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ABSTRACT Small cell lung cancer (SCLC) is one of the most common types of malignant tumors,
characterized by rapid growth and early metastasis spread. Early and accurate diagnosis of SCLC is vital
for improved survival. Accurate cancer segmentation helps doctors understand the location and size of
cancer and make better diagnostic decisions. However, manual segmentation of lung cancers from large
amounts of medical images is a time-consuming and challenging task. In this paper, we propose a hybrid
segmentation network (referred to as HSN) based on convolutional neural network (CNN) to automatically
segment SCLC from computed tomography (CT) images. The design philosophy of our model is to combine
a lightweight 3D CNN to learn long-range 3D contextual information and a 2D CNN to learn fine-grained
semantic information, which is essential for accurate cancer segmentation. We propose a hybrid features
fusion module to effectively fuse the 2D and 3D features and to jointly train these two CNNs. We utilize
a generalized Dice loss function to tackle the severe class imbalance problem in data. A dataset consists
of 134 CT scans was constructed to evaluate our model. Our model achieved high performances with a mean
Dice score of 0.888, a mean sensitivity score of 0.872 and a mean precision of 0.909, outperforming the

other state-of-the-art 2D and 3D CNN methods by a large margin.

INDEX TERMS Small cell lung cancer, CT, deep convolutional neural network, hybrid features fusion.

I. INTRODUCTION

Lung cancer is one of the most common types of malignant
tumors in the world. It is the second most common cancer
among both men and women in the United States [1], the first
most common cancer among men and the second most com-
mon cancer among women in China [2]. Moreