auxiliary robot platform
based on BCI facilitates people with disability to perform
practical activities [8]. The shared control is implemented
through mobile robot for the user to interact with remote
environments [9]. Human locomotion and gait rehabilitation
are also implemented using BCI controlled robots [10]. Lee
et al. realized BCI controllers based on EEG signals for wear-
able devices [11]. Few exoskeletons based solutions have also
been proposed for Paraplegia or lower limb paralysis which is
a spinal cord injury that paralyzes the lower limbs [12]. This
BCI based exoskeleton was designed by decoding the signal
of EEG related to the user. Some movements like sitting,
walking forward, standing, etc. were realized and to activate
the brain, SSVEP (Steady State Visually Evoked Potential)
was used [13]. A visual stimulation based on SSVEP at a cer-
tain frequency provides the advantages of high bandwidth and
short training time [14]. Motor Imagery (MI) task-based BCI
systems are designed, in which user performs MI of limb that
is encoded into the EEG readings. The features representing
particular duty are decoded and also transferred to commands
for controlling the assistive robots [15]. CCA (abbreviated
for canonical correlation analysis) is used to recognize fre-
quency component of SSVEP in EEG signals [16]. Recogni-
tion accuracy is higher than that of traditional methods like
FFT (Fast Fourier Transform), used for spectrum estimation.
Distinct patterns extracted from EEGwith autonomous selec-
tion are realized using filter bank common spatial pattern
(FBCSP) [17]. FBCSP with a specific combination of feature
selection and classification algorithm produces higher valida-
tion accuracies.

Current alternatives for this project in the market is a BCI
controlled wheelchair and electric wheelchair. This does not
allow for the overall movement of the paralyzed body, and
is only a mode of transportation for the paralyzed person.
Since the paralyzed body is motionless, it stiffens the muscle
tissues causing discomfort. Various other exoskeletons that
are controlled using BCI uses mental commands to control
every movement. This is slower and inaccurate. It also pro-
vides a huge load on the system and makes the whole system
slower [17-18]. In our previous work we have created an
alternative to exoskeleton, in which the affected body part
is stimulated using a noninvasive model called the Muscle
to Machine Interface for Paralyzed person (MMIP). Muscle
nerves are exited using muscle electrodes based on the move-
ments produced by the care giver [19]. We further extended

this work to activate the muscle nerves using paralyzed per-
son’s thoughts [20]. The brain to brain secure communication
is achieved using Novel-T symmetric encryption algorithm
(NTSA) [21].

In our proposed work, we use gyroscope in the BCI headset
to control the directions along with only two mental com-
mands. This reduces the load on the system and increases the
speed of the exoskeleton. The exoskeleton interfaced with the
brain is controlled based on the decoded brain signals. In cor-
respondence to the mental commands recognized, the high
torque motors connected to the joints of the exoskeleton
are activated. The exoskeleton is made using carbon fiber
whichmakes it light and hence user-friendly. The exoskeleton
replicates the movement of a healthy functioning leg using
all the joints. Sensory feedback is introduced to reduce the
system false rate. The user intentions given to the system are
converted to motor actions. If the produced motor action is
not sufficient to trigger the actual limb movement, an adap-
tive algorithm is used to make the corrective action. The
status of the paralyzed and emergency rescue information
is transmitted wirelessly to the corresponding caregivers.
NTSA encryption and decryption algorithm is used to trans-
mit the information securely to the intended user without
interference. Walsh–Hadamard transform is used for feature
extraction of brain signals. The extracted features along with
Hadamard coefficients are transmitted wirelessly from brain
to the lower limb via Bluetooth. At the receiver side using
the Hadamard coefficients, the original brain signals are
reconstructed. The feature extraction and reconstruction is
implemented for all five different user intentions. The Brain-
Controlled Lower-Limb Exoskeleton (BCLLE) analyses the
human thoughts and transforms it into different movements
on a unique lower limb structure.

The contributions of our research are,

• A Brain-Controlled Lower-Limb Exoskeleton (BCLLE)
in which the exoskeleton movements are controlled
based on user intentions.

• An adaptive mechanism based on sensory feedback inte-
grated with the exoskeleton to reduce the system false
rate.

• A flexible design for the exoskeleton which can be
customized according to the degree of disability.

• Artificial skin incorporated with sensors which can pro-
vide a sense of touch to the body parts of users.

