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ABSTRACT Deep knowledge of how radio waves behave in a practical wireless channel is required for
effective planning and deployment of radio access networks in urban environments. Empirical propagation
models are popular for their simplicity, but they are prone to introduce high prediction errors. Different
heuristic methods and geospatial approaches have been developed to further reduce path loss prediction
error. However, the efficacy of these new techniques in built-up areas should be experimentally verified.
In this paper, the efficiencies of empirical, heuristic, and geospatial methods for signal fading predictions
in the very high frequency (VHF) and ultra-high frequency (UHF) bands in typical urban environments
are evaluated and analyzed. Electromagnetic field strength measurements are performed at different test
locations within four selected cities in Nigeria. The data collected are used to develop path loss models
based on artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and Kriging
techniques. The prediction results of the developed models are compared with those of selected empirical
models and fieldmeasured data. Apart fromEgli and ECC-33, the root mean squared error (RMSE) produced
by all other models under investigation are considered acceptable. Specifically, the ANN and ANFIS models
yielded the lowest prediction errors. However, the empirical models have the lowest standard deviation errors
across all the bands. The findings of this study will help radio network engineers to achieve efficient radio
coverage estimation; determine the optimal base station location; make a proper frequency allocation; select
the most suitable antenna; and perform interference feasibility studies.

INDEX TERMS ANFIS, artificial neural networks, backpropagation, path loss, Kriging, radio propagation.

I. INTRODUCTION
A study of the characteristics of radio waves in different
propagation environments is needed for an effective network
planning, and for the deployment of wireless communication
systems [1], [2]. The magnitude and direction of electro-
magnetic waves in a practical wireless channel is usually
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approving it for publication was Mauro Tucci.

random and highly unpredictable [3]. Meanwhile, a good
understanding of this phenomenon is needed to guarantee
good Quality of Service (QoS) and high data transmission
rate in radio access networks.

The efficiency of a wireless communication system
depends on the physical constituents of the propagation
environment. The presence of buildings, mountains, bill
boards, foliage, vehicles and other physical objects in a prac-
tical propagation environment usually obstructs the direct
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line-of-sight (LOS) of radio signal transmission. Hence,
transmitted radio signals often reach targeted receivers
through different propagation mechanisms in non-line-of-
sight (NLOS) scenarios.Refraction occurs when the transmit-
ted electromagnetic waves move from onemedium to another
medium whose refraction index is different from that of the
former [4]. Diffraction of radio signals takes place when
the transmission path is obstructed by large objects, causing
the bending of the radio wave [4]. Radio signal gets reflected
when it collides with an object whose dimension is large
relative to the wavelength of the radiated signal [4]. These
reflecting objects include the metallic surfaces of window
frames and building rooftops. Also, a radio signal is said
to have experienced scattering when the object’s dimension
is far less than the wavelength of the radio signal. In this
case, radiated electromagnetic waves are reflected towards
different directions. Scattering may be due to: precipitation
(drizzle, rain, sleet, snow and hail); suspensions (fog and
mist) and dust particles. Radio signals could also be absorbed
when it passes through dense materials like walls or floors,
trees and foliage.

The propagation of electromagnetic waves is usually influ-
enced by the atmospheric conditions of the propagation envi-
ronment [4]. Electromagnetic waves of higher frequencies,
having wavelengths of just a few millimeters, get attenu-
ated easily as the size of the transmitted wavelength tends
towards the size of the atmospheric agents, which may be rain
droplets, dust, snow or fogs. At Very Low Frequency (VLF),
Low Frequency (LF) and Medium Frequency (MF) bands,
radio waves propagate for a considerable distance close to
the surface of the Earth. This mode of propagation is adopted
in Amplitude Modulation (AM) broadcasting, which uses the
MF band. At High Frequency (HF) bands, the ground waves
tend to be absorbed by the Earth.

In practical urban propagation environment, different
copies of transmitted radio wave arrive at the receiver
by means of various propagation mechanisms. This phe-
nomenon is known as multipath propagation and this causes
signal fading at the receiver [4]. Considering a situation
where the magnitude of the received signal strength changes
frequently within a short duration, given that the distance
remains relatively unchanged, such attenuation of signal is
said to be of small-scale [5]. For large-scale fading, the mean
received signal strength will significantly reduce as the dis-
tance increases [6]. This earlier concept is also referred to
as path loss. Several propagation models have been devel-
oped for path loss estimations under different propagation
scenarios. Radio network engineers depend on these mod-
els to: achieve efficient radio coverage estimation; determine
the optimal base station location; make a proper frequency
allocation; select the most suitable antenna and; perform
interference feasibility studies.

Traditionally, each of the radio propagation models
reported in the literature is regarded as either deterministic,
semi-deterministic or empirical, depending on the model-
ing technique employed. A path loss model is said to be

deterministic if the resulting mathematical equations are
derived from the theoretical laws and principles of
physics [6]. Virtual simulation tools have been developed
for implementation of deterministic models towards accurate
path loss predictions [7]–[9]. These tools do not require
in-depth of the propagation environment and have been
proven to be efficient when deployed within its constraints.
Even if site-specific data about the propagation terrain is
available, the use of deterministic models does not always
guarantee accurate predictions [6]. One of the major chal-
lenges encountered in the use of deterministic models is the
computation complexity; deterministic models require too
many and well-detailed input information that may not be
easily obtained. On the contrary, empirical models such as
Hata model [10] and COST 231 model [11] require less
computation resources during implementation. They are very
easy to use but the prediction accuracy may not be as high
when compared to deterministic models. Other than the
effects of distance and other network parameters such as
frequency of transmission and antenna heights, the impact
of environmental constituents on radio wave propagation are
not be adequately captured in most empirical models [12].
The effectiveness of these models was tested in a diverse set
of environments and across several bands.

In some instances, some of these models were tuned to
improve prediction accuracy. Hejselbæk et al. [13] presented
electromagnetic field strength measurements at 917.5 MHz
in forest terrain for device-to-device (D2D) communications.
The measured loss was compared with some empirical path
loss models. The dominant path of propagation was through
the foliage, which resulted in high loss levels. However, it was
found that, at distances exceeding 1000 m, the measured
signal strength follows the fourth-power law. In [14], single-
slope path loss models were found to have deficiencies in
accurately capturing the effect of physical environments. For
this reason, the performance of multi-slope path loss mod-
els were investigated and compared with different path loss
models. García et al. [15] optimized the Recommendation
ITU-R.P.1812-4 path loss models to improve accuracy in
propagation path loss prediction for DTT systems in outdoor
environments of Caracas city, Venezuela. Other works are
found in [16], [17]. The common findings are inconsistencies
in the performance of existing models, and high prediction
errors. Therefore, it is important to explore better ways of
achieving simple path loss prediction models without com-
promising the required efficiency in terms of accuracy.

Recently, different ANN approaches were introduced to
predict signal path loss in wireless communication networks.
Ayadi et al. [18] developed a new method for multi-band
heterogeneous wireless network scenario using ANN tech-
nique. In [19], Multilayer Perceptron (MLP) neural model
was developed to predict path losses when radio signals are
transmitted at frequencies within Global System for Mobile
communications (GSM) band. The developed neural net-
work model predicts path loss based on three input vari-
ables namely: distance, transmit power and terrain elevation.
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The three-layered neural network (input, hidden, output)
was trained with field measured data based on Levenberg-
Marquardt (LM) learning rules. In order to ensure best-suited
network architecture, the number of hidden neurons was
iterated between 31 and 39. Themodel proved to bemore effi-
cient than the empirical models (Hata, Egli, COST-231 and
Ericsson) in terms of RMSE. Sotiroudis et al. [20] proposed
a model for urban environment and their findings showed
that ANN-based path loss model will perform efficiently, pro-
vided that the size of the neural network is correctly chosen.
In [21], a three-stage approach was employed to develop an
ANN model for the GSM band. The model used 33 neu-
rons in the hidden layer and a tansig (hyperbolic tangent
sigmoid) transfer activation functionwas also used. Similarly,
Ostlin et al. [22] evaluated the applicability of ANNmodels to
rural propagation environments in Australia. The training and
testing datasets were obtained from a commercial Code Divi-
sionMultiple Access (CDMA) network. The developed ANN
model’s accuracy and its ability to generalize well surpassed
those of traditional path loss models. Authors in [23] adopted
an ANFIS method to predict path loss within selected built-
up areas in Habiye, Istanbul. The frequency of transmission
covered in this study was limited to GSM 900 band. The
results obtained showed an increase in prediction accuracy
by 15% over Bertoni-Walfish model.

Geostatistical approach is another useful tool for predic-
tions of path loss in radio access networks. It can be used
to correct residual errors that are inherent in deterministic
models [24]. A geostatistical procedure named Kriging Inter-
polation Method (KIM) was introduced in [25]. In KIM,
an optimal interpolation is achieved in space following the
theory of ‘moving average’. KIM provides a good oppor-
tunity to minimize the challenges encountered during data
clustering. The concept of KIM is also popularly referred to
as Wiener-Kolmogorov [26]. In [27], a spatial interpolation
technique was applied to the measurement data. The Kriging
method consistently provided better predictions when com-
pared with empirical methods. In [28], an ‘Energy-Efficient
Map Interpolation for Sensor Fields’ was produced based on
Kriging technique. Furthermore, the authors in [29] investi-
gated the ability of some propagation models to determine
received signal strengths of radio signals propagated at TV
frequencies, considering multiple transmitter scenario in an
urban area.

Despite the inherent potential of Kriging methods in han-
dling prediction applications, as reported in the literature,
the capability of this technique for distance-based path loss
predictions in VHF/UHF bands has not yet been well investi-
gated. Moreover, the response of the heuristics and geospatial
methods to diverse environments has not been established,
neither have they been compared to empirical models. Fur-
thermore, to the best of our knowledge, there is no single
work found in the literature that attempted to compare the
effectiveness of these approaches with the prediction accura-
cies of popular empirical models across different frequency
bands and locations. Therefore, this present study seeks to

conduct an experimental investigation that compares the effi-
ciencies of empirical, heuristic and geospatial models for
path loss predictions in VHF/UHF bands. Models that are
developed accept numerical value of distance (in km) as
input variable to produce a corresponding path loss value
as an output. The performance of the developed models is
evaluated based on Mean Error (ME), RMSE and Standard
Deviation (SD) of the predicted path loss values relative to
the corresponding field measured path loss values. At the end
of the study, we found that the performance of the different
methods varied with the performance metrics used. It was
found that, in the VHF bands, across cities, the heuristic
methods (i.e. ANFIS and ANN) provide the lowest mean pre-
diction error. The overall average MPE across all bands and
routes were of:−0.00000819 dB (ANFIS), 0.660 dB (ANN),
3.09 dB (KRIGING), −7.02 dB (COST 231), 0.512 dB
(HATA),−11.74 dB (EGLI) and 15.54 dB (ECC-33). A simi-
lar trendwas observed for the UHF transmitters. However, the
Kriging method showed very high errors at some measure-
ment points. These errors could be as high as 105.04 dB – this
was due to the spacing between the path loss measurements.
Kriging method uses the concept of moving averages to
provide optimal interpolation across space based on spatial
distance, against observed values of neighboring data points.

The rest of the paper is organized as follows: Section II
explains the radio signal measurement and data collection
procedures. Also, the methodology associated with the model
development are presented in detail. Section III presents the
performance evaluation metrics used in this work. The results
and discussions are then presented in Section IV. Finally,
Section V concludes the paper.

II. METHODOLOGY AND DATA COLLECTION
In this section, the radio signal measurement procedure and
data collection method are presented. In addition to this, rele-
vant theoretical background of the heuristic methods, geospa-
tial methods and selected empirical path loss propagation
models are provided. Finally, the model development process
of each of the methods was well described.

A. MEASUREMENTS AND DATA COLLECTION PROCEDURE
Large-scale radio signal measurements were performed
within typical urban propagation terrains in four major cities
in Nigeria. The measurement campaigns were carried out
within selected urban areas of Ilorin (Latitude 8.4799◦ N,
Longitude 4.5418◦ E) in Kwara State, Osogbo (Latitude
7.7827◦ N, Longitude 4.5418◦ E) in Osun State, Kano (Lati-
tude 12.0022◦ N, Longitude 8.5920◦ E) in Kano State, and
Abuja (Latitude 9.0765◦ N, Longitude 7.3986◦ E) in the
Federal Capital Territory of Nigeria. The measurement loca-
tions are described using geographic map of Nigeria shown
in Figure 1. The locations are indicated with an arrow sign.
Pictorial views of Ilorin and Abuja are shown in Figure 1(b)
and Figure 1(c). The radio signal propagation terrain for both
Ilorin and Abuja are shown in Figure 2. The magnitude of the
strengths of radio signals received from 10 Base Transceiver
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FIGURE 1. Radio signal measurement locations.

FIGURE 2. Radio signal measurement locations (a) Radio signal
propagation in urban scenario. (b) Urban propagation terrain in Ilorin,
Kwara State, Nigeria. (c) Urban propagation terrain in Abuja, FCT, Nigeria.

Stations (BTS) and seven TV broadcast transmitters were
measured and recorded in log files. Five out of the 10 BTS
transmitters operate at Global System for GSM frequencies
(900 MHz and 1800 MHz) while the remaining five BTS
transmitters operate at Wideband Code Division Multiple
Access (WCDMA) frequency of 2100 MHz. Three of the
broadcast transmitters operate at frequencies within the VHF
band, while the remaining four broadcast transmitters operate
at frequencies within the UHF band.

The routes considered in the four cities were characterized
by a large number of diffraction scatters and the average dis-
tance between buildings range from 30 to 40m. The buildings
within the measurement locations are mostly concentrated
along the road. The terrain of Kano city is relatively flat when
compared with Ilorin or Osogbo. The land distance between
Kano and Osogbo is 639 km.

Path losses in radio signal transmission from five GSM
transmitters located in Kano and five WCDMA transmitters
located in Abuja were measured and recorded. The operat-
ing frequencies of the GSM transmitters and the WCDMA
transmitters are 1800 MHz and 2112.4 MHz respectively.
The measurement set-up consists of a dual band W99 Sony

Ericson mobile receiver, a Global Positioning System (GPS)
and a probe Dongle. These auxiliary devices were connected
to aWindows operating system laptop via its Universal Serial
Board (USB) ports. A Huawei Genex Probe, Genex share
drive testing software v6.0 and MapInfo professional, were
installed on the laptop, which was placed inside a car. The
car moved at mean velocity of 40 km per hour along pre-
defined routes. This velocity was chosen to reduce Doppler
effects. All drive tests were conducted within each of the
cities under investigation.While driving, the receiver was pre-
set to establish and sustain calls to a specific telephone line.
The duration of a call session was 30 seconds. At the end
of a call session, the next call session is initiated after few
seconds. When each drive test routine is completed, logs of
field measured radio signal path loss data were retrieved from
the radio networkmeasurement software and theywere stored
in an external memory device for further processing. The
data include the geographical information, BCCH received
signal strength (RSS), Absolute Radio Frequency Channel
Number (ARFCN), and scrambling codes (for 3G transmit-
ters). The mean values of the receiver height (hr ) and the
base station height (hb) are 1.5 m and 30 m respectively.
The maximum transmitter and receiver antenna separation
distance was about 2 km. Radio signals that emanated from
the transmitting antennas were only measured in the far field
region (distances greater than 100 m).

Signal losses in radio transmission from seven TV broad-
cast transmitters were measured using Agilent N9342C spec-
trum analyzer. The radio equipment was used as a receiver
and it has a Displayed Average Noise Level (DANL) of
−164 dBm per Hz. An omnidirectional antenna was con-
nected to the spectrum analyzer to facilitate radio signal
reception. A GPS was used to determine the location of the
receiver relative to the position of the transmitter. The GPS
was placed on top of the roof of themoving vehicle to enhance
line of sight with the geographic satellite. The logs of data
obtained were stored in an external memory device with high
storage capability.

Three of the seven broadcast transmitters were located in
Ilorin, Kwara State, Nigeria. These include Unilorin FM,
Harmony FM, and NTA Ilorin transmitters and their fre-
quencies of transmission are 89.30 MHz, 103.5 MHz and
203.25 MHz respectively. The broadcast transmitters are in
fixed locations with coordinates A (lat. 8◦ 29’ 21’’ N, long.
4◦ 40’ 28’’ E), B (lat. 8◦ 21’ 56’’ N, long. 4◦ 43’ 18’’ E)
and C (lat. 8◦ 25’ 55’’ N, long. 4◦ 36’ 25’’ E) respectively.
Three routes (i.e. routes 1 to 3) were visited. Three measure-
ments routes (i.e. routes 4 – 6) were also visited in Osogbo,
Osun State, Nigeria. The four UHF broadcast transmitters in
Osogbo are: NDTV, NTA Ile-Ife, OSBC and NTA Osogbo.
These transmitters radiate at frequencies of 479.25 MHz,
615.25 MHz, 559.25 MHz and 695.25 MHz respectively.
Also, all the transmitters were deployed at fixed locations,
being that details about their coordinates, heights and power
levels can be found in Table 1. The number of measured sam-
ples was reduced to only 500 across all the routes. The RSS
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TABLE 1. Radio parameters of the seven TV broadcast transmitters.

levels for each route were converted to path losses. The novel
measurement data obtained shall be made public and freely
available in open-access data articles similar to previous
works in [30]–[32].

B. ARTIFICIAL NEURAL NETWORK MODEL DEVELOPMENT
A single hidden layer and a sufficiently large number of
neurons can well approximate any arbitrary continuous func-
tion [33]. Theoretical works and many experimental results
have shown that a single hidden layer is sufficient for
ANN to approximate any complex nonlinear function. Many
researchers in the field of ANN suggest that it is usually
unnecessary to use more than one hidden layer in a multilayer
feedforward network. Indeed, many experimental results
confirmed that one hidden layer is enough for most fore-
casting/regression/prediction problems [34]–[38]. A single-
layered architecture was chosen for ANN path loss model
development. The input layer is made up of three neurons
which accept numeric values of the input variables: Tx-Rx
separation distance, height of the receiver and terrain eleva-
tion. TheANNpath loss model has a single output (mean path
loss). With the availability of field measured data, the neural
network was trained to map instances of sets of input vari-
ables to their corresponding output. The path loss predictions
were modelled, trained, and simulated for the propagation
environments using the MATLAB R2016a Neural Network
Toolbox (MathWorks Inc). The neural network was trained
using backpropagation learning algorithm. The input values
were transformed to a format that is adapted to the hidden
layer. Linear activation functions were used at both input and
output layer of the neural network. The hyperbolic tangent
sigmoid transfer function was used in the single hidden layer,
while the linear transfer function was used in the output layer
of the ANN as practically demonstrated across different fields
in the literature [39]–[43]. The mathematical expression for
the hyperbolic tangent sigmoid transfer function is given by
Equation (1):

tansig (n) =
2(

1+ e−2n
)
− 1

(1)

In order to achieve faster convergence during model train-
ing, the scale conjugate gradient backpropagation algorithm
was used. An optimal number of hidden neuronswas obtained

by performing experiments with varying incremental val-
ues. Data obtained at different measurement locations were
carefully sorted, merged and divided into training, testing
and validation datasets. When developing an ANN model,
the available data set was randomly divided into two parts:
70% of the complete dataset was used for training of the
network, while the remaining 30% was used for model
validation and testing, i.e., 15% for model validation and
15% for model testing, as explained in [44], [45]. The
challenge of large variations in numeric values of input
data was addressed using the min-max normalization proce-
dure given by Equation (2). The parameters of ANN were
optimized using the Levenberg–Marquardt (LM) algorithm
as the model training function [46], [47]. The Levenberg–
Marquardt (L–M) algorithm outperformed simple gradient
descent and many other conjugate gradient methods in a wide
variety of problems [48]–[50]. LM is a blend of local search
properties of Gauss–Newton with consistent error decrease
provided by the gradient descent algorithm. The LM algo-
rithm was implemented using its function ‘trainlm’ available
in MATLAB 2016a. Previous research works have validated
the optimization efficiency of LM algorithm in diverse prac-
tical contexts [34], [51]–[53]. The number of neurons in
the single hidden layer, learning rate and epoch size were
selected by means of trial and error, selecting the configura-
tion that resulted in smaller prediction errors. In each epoch
of training, each member of the train set was exposed to the
network and the weights on the neuron connections changed
such that the expectation of the network moves closer to
the actual target (back-propagation). After the network has
undergone enough epochs of training such that there is not a
significant difference between the expectation of the network
and the actual target values, the network is said to have been
trained [54]. An epoch size of 1000 was used and the program
iterated until convergence was achieved. The training process
was repeated until a correlation coefficient value (R) of 0.9 or
more was achieved.

pi =
yi − ymin
ymax − ymin

(m− n)+ n (2)

where
pi = normalized input value, m = upper normaliza-

tion limit = 0.9, n = lower normalization limit = −0.9,
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ymin = least numeric value of the input variable and ymax =
highest numeric value of the input variable.

C. ADAPTIVE NEURO-FUZZY INFERENCE
SYSTEM MODEL DEVELOPMENT
In this work, ANFIS model is made up of five layers with
fixed or adaptive nodes. First-order Sugeno-Fuzzymodel was
adopted as explained in [55]. The node in the first layer is
adaptable and it is defined by L1k = µAk (m) ; where k = 1,
2; m is the input to k−th node, Ak is the alterable language
related to this node and the membership function of Ak is
µAk (m), normally taken as;

µAk (m) =
1

1+
[(

m−fk
dk

)2]ek (3)

{dk , ek , fk} forms a set called the antecedent parameters
set. TheMembership Function (MF),µ, is the degree or grade
of membership of an element in a fuzzy set, which must vary
between 0 and 1. Eqn. (3) represents the generalised bell
membership function. This was maintained, as it is the most
widely used one [55], and it has also performed quite well
in our previous works [56], [57]. The second and third layers
are fixed, while, the fourth layer is adaptable, details of each
of these layers could be found in [56]. The output of the fifth
layer is the summation of all the incoming signals based on
the rule defined in [55], given by:

L5i = zp =
∑2

i=1
wifi = (w1x) p1 + (w1y) q1 + (w1) r1
+ (w2x) p2 + (w2y) q2 + (w2)r2 (4)

where zp is the network predicted output. The optimization
method used for training the network in this work is the
hybrid method, which combines both the backpropagation
gradient descent algorithm and least square error estimates;
these are used to establish the input and output parameters,
respectively. The output (consequent) parameters pi, qi and
ri are adjusted first using the least squares algorithm and
those of the input (antecedent) parameters di, ei, and fi by
back propagating the faults from the output using the gradient
descent method until the training is completed. The least
squares estimate algorithm is obtained by rewriting Eqn. (5),
as shown at the bottom of this page, in the matrix form [56],
where n is the total number of training data (input/output)
pairs and z(n)p are the network predicted outputs. The errors
between the desired and predicted outputs are propagated
backwards from the output layer to the input layer using

the backpropagation algorithm, so as to update the synaptic
weights:

The weight update for the input layer is given by Eqn. (6):

w(k)i (M + 1) =

{
w(k)i (M)+ wi(k)

w(k)
i (M)+ wi(k)

(6)

where k is the input/output training pair and M represents
each layer starting from the output backwards.

The structure of ANFIS models can be generated by three
Fuzzy Inference Systems (FIS), namely grid partition, sub-
tractive clustering, and fuzzy c-means (FCM). In this study,
we applied the subtractive clustering method to classify the
input data and to make the ANFIS model rules as the number
of rules employed in this method is relatively low. This makes
it convenient for using in real application problems [58].

D. KRIGING MODEL DEVELOPMENT
An ordinary Kriging interpolation algorithm was utilized in
this work. The study area was divided into the desired number
of meshes and the position coordinates (x, y) were computed
for each of the corresponding mesh points. Let u denote a
point in which the path loss is unknown and let V (u) =
{1, . . . ,Nu} denote the set of points in the surrounding point
u such that value of the path loss is known at each point.
A neighborhood of point u in the (x, y) plane was defined
and the surveyed points in this neighborhood were mapped to
the sampled path loss data based on the number of data. The
predicted path loss was calculated as a linear combination of
the weight (Wi) and the neighborhood (known) path loss (Zi)
using Equation (7). Equation (8) is a constraint that ensures
that the set of weights minimizes the error variance and that
the mean error is zero under unbiased conditions. The lag
distances (h) and the semi-variogram (γi,j) were computed
for a range of lags using Equations (9) and (10), respectively.
The variogram model type is the only discrete parameter, and
the three commonly used basic variogram models include
spherical, exponential and Gaussian. The spherical variogram
yielded good results in [59]. The semivariogram was fitted
with the spherical model using Equation (11). This model was
chosen because it is the least complex and most generally uti-
lized variogrammodel [16]. Amesh grid size of 500 was used
as it provides optimal interpolation across themesh grid based
on a spatial lag (distance) relationship or regression with
respect to the observed path losses of the neighboring path
loss points. The minimum variance method was employed
in calculating the weights and the optimal weights were


z(1)p
z(2)p
...

z(n)p

 =


w1
(1)x

(1)
w1

(1)y
(1)

w1
(1)

w1
(2)x

(2)
w1

(2)y
(2)

w1
(2)

...
...

...

w1
(n)x

(n)
w1

(n)y
(n)

w1
(n)

w2
(1)x

(1)
w2

(1)y
(1)

w2
(1)

w2
(2)x

(2)
w2

(2)y
(2)

w2
(2)

...
...

...

w2
(n)x

(n)
w2

(n)y
(n)

w2
(n)





p1
q1
r1
p2
q2
r2


(5)
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calculated with respect to Equation (12). Finally, the Kriging
variance was estimated using Equation (13):

Ẑu =
∑

i∈V (u)
WiZi (7)

where∑
i∈V (u)

Wi = 1 (8)

h =
(
xj,yj

)
− (x i,yi) (9)

γi,j = γ
(
hi,j
)
=

1
2N (h)

∑
(Z (xi,yi)−Z (xj,yj))2 (10)

γ (hi,j) =


0, hi,j = 0

C0+C1

[
3h
2R −

1
2

( h
R

)3]
, 0 < hi,j < R

C0 + C1, hi,j ≥ R

(11)

W1
Wn
λ

 =
 γ (h1,1) γ (h1,Nu ) 1
γ (hNu,1) γ (hNu,Nu ) 1

1 1 0

−1 γ (h1,u)
γ (hNu,Nu )

1

 (12)

σ 2
ẑu
=

∑
i∈V (u)

Wiγ
(
hi,u

)
+ λ (13)

where h is the distance between two path loss points,
C0 represents the Nugget effect parameter, R denotes
range and C0 + C1 represents the Sill parameter. Moreover,
γ
(
hi,j
)
denotes a semivariogram as a function of a lag dis-

tance. The Lagrange parameter λ, λwas introduced to reduce
the Kriging error. The measured path losses for each route
across all the bands were used to compare with the predicted
path losses obtained with ANN, ANFIS and Kriging and
Empirical path loss models. The empirical path loss propaga-
tion models considered in this work are: the Okumura-Hata,
COST 231, Egli and ECC-33 [30]. Thesemodels were chosen
as they are the commonly and widely used empirical models
today for path loss prediction in the VHF and UHF bands
under study.

E. PERFORMANCE EVALUATION METRICS
Prediction Error, Mean Prediction Error, Maximum Error,
Standard Deviation Error, and Root Mean Square Error are
the metrics used for the performance analysis of the models
relative to the measured loss. Acceptable values for RMSE
are 6–7 dB for urban areas, 10–15 dB for suburban and rural
areas, while the best fit for all the considered metrics are
for values that are closer to 0 [4]. The Kernel Distribution
Estimate (KDE), which is a non-parametric way of estimating
the probability density function of a random variable, was
equally used to gauge the performances of all the models.
Using this metric, the model has to firstly, follow a normal
distribution curve, and secondly, the error counts close to 0 dB
would dominate the frequency counts.

III. RESULTS AND DISCUSSIONS
In this section we present the performance evaluation results
of the three methods used in predicting path losses. For
each route visited, we compared the measured loss with the
predictions of the ANN, ANFIS, Kriging, Hata, COST 231,
Egli and ECC-33 models.

FIGURE 3. Path loss with distance for Unilorin Route 1.

FIGURE 4. Path loss with distance for NTA_Ilorin Route 1.

FIGURE 5. Path loss with distance for Hamony Route 1.

Figs. 3 to 5 show the graphical depiction of the measured
and predicted path losses as a function of distance for the
Unilorin, NTA, and Harmony transmitters along route 1.
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In Fig. 3, large scale fading was observed due to shadowing
andmultipath as a result of different diffracting objects within
the transmission path. This route is considered to be urban,
being characterized as a mixed path with hills, valleys and
thick vegetation within the area. We also observed that the
ANN, ANFIS and Kriging methods mimic the measured
path loss with predictions close to that of the measured
path loss. The prediction of the Kriging model was found
to have followed a smoothed variation of the measured path
loss with minimal prediction error across the measurement
route, except at some coordinates (distances) from the refer-
ence base station (i.e., 0.431-0.539 km, 2.21 km, 4.61 km,
and 4.85 km) where the method overshot the path loss.
We have also employed the ANN and ANFIS, which are the
twowidely, used heuristic methods, in the path loss prediction
process.

The ANN prediction closely aligns with the measured
loss. However, the ANFIS method maps inputs to outputs.
Overall, it was observed that the ANFIS predictions con-
tend with those of ANN. The empirical path loss models,
i.e., COST 231 and Hata provided optimum predictions
for distances greater than 2 km, while Egli underesti-
mated and ECC-33 overestimated the loss. The average
losses at a distance of 1 km are: 94.11 dB (measured),
97.24 dB (Kriging), 94.17 dB (ANFIS), 94.86 dB (ANN),
92.93 dB (Hata), 84.77 dB (COST 231), 73.53 dB (Egli) and
109.78 dB (ECC-33).

In Figs. 4 and 5, similar trends were observed for the
NTA and Harmony transmitters. The fading observed on this
scenario was quite higher than that of Unilorin, although
the terrain profile along the specific measurement route
(e.g. route 1) is the same; the terrain elevation (i.e. Rx height)
is also the same. However, the clutter cover along each of
the communication paths between the transmitters and the
receiver were different. The average loss along this path is
128.9 dB, while 109 dB were measured for the Unilorin-Rx
path, all within the span of 5 - 10 km. This high measured
loss for the NTA transmitter was attributed to the presence
of thick vegetation covering the entire communications path,
which causes scattering and absorption of the measured far
field signal. For the predicting models, a sharp spike was
observed at d = 5.56 km in Fig. 5, and at d = 14.3
and 20 km in Fig. 5 for the Kriging method. These spikes
resulted in a high prediction error and this severely affects the
RMSE performance of the model. Surprisingly, the physical
objects (clutters) along the communication paths for each of
the transmitters do not have any effect on the predictions
of the empirical models. The prediction of these models
solely depends on the system parameters of the propagation
environment (i.e. frequency, height and distance). In Fig. 5,
all the empirical path loss models provide good predictions,
except for the ECC-33 model, that overestimated the path
loss. From this scenario, the geospatial (i.e. Kriging) method
is purely dependent on the path loss data, while the heuristic
approaches (i.e., ANFIS and ANN) partly depend on the
clutter types.

FIGURE 6. Path loss with distance for NTA_Osogbo Route 1.

FIGURE 7. Path loss with distance for NTA_IFE Route 1.

In Figs. 6 to 9, the path loss of the measured and the
models’ predicted losses for the UHF transmitters along
route 1 were presented. Similarly, the results obtained with
the ANFIS, ANN and Kriging methods mimicked the mea-
sured path loss, providing an almost perfect prediction due
to the density of the data set, as 100 data sets were used for
these routes. For the empirical path loss models, the trend is
also similar to that of Figs. 3 and 5, where the ECC-33 and
Egli models overestimated and underestimated the losses,
respectively. In Fig. 7, the Egli model provides an optimum
prediction over all other empirical models, while, in Fig. 8,
none of the models provides a good fitting. These deviations
are results of the models’ validity and the different clutter
effects along the communications path.

Although the terrain elevation along the route is the
same (measurements were conducted simultaneously) and
the receiver height (ht) is also the same, they nonetheless
experience varying clutter types along the transmission path
(TX-RX). Figs. 10 and 11 depict the measured and predicted
path losses for the cellular bands.Multipath fading and clutter

77300 VOLUME 7, 2019



N. Faruk et al.: Path Loss Predictions in the VHF and UHF Bands Within Urban Environments

FIGURE 8. Path loss with distance for NTA_Ibukun Route 1.

FIGURE 9. Path loss with distance for OSBC Route 1.

effects were noticeable on the two curves with significant
impacts on the NodeB 5 due to its operating frequency. Fur-
thermore, we computed theMPE along all the three routes for
the VHF andUHF transmitters. TheMPE is the average value
of the predicted error (i.e., the difference between the model’s
predicted path loss (Ppi ) at distance i and the measured path
loss (Pmi ) of sample (n) along route j.

For the VHF transmitters, the overall average MPE
across all the bands and routes are: −0.00000819 dB
(ANFIS), 0.660 dB (ANN), 3.09 dB (KRIGING), −7.02 dB
(COST 231), 0.512 dB (HATA), −11.74 dB (EGLI) and
15.54 dB (ECC-33). Nevertheless, some methods show very
high errors at some measurement points. For example,
the Kriging method’s maximum error was 82.04 dB along
route 1 for the Unilorin transmitter. For the UHF transmitters,
the Hata model overestimated loss in all routes, except for
route 1 for the Unilorin scenario. COST 231 also has an
anomaly, as it now overestimated the loss when compared to

FIGURE 10. Path loss with distance for 2G BTS 2.

FIGURE 11. Path loss with distance for Node B 5.

VHF bands. For the cellular bands, the average MPE across
2G BTS 1-5 is: 0.00000426 dB (ANFIS), 1.152 dB (ANN),
3.6985 dB (KRIGING), 12.5505 dB (COST 231), 10.5361dB
(HATA), −4.784 dB (EGLI), and 28.7304 dB (ECC-33); for
3G BTS, Node Bs 1-5 are: 0.00000303 dB (ANFIS), 1.99 dB
(ANN), 0.7592 dB (KRIGING), 5.6860 dB (COST 231),
3.2023 dB (HATA), −4.4656 dB (EGLI), and 21.6166 dB
(ECC-31).

In Fig. 12 the variation of the errors as a function of
the distance from the transmitter is given. In this scenario,
the Unilorin Tx was used, and it was discovered that, for
distances of less than 1 km from the transmitter, all the
models underestimated the path loss. Above 1 km, the Hata,
COST 231, and Egli models underestimated loss and con-
verged towards 0 dB after 3 km, while the ECC model over-
estimated the path losses, showing a high PE across the entire
distance range. The high errors were due to the initial offset
parameters defined by the models. Moreover, at d < 1 km
from the transmitter, LOS clearance between the Tx and the
Rx and the free space loss was 71.46 + 20 × log d , while
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FIGURE 12. Error and radial distance for Unilorin TX along route 1.

FIGURE 13. Empirical cumulative distribution of the prediction error for
Unilorin R1.

the loss computed with the HATA model was 92.94+ 31.8×
log d . This resulted in an excess loss of 21 dB for the HATA
model, while for the other models it was 40 dB (COST 231),
44 dB (Egli), and 62 dB (ECC-33).

However, these do not affect the ANFIS, ANN and Kriging
methods, except for the spikes, which accounted for path loss
overestimation, as illustrated in Fig. 3. All these errors were
normalized and as an illustration, in Figs. 13-15 we present
the empirical cumulative distribution of the prediction errors
for all the methods for the Unilorin Tx route 1, 2G BTS 2 and
NodeB 5. These figures show how the errors were distributed
across the bands. In all the cases, it was observed that the
heuristic and the geospatial methods skewed towards a 0dB
error margin, while the empirical models yielded a high
cumulative error distribution. In Fig. 13, the error distribution
for the Kriging method was quite high for the CDF 0.6-1,
which was due to the overshoot in path loss predictions,
as observed in Fig. 11.

FIGURE 14. Empirical cumulative distribution of the prediction error for
GSM BTS 2.

FIGURE 15. Empirical cumulative distribution of the prediction error for
Node B5.

In Tables 2 and 3, the statistical analysis of the error for
each method/model across all the routes for the VHF and
UHF transmitters are provided. Table 2 shows the RMSE
for each of the models and for each of the VHF trans-
mitters. The RMSE between 0-7 dB is considered accept-
able for urban areas [36], although for typical suburban and
rural areas, up to 10-15 dB can still be acceptable [37].
For the Unilorin transmitter, the average RMSE values are
4.82 dB, 5.3 dB, 12.03 dB, 12.48 dB, 9.11 dB, 16.51 dB
and 18.63 dB for the ANFIS, ANN, KRIGING, COST 231,
HATA, EGLI and ECC-33 models, respectively. Based on
these findings, the ANFIS method is shown to provide the
lowest RMSE across all routes, followed by ANN, Hata,
Kriging, COST 231, Egli and finally ECC-33. However,
for the NTA transmitter, ANN has the least RMSE (4.28),
followed by Kriging with 4.33, and ANFIS with 4.95. The
COST 231 and Hata are still within the range that could be
considered acceptable for path loss prediction. Finally, for
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TABLE 2. RMSE performance metrics for the VHF transmitter models.

TABLE 3. RMSE performance metrics for the UHF transmitter models.

the Harmony transmitter, ANN still maintained the best per-
formance with an RMSE of 4.54 dB, followed by ANFIS
with 5.84 dB and then the COST 231, Hata and Egli mod-
els. For Kriging and ECC-33, the RMSE values were quite
high. The Standard Deviation Error (SDE) across all the
models, transmitters and routes were computed and it was
found to be quite high for the Unilorin Tx when compared to
other transmitters. This was due to the high prediction errors
recorded across the models for d < 1 km. Along this route,
the SDE for ANN was 3.71 dB and this was the lowest one
when compared to 8.27 dB (ANFIS), 11.79 dB (KRIGING),
16.09 dB (COST 231), 16.09 dB (HATA), 20.24 dB (EGLI)
and 14.98 dB (ECC-33).