• Automatic identification of the status of the paralyzed
person and secure transmission of information to care-
givers in case of emergencies

The rest of this paper is structured into five sections on
which section II explains the different existing exoskele-
ton models controlled by BCI. In section III the System
Architecture is explained with details of the 3-D models
of the exoskeleton. Section IV depicts the design of differ-
ent modules of BCLLE system and explains the application
of Walsh–Hadamard transform. Implementation and experi-
mental results are given in the last section (sectionV). Finally,
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section VI is conclusion of our work and presents some future
research directions.

II. RELATED WORKS
In this section we discuss few existing exoskeleton solutions
with Brain-Computer Interface proposed foe paralyzed peo-
ple. But the problem with most of them is that the users
neither have control over the tasks nor can get feedback with
respect to the status of the exoskeleton. Additionally, there is
no arrangement to detect the user movements or accidental
fall. Our research focuses exoskeleton on overcoming this
major problem and provides an efficient and flexible solution.

Rehabilitation Training is provided to people with disabil-
ities using a hybrid exoskeleton controlled by BCI, based
on motor imagery tasks [23]. The grasping and release of
ball using BCI controlled exoskeleton were demonstrated on
people suffering from motor neuron diseases [24]. A closed-
loop BMI system to control an ambulatory exoskeleton-
without any weight or balance support-for gait rehabilitation
of incomplete spinal cord injury (SCI) patients was presented
in [25]. An adaptive BMI paradigm that works with decoding
cognitive brain signals was introduced in [26]. Wang et al.
conducted preliminary research on brain-controlled prosthe-
ses for people with spinal code injury [27]. NeuroRex [28],
an EEG based Brain-Machine Interface for lower body
robotic exoskeleton is used to assist people who cannot walk
independently. Strategies for motor imagery task detection
from EEG are discussed [29]. Adaptive strategies were able
to achieve good accuracy comparable with subject-specific
models. BCI-Manus therapy is used for effective rehabilita-
tion of upper limb [30]. Revised brain symmetry (rBSI) is
correlated with motor imagery tasks and used as a measure of
stroke rehabilitation. Gait phase identification is done using
only joint angular sensor [31]. This method helped to sim-
plify the sensor system of lower limb exoskeleton. Numerous
research has also focused on efficient solutions and applica-
tions based on Internet of Things [32-33] and fog computing
[34-35] reviewed the current state of research of EEG based
control for upper and lower limb exoskeleton. Virtual reality
environment for spinal cord injury (SCI) patients based on
BCI to achieve specific goals were designed [36]. The online
control of Rex exoskeleton using EEG signal from the sub-
ject’s sensorimotor cortical networks was demonstrated [37].
Lokmat Pro exoskeleton was employed as walking assistant
based on user’s intentions, and also incorporated body weight
system (BWS) with assisted rehabilitation [38]. Liu et al.
proposed Gait training using brain-controlled exoskeleton
with 3 degrees of freedom [39]. EEG signals recorded
from motor cortex are used to control the robot through
TCP/IP protocol. Xu et al. devised a system that was intended
for stroke rehabilitation and uses BCI driven motorized
ankle-foot orthoses (BCI-MAFO). The detection of imagi-
nary dorsiflexion movements could be done using the system
within a short latency by the analysis of MRCPs. Whenever
the dorsiflexion movements are detected, the MAFO was
triggered to elicit passive dorsiflexion, thereby providing

binary control of robotic orthosis to the user [40]. A BCI
controlled robotic quadcopter using noninvasive scalp elec-
troencephalogram (EEG) in human subjects was discussed
in [41]. An analysis of upper limb movements in the time-
domain of low-frequency electroencephalography (EEG) sig-
nals was carried out in [42]. Brain signals are analyzed
using band power and radial basis function and implemented
on the wheel chair [43]. A non-contact control system is
designed that allows the paralyzed patients to get assistance
in the hospital by activating the nurse emergency system
and adjusting other appliances. The patients can wear EEG
acquisition device with electrodes for monitoring patient
EEG signal to convert into relevant commands for adjust-
ing the devices [44]. An adaptive neuro-fuzzy classifier is
devised to identify and monitor the EEG based BCI for
motor imagery (MI) task. In order to enhance the accuracy
of the classification technique, an optimization algorithm is
integrated with neuro-fuzzy inference systems [45]. A unique
biometric signature for an individual is generated by the
combination of hand kinematic synergies and their neural
representations. Lin et al. proposed upper limb rehabilitation
system merging motion tracking device, EEG device and
virtual reality game. The training system developed enhanced
motor functions and assistance in rehabilitation [46]. BCI
Speller utilizing eyes-closed (EC) and double-blinking (DB)
EEG signals and a three-class support vector machine will be
developed. The system used EC as ‘‘select command’’ and a
DB as ‘‘undo’’ command, demonstrated good accuracy and
spelling rate [47]. The effect of acute stress on brain activity
is evaluated utilizing task switching. The executive functions
were enhanced under stressful condition with improved per-
formance in task switching [48].

In most of the proposed methods, the users neither have
control on the operations nor can get feedback regarding
the status of the exoskeleton. Moreover, there is no provi-
sion to detect the user movements or accidental fall. In this
research work, the proposed system solves these issues using
a Brain-Controlled Lower-Limb Exoskeleton (BCLLE) in
which the exoskeleton movements will be controlled based
on user intentions. An adaptive mechanism based on sensory
feedback is integrated to reduce the system false rate. BCLLE
uses a flexible design which can be customized according to
the degree of the disability. The exoskeleton also is modeled
according to human body anatomy, which makes it a perfect
fit for the affected body part. The sense of touch is provided to
the body parts by incorporating the artificial skin integrated
with sensors. The system can also accommodate wide range
of age groups with fewer modifications. The BCLLE sys-
tem also automatically identifies the status of the paralyzed
person and transmits information securely using NTSA to
the caregivers in case of emergencies. The exoskeleton is
fitted with motors which are controlled by the user’s brain
waves using an Electroencephalogram (EEG) headset. EEG
headset captures the human intentions based on the signals
acquired from the brain. Brain-Computer Interface converts
these signals into digital data and is interfaced to the motors
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via a microcontroller. The microcontroller controls the high
torquemotors connected to the joints of the exoskeleton based
on the user intentions.

III. MATHEMATICAL MODEL
In this section we present the mathematical analysis of the
proposed system. The joint variable µr having multiple line
ml is defined. The expected motion joint at the junction is
defined as lr (t) .

Using the PD control with feed-forward we have the volt-
age Vµ (t) acting at joints,

Vµ (t) =
d2

dt2
lr (t)+ kv

d
dt
E (t)+ kpE (t) (1)

where

E (t) = lr (t)− l (t) (2)

If the torque ‘‘Tµ (t)’’ is taken instead of voltage Vµ (t),
the control law becomes

Tµ (t) =
d2

dt2
lr (t)+ kv

d
dt
E (t)+ kpE (t) (3)

The control of motor and the exoskeleton joints are indepen-
dently managed. The physical quantities lr (t) andl (t) ,Tµ
are vector of (m × 1) and kp and kl are (m × m) gain matrix
for proportional derivative controller which is positive.

The lower body exoskeleton is governed by dynamic equa-
tions at motion,

Tµ (t) =
[
Mp (l)

] d2
dt2

l + Ccc

(
l,
dl
dt

)
+ gv (l)+ f

(
l,
dl
dt

)
(4)

where Mp (l) is m × m matrix of mass manipulation, Ccc (l)
is (n × 1) matrix for centripetal manipulation, gv (l) is (n ×
1) matrix for gravity manipulation and f (l) is (n × 1 matrix
for friction manipulation.

Tµ (t) = γTµ (t)′ + θ (5)

where γ = Mp (l) and θ = Ccc
(
l, dldt

)
+ gv (l)+ f

(
l, dldt

)
and

from the equation at motion Tµ (t)′ = d2l
dt2

It is basically a unit inertia operation with input as Tµ (t)′.
The θ and γ are the dynamic parameters used. This proves the
cancellation of all coupling and non-linearity and the process
changes to linear-decoupled system.

Choosing Tµ (t)′ = Tµ (t) the error evaluation will be
formed as,

d2

dt2
E (t)+ kv

d
dt
E (t)+ kpE (t) = 0 (6)

This signals that the expected performance is not always pos-
sible. The time required to calculate γ and θ , Tµ (t) changes
in that span of time. The parameter such as centripetal, inertia
and mass are unknown. Let the variation of this parameter at
time ‘t’ is given by,

Mp (l)∗ ,Ccc

(
l,
dl
dt

)∗
gv (l)∗ and f

(
l,
dl
dt

)∗

Then the error equation is given by,

d2

dt2
E (t)+ [kv]

d
dt
E (t)+ kpE (t)

= Mp (l)∗−1
[
Mp (l)−Mp (l)∗

] d2
dt2

l (t)

+ (Ccc (l)−Ccc (l)∗)+
(
gv (l)−gv (l)∗

)
+
(
f (l)−f (l)∗

)
(7)