The Route-on-Route average SDE for the methods across
all the bands are: 6.03 dB (ANN), 4.31 dB (ANFIS), 12.55 dB
(KRIGING), 2.8 dB (COST 231), 2.82 dB (HATA), 5.16 dB
(EGLI), and 4.30 dB (ECC-33). From this analysis, the
Kriging method has the highest SDE, which was due to
sudden spikes on the PE observed. However, the SDE for the
UHF transmitters is higher than that of VHF, although NDTV
introduces fewer errors. For the cellular bands, the aver-
age RMSE across 2G BTS 1-5 are: 6.19 dB (ANFIS),
2.17 dB (ANN), 12.22 dB (KRIGING), 4.21 dB (COST 231),
4.21 dB (HATA), 4.784 dB (EGLI) and 3.293 dB (ECC-33);
for 3G BTS, Node Bs 1-5 are: 5.64 dB (ANFIS), 1.96 dB
(ANN), 9.4930 dB (KRIGING), 3.93 dB (COST 231),
3.93 dB (HATA), 4.46 dB (EGLI) and 3.15 dB (ECC-33).
Using this metric, for the broadcast frequencies, the empirical
path loss models (i.e., Hata and COST 231) provide less error,
followed by ECC-33.

For the cellular frequencies, ANN has the best overall
performance, followed by the empirical models. It is worth
noting that the fitness of the ANNmodel for these frequencies
was possible, as a result of the high data density. The path
loss data obtained was small, which is due to the coverage
distance of the base stations, mostly being less than 1.5 km
and, as such, the ANN model tends to learn fast and provides
fewer errors. The Kriging method consistently yielded a high
SDE, and ANFIS was found to be a solution in-between the
two methods. Therefore, the three methods can be ranked in
order of performance as follows: empirical models, heuris-
tic methods and geospatial methods. The empirical models
yielded the best results using this metric, as these models
are independent of the underlying physical objects (clutters)
along the communication paths, which resulted in a lower loss
deviation from the local mean. Regarding the heuristic and
geospatial methods, these are dependent on themeasured path
losses, which are mostly affected by fading and shadowing
due to the presence of clutters.

IV. CONCLUSION
In this paper, heuristic methods, geospatial and empirical
models in predicting path loss in the VHF and UHF bands
were presented for specified routes. Electromagnetic field
strength measurements were conducted using drive tests at
four different urban environments across cellular and broad-
casting bands to test their effectiveness and also to evaluate
the prediction ability of the Artificial Neural Network, Adap-
tive Neural Fuzzy Inference Systems, Kriging, COST-231,
HATA, Egli and ECC-33 models.
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The performance of the different methods varied with
the performance metrics used. It was found that, in the
VHF bands, across cities, the heuristic methods (i.e. ANFIS
and ANN) provide the lowest mean prediction error. The
overall average MPE across all bands and routes were of:
−0.00000819 dB (ANFIS), 0.660 dB (ANN), 3.09 dB
(KRIGING), −7.02 dB (COST 231), 0.512 dB (HATA),
−11.74 dB (EGLI) and 15.54 dB (ECC-33). A similar trend
was observed for the UHF transmitters. However, the Kriging
method showed very high errors at somemeasurement points.
These errors could be as high as 105.04 dB - this was due to
the inter space between the path loss measurements. As the
method uses the concept of moving averages to provide
optimal interpolation across space based on spatial distance,
against observed values of neighboring data points.

In terms of the RMSE, the heuristic methods still provided
the least RMSE across the bands for the broadcasting and
cellular approaches, followed by the geospatial and empirical
methods, in that order. Nonetheless, it was discovered that, for
some instances, the empirical models performed better than
the geospatial ones; in all cases, though, heuristic methods-
maintained consistency in their performance. The Route-on
Route average standard SDE for the methods showed that
the empirical models have lower error deviations from the
mean when compared with the other methods. This occurred
because empirical models do not account for the dynamic
variation of the path loss due to physical objects such as the
terrain and clutter effects along the communication paths,
while the heuristic and geospatial methods depend on the
actual measured path loss, which is mostly affected by fading
and shadowing. The Kriging method has the highest SDE.
This was due to sudden spikes on the PE observed as a result
of data density and neighborhood distance of the path loss
data.

This work has discovered that the three methods performed
quite well, depending on the performance metrics used in
gauging them. The RMSE for all the methods falls within
acceptable values, except for the Egli and ECC-33 models.
However, all the empirical models provided the least standard
deviation errors when compared to the two other methods.
It should be noted that the geospatial method required sample
measurements to be taken before predictions can be done
within the neighborhoods. This approach, standalone, cannot
be used to make predictions. The heuristic approach can
be used to make predictions based on the trained network,
while the empirical methods do not require training mea-
surements to make predictions; in fact, only the required
propagation parameters are needed. Therefore, this indicates
that empirical models are still the simplest and the most
widely applicable among the three methods. In terms of pre-
diction accuracy, heuristic methods are the best. Therefore,
a trade-off is needed to balance between simplicity, ease of
application, and accuracy. This paper thereby emphasizes
that the empirical path loss propagation models can still be
improved upon to provide an optimum prediction that is

comparable to other methods. In particular, we consider that
there is further scope for refinement in order to reduce the
prediction error by incorporating other ambient parameters
into the existing propagation models. A hybrid of the two
methods, i.e., heuristic and empirical, can improve the appli-
cation of heuristic methods and may possibly decrease the
high prediction errors associated with empirical models. This
matter will be addressed in future works.
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