If both Mp (l) andMp (l)∗ are same then exactly cancel each
other. The control law states that

Vµ (t) = kpl (γld − γl)− kvl
d
dt
γl (8)

The voltage rµ is applied to motor for different values of ‘l’

V̂µd = γld +
1
kpl

d2

dt
γld +

kγ l
kpl

d
dt
ld (9)

Vl (t) = kpl (γld − γl)− kγ l
d2

dt2
γl (10)

Vl (t) =
d2

dt2
γld + kpl (γld − γl)+ kγ l

(
d
dt
γld − γl

)
(11)

V̂ld =
γlmd

kpl
+ γld +

1
kpl

d2

dt2
γld +

kγ l
kpl

d
dt
γld (12)

where γlmd corresponds to Tlmd

IV. SYSTEM ARCHITECTURE
The system design comprises of an exoskeleton that repli-
cates a lower limb, which is made using carbon fiber. The
exoskeleton has total six degrees of freedom including both
legs, one on each side of the pelvic bone, one on each knee
and one on each ankle. Thus three degrees of freedom on each
leg making it total of six degrees of freedom on the entire
exoskeleton. Each joint of the lower limb are actuated using
high torque motors. The movement of the exoskeleton is
facilitated by controlling the degree of rotation of the motors.
This exoskeleton is strapped onto the abdomen as well as foot
region for improving the stability and balance of the person.
Support is also provided on the back side of the ankle region.
The angle sensors are placed on the joints to provide feedback
regarding the status of exoskeleton. This sensor is also used
to validate whether the applied force is sufficient to stabilize
the exoskeleton.

The fall detectionmechanism is implemented by placing an
accelerometer on the back side of the lower limb to measure
the tilt. If the measured sensor value crosses the threshold,
a message will be given to the care givers for emergency
rescue. Figure 1 depicts the proposed system architecture.

The exoskeleton is controlled through human inten-
tions. Electroencephalograph (EEG) sensor uses non-invasive
method to collect the brain signals from the scalp of the per-
son. EEG sensor has 16 electrodes incorporated in structure,
where two electrodes act as the reference for measurement.
The conductivity of the electrodes is improved by using gold
plating. The signals collected are amplified using high gain
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FIGURE 1. System architecture of brain actuated multidimensional exoskeleton.

amplifier and a band pass filter is used for filtering high-
frequency noise. In the signal processing stage, the signal
undergoes further preprocessing and filtering. The suitable
pattern based on the mental command is selected by using
windowing technique. The signal is converted into digital
data which is given as input to themicrocontroller. Themicro-
controller does the classification of each mental command
based on the feature extraction. In the training phase, user
will be trained for five basic commands (sitting, standing, for-
ward movement, right turn, left turn). The recorded patterns

during the training phase will be used by the microcontroller
for decision making. The recognized thought patterns will
be mapped to five different commands. During the testing
phase, the controller makes use of machine learning to rec-
ognize and match patterns in the input data along with the
training data that is already stored in the system to make
the necessary decision regarding the action to be performed.
The activation command to the exoskeleton is given by the
controller through Bluetooth module. At the receiver side
the microcontroller converts this command into motor action
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FIGURE 2. Emotive EPOC mobile EEG headset.

which in turn moves the desired parts of the exoskeleton.
Using a three-level sensing mechanism, feedback is given to
the microcontroller regarding the status of the exoskeleton.
Based on this feedback the microcontroller makes the desired
corrections on the activation signals. The sensory feedback
gives more stability to the system, and moreover rescue mes-
saging system is also implemented in case of emergencies.

The secured communication between the paralyzed person
and caregiver is achieved using Novel-T symmetric algorithm
(NTSA). This algorithm ensures that the data is securely
transmitted to the intended caregiver. NTSA is a symmetric
algorithm that uses a single 128-bit symmetric key that is
agreed upon by sender and receiver for performing encryption
and decryption. The 128-bit key is divided into four partial
keys k0, k1, k2 and k3. There are 64 rounds with partial keys
k0, k1 applied for odd rounds and k2, k3 applied for even
rounds. Multiple XOR and shift operations are performed in
each round of encryption. The message from the paralyzed
person is encrypted using NTSA encryption algorithm to
produce ciphertext.

The ciphertext is transmitted to the caregiver either through
internet or wireless module. The NTSA decryption algorithm
decrypts the ciphertext using the key and the original message
is retrieved at the receiver-end by the care giver. The NTSA
algorithm introduces key confusions in each round of encryp-
tion that makes the algorithm safe and secure from possible
attacks. This algorithm uses minimum system memory and
provides faster response.

In the initial stages, brain signals aremonitored using Emo-
tive EPOCmobile EEG headset. Emotive uses 14 channels to
access the raw EEG data and the analysis of acquired data is
carried out using integrated software tools. Figure 2 exhibits
the Emotive EEG headset deployed in brain signal monitor-
ing. In the latter stages of experimentation Emotive headset
is replaced by the designed EEG Sensor. The EEG sensor
is manufactured using 3D printer Technology. It has a total

FIGURE 3. EEG Sensor with electrodes.

of 16 electrodes in which 14 are used for tapping the brain
signals and two electrodes act as reference. Figure 3 shows
the designed EEG sensor and its electrodes

V. SYSTEM DESIGN & METHODOLOGY
Brain-Controlled Lower-Limb Exoskeleton (BCLLE) system
is an interconnection of different modular components. The
design of individual modules along with their working is
illustrated in this section.

A. EXOSKELETON DESIGN
The Lower limb exoskeleton is designedmatching the charac-
teristics of the human anatomy. Figure 4 depicts the complete
lower body exoskeleton designed using 3D software. The
important parts of the exoskeleton are labeled as below,

A→ Gluteal Region
B→ Hip joint
C→ Thigh Region
D→ Knee Joint
E→ Leg Region
H→ Ankle Joint
G→ Foot Region
These parts are flexible and allow easy attachment and

detachment. For the fully paralyzed, the complete exoskele-
ton will be used. In case of partial paralysis, we can detach
the complete assembly into separate parts. The carbon fiber
material is used for the construction of exoskeleton. This
provides the exoskeleton, easier mobility and light weight.
To get better adhesion to the exoskeleton two supports are
designed: one over the foot region and other on the back side
of the ankle joint.

Figure 5 depicts the assembly of separate parts of lower
limb exoskeleton. These parts can replace the affected body
parts of the paralyzed person. So people having partial par-
alyzes are relieved from the burden of carrying the entire
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FIGURE 4. Complete Lower body part exoskeleton.

FIGURE 5. Exoskeleton of foot and its connected joint (Solid 3D Model).

assembly. The three separate parts of the lower limb labeled
in the figure are as follows,

I→ Complete leg region
J→ Foot Region
K→ Thigh and Leg region with Knee joint
Figure 6 shows the hollow 3D model of the separate parts

of lower limb. High torque motors are placed at the joints of
the lower limb to realize precise movement.

B. ARTIFICIAL SKIN PREPARATION
The sensor circuit is incorporated in the artificial skin to
get the sense of touch or feeling for the exoskeleton. The
skin will be placed over the designed exoskeleton model

FIGURE 6. Exoskeleton of Foot and its connected joint (Hollow 3D Model).

FIGURE 7. Artificial Skin along with processor and sensor circuit.

with all the essential circuits. This gives the exoskeleton
the functionality and aesthetics similar to the human body
parts. Silicon rubber is the material used for constructing
the artificial skin. The artificial skin acts as a protective
coating and binds together the entire exoskeleton structure.
Figure 7 illustrates the developed artificial skin along with
its SMD components. ATtiny45 microcontroller is used for
capturing vibrations and sense of touch using different sen-
sors integrated into the circuit. The PCB design of the circuit
is done using Fritzing software which is an open source tool
for PCB design. The design is optimized for compactness by
appropriate placement of components and reducing the line
width.

C. FEATURE EXTRACTION AND CLASSIFICATION
In the offline phase, training is provided to the user using
visual stimulation interface. The database is designed for all
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FIGURE 8. Visual stimulation interface for the different tasks.

the recorded movements. To improve the accuracy, we used
SSVEP technique for brain stimulation. The visual stimula-
tion is given by refreshing the led display using a frequency
range of 6 to 40 Hz. Six different frequencies are used for six
different commands. Figure 8 shows the visual stimulation
interface used for implementing SSVEP. The five rounded
rectangles represent the five different commands like sitting,
standing, forward movement, turn right and turn left. Visual
stimulation is done on the six rounded rectangles and will
flick at different frequencies.

The unique features of each user movements are extracted
usingWalsh–Hadamard transform. The extracted features are
communicated between brain and the lower limb using Blue-
tooth. The Hadamard coefficients along with extracted fea-
tures are clubbed together for the reconstruction of original
brain signal. The microcontroller in the lower limb records all
the extracted information corresponding to different move-
ments. The database is created using all the recorded user
intentions. This data will be used by the microcontroller for
classifying user movements.

In the online phase, the unique features of user thoughts
will be co-related with the recorded features in the database.
The decision making regarding required movements will
be made based on the comparison result. Thus the user
intentions are transferred into the actual movements on the
exoskeleton. During online phase, to maintain stability and
reduce faults, a particular execution pattern is designed.
Table 1 indicates the command execution pattern followed
in the design for better stability. The first column indicates
the different commands and first row shows the current states
of the exoskeleton. The design ensures that forward, right
turn and left turn movements will be executed only from
standing still position. The system also automatically enters
the halt state whenever the movements of the body part are
hindered.

D. MECHANICAL STRUCTURE AND HARDWARE DESIGN
OF EXOSKELETON
Themechanical structure of the exoskeleton is designed using
high torque motors with geared mechanism. Figure 9 shows
the subject controlling internal part of the exoskeleton
using his thoughts. This part of the exoskeleton will be

TABLE 1. Command execution pattern.

FIGURE 9. Controlling the outer structure of exoskeleton using EEG
headset.

FIGURE 10. PCB of microcontroller and its associated driver circuits.

encapsulated inside the designed 3D model. The 3D model
along with artificial skin gives the exoskeleton the aesthet-
ics and functionality similar to human body part. The fully
functional exoskeleton system was tested and approved by an
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FIGURE 11. Brain Patterns with and without SSVEP.

ethics committee constituted at SCMS Group of Educational
Institutions.

Figure 10 displays the PCB of the control unit and associ-
ated circuits which control all the movements of exoskeleton.
Driver circuits are designed to provide enough current to
activate the high torque motors and actuators. The output
of the sensors integrated in the artificial skin is connected
to the control unit. The PCB of control unit, driver circuits
and sensor circuit will be embedded inside the exoskeleton
module. After powering up, microcontroller waits for human
command, based on the detected posture microcontroller
activates the corresponding motor rotations. Then the micro-
controller scans the sensor value to validate if the applied
activation signal is sufficient to make the exoskeleton stable.
According to the sensor value, alterations will be made on the
excitation signal. Thus using an adaptive mechanism, system
improves the stability and reduces the errors. The sensors
are also utilized for providing a sense of touch. The pressure
sensors accept the external force on the skin surface, converts
it into vibrations with the aid of control unit. The vibrations
produced on the affected body part are proportional to the
applied force. These vibrations or sense of touch also assist
in the rehabilitation process. Testing and validation of the
hardware design are done using different human controlled
movements in the online and offline phase.

VI. IMPLEMENTATION AND RESULTS
A. RESULT OF BRAIN PATTERNS WITH AND WITHOUT
SSVEP METHOD
The validation of SSVEP method is done by measuring the
brain patterns of the subjects with and without applying

visual stimulation. Figure 11 indicates the comparison of
brain patterns obtained without visual stimulation and with
visual stimulation. Each node corresponds to the Neuron
and connecting lines between the nodes show the neuron
interaction. The red color in the figure indicates maximum
interaction between neurons and the blue color indicates
the minimum connectivity. The results shown in the fig-
ure indicates that, using SSVEP has improved the brain
patterns or signal strength compared to brain patterns with-
out SSVEP. The experiments are performed for different
human intentions like sitting, standing, forward, backward,
turn left, turn right, etc. Blue color represents minimum
connectivity and red color represents maximum connectivity.
Results from the figure show that without visual stimula-
tion the brain patterns or signal strength corresponding to
human thought is minimum. The number of neurons involved
in thought processing is also reduced. To reduce visual
fatigue, high-frequency greater than 30 Hz is used for visual
stimulation.

The offline and online experiments are conducted on
four healthy subjects and two paralyzed persons. In the
offline phase the EEG signals corresponding to different
movements are acquired using 14 channel EEG sensor. The
WHT is applied to compress a large amount of EEG sig-
nal in order to save the storing space. The WHT does a
fast computation of the WHT coefficients and stores only
the frequency coefficients having large magnitude. These
coefficients are used for the accurate reconstruction of orig-
inal signals. The signal energy is concentrated at lower
frequency value so that higher frequency coefficients can
be removed to suppress the noise. In the online phase,
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FIGURE 12. Reconstruction process of EEG signal using WHT corresponding to Backward movement.

the extracted features and WHT coefficients are transmitted
from brain to lower limb for the reconstruction of origi-
nal signals. The results of the feature extraction and sig-
nal reconstruction of six different thoughts are depicted
in Figures 12 to 17.

Figure 12 shows the EEG patterns corresponding to
the backward movement. It has six sub figures showing

EEG patterns captured,WHT coefficients, TransmittedWHT
coefficients, Original and Reconstructed EEG signals under
two different time instances designated as EEG-SBP-1
and EEG-SBP-2, Final original and reconstructed signal.
Figures from 13 to 16 indicate the EEG signal reconstruction
of four different human intentions such as Forward move-
ment, Sitting, Standing and Turn Left. Figure 17 shows the
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FIGURE 12. (Continued.) Reconstruction process of EEG signal using WHT corresponding to Backward movement.

measured EEG pattern, WHT coefficients and the recon-
structed signal.

B. STATISTICAL ANALYSIS OF MEASURED EEG PATTERN
Statistical analysis of the measured EEG signal is carried
out to determine the correlation between original and recon-
structed signal. The data obtained during the backward and
forward movements performed by the user is utilized for the

analysis. Correlation matrix is calculated between original
and reconstructed waveforms.

Here the correlation coefficient is calculated and obtained
as, Corrcoef (x1, xHat1) 1.0000 · · · 0.0867

...
. . .

...

0.0867 · · · 1.0000
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FIGURE 13. Reconstruction process of EEG signal using WHT corresponding to Forward movement.

Here the correlation coefficient is calculated and obtained
as, Corrcoef(x2, xHat2) 1.0000 · · · −0.0640

...
. . .

...

−0.0640 · · · 1.0000


Based on the statistical analysis it is clear that there is corre-
lation between original and reconstructed signal, but the miss

match in the graph is due to the phase shift introduced by the
amplifiers.

C. RESULTS OF CLASSIFICATION ACCURACY OF
DIFFERENT SUBJECTS
The classification accuracy of the system is verified by per-
forming the test on ten healthy subjects and ten paralyzed
persons. The maximum obtained is 87% efficiency and on
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FIGURE 14. Reconstruction process of EEG signal using WHT corresponding to Sitting Posture.

an average 80% classification accuracy based on the five
different human intentions. The experimentation result shown
in Figure 18 is the summary of results on six participants. U1,
U2, U3 and U4 represent healthy subjects, U5 and U6 repre-
sent paralyzed persons. The results of classification accuracy
on the different commands are depicted in Figure 19. The
reason for improved accuracy for classification among sub-
jects is due to intensive and systematic training undertaken.

The healthy subject u2 is an experienced user and is more
familiar with similar interfaces, obtained high accuracy. How-
ever, the unhealthy subjects U5 and U6 also obtained high
accuracy through their dedication and passion.

Visual stimulation and voice assistance are also given to
paralyzed during training. The participants U1 and U4 have
shown similar low classification accuracy due to their age and
unfamiliarity with the system.
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FIGURE 15. Reconstruction process of EEG signal using WHT corresponding to Standing Posture.

D. RESULTS OF EEG PATTERNS USING REALISTIC
HEAD MODELS
EEG analysis is carried out using realistic Head models
to identify the unique EEG signal features and to validate
the brain network connectivity. EEG signal is acquired by
16 electrodes placed in the frontal and parietal regions of

the Brain. Figure 19 indicates the electrode placement scheme
followed in the experimentation.

The electrodes E12, E5, E13, E6, and E7 are placed
in the parietal region and remaining in the frontal region,
as shown in Figure 19. The power spectral analysis is car-
ried out for each electrode used in the signal acquisition,
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FIGURE 16. Reconstruction process of EEG signal using WHT corresponding to Turn Left Posture.

Figure 20 indicates the brain patterns variations at different
frequencies based on power spectral density.

The brain signal analysis using realistic head model is
carried out for different human intentions and on vari-
ety of healthy and unhealthy subjects with repeated trials.
Figure 21 depicts the realistic head models with active and
non-active region variations.

These simulation results are used for the EEG source esti-
mation using conventional estimation approaches. The esti-
mated sources are further used for the calculation of position
and Energy Index. The simulated scalp EEG signals are then
used for the reconstruction process of the original signal at
the receiver. The validation of SSVEP method is also done
using realistic head models.
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FIGURE 17. Reconstruction process of EEG signal using WHT corresponding to Turn Right Posture.

Figures 22 and 23 shows the comparisons of head mod-
els with and without application of the SSVEP method.
In the figure, red color indicates maximum interaction
between neurons, yellow indicate moderate and blue indi-
cates minimum connectivity. Hence the result indicates that

using SSVEP has improved the concentration level of the
subjects

Figure 24 depicts the power spectrum corresponding to
human intention for forwarding movement. The power spec-
tral analysis is carried on the different brain patterns to
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TABLE 2. Data statistics for SBP-1 original signal.

TABLE 3. Data statistics for SBP-1 reconstructed signal.

TABLE 4. Data statistics for SFP-1 original signal.

TABLE 5. Data statistics for SFP-1 reconstructed signal.

identify the signal strength and variations of signal with
respect to the frequency. These extracted signal characteris-
tics are utilized for improving the classification accuracy.

Statistical analysis is performed on the data obtained using
each EEG channel. Figure 25 indicates the statistical param-
eters obtained for channel 1. The graph shows the correlation
between acquired data and standard normal values.

FIGURE 18. Classification accuracy of different commands.

FIGURE 19. Location of 16 different electrodes.

FIGURE 20. Brain pattern variations at different frequencies.

The effectiveness of REST with respect to AR is analyzed
through simulations using realistic head models. Coherence
and network connectivity are calculated for the same 16 elec-
trode scheme for a particular human thought. Figure 27 shows
the coherence and connectivity obtained for particular human
thought. Figure 27(a) depicts EEG recording using REST

132644 VOLUME 7, 2019



P. G. Vinoj et al.: Brain-Controlled Adaptive Lower Limb Exoskeleton for Rehabilitation

FIGURE 21. Realistic head model with active region.

FIGURE 22. Realistic head model of the subject with SSVEP.

Referencingmethod and 27(b) indicates EEG recording using
AR referencing method. Simulation results show that REST
referencing provides better connectivity and coherence com-
pared to AR.

VII. DISCUSSION AND SUMMARY
The authors used EEG signal to identify the human Inten-
tions and to control the body parts using unique exoskeleton,
which is convenient to carry for the user to perform routine
activities.

A. PREVIOUS STUDIES
Iturrate et al. [26] used neuro Rex exoskeleton with BMI
capabilities to assist people with mobility impairments.

FIGURE 23. Realistic head model of the subject without SSVEP.

FIGURE 24. Power spectrum of human intention for forwarding
movement.

The study evaluated health benefits of using exoskeleton and
showed that BCI based exoskeleton control is an effective
method. Guan et al. used motor imagery based EEG to detect
and classify human intentions and obtained a classification
accuracy of 79.8% [27]. Gait phase prediction algorithms are
successfully implemented to improve the lag motions [28].
However, the exoskeleton is bulky and prediction accuracy
was only 69.8 %.

B. NOVEL CONTRIBUTIONS OF THIS RESEARCH
The classification accuracy is improved in our research
by using SSVEP method. Flexible exoskeleton models are
designed, which can be used for people with different levels
of disability. The use of carbon filmmaterial for the construc-
tion, made it low weight and easy to configure. Moreover,
the fall detection and sensory feedback are incorporated for
better safety of the user.
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FIGURE 25. Statistical data analysis for channel 1.

FIGURE 26. Comparison of REST and AR referencing Methods.

C. LIMITATIONS AND FUTURE RESEARCH SCOPE
The sensors with high precision are very expensive and the
head set is causing in convenience to the user. The future
research should focus on reducing human workload by incor-
porating efficient controllers. Developing exoskeleton with
machine leaning algorithms that can match human intentions
are the way forward

VIII. CONCLUSION
A Brain-Controlled Lower-Limb Exoskeleton (BCLLE) with
unique structure and flexibility is designed. Online and offline
testing of the BCLLE on six different subjects was carried
out. WH Transform is utilized for feature extraction and

reconstruction. The results obtained indicate that it produces
good classification accuracy. SSVEP method is incorporated
using a visual interface, which improved human concentra-
tion. The healthy and paralyzed subjects were able to control
the exoskeleton for different movements such as backward
movement, forward movement, Sitting, Standing, Turn Left
and Turn Right. The sensory feedback was implemented
using angle sensors and rescue assistance is provided using
accelerometers. The adaptive mechanism used helped to
reduce the false rate of the system. The secure message trans-
mission is established using NTSA encryption, which helped
the caregiver to know the status of the paralyzed. In our
future work, we will be designing a full body exoskeleton
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compactable for the entire body and also customizable for
affected body parts. Machine learning approaches will be
incorporated to improve the classification accuracy in the
online phase.
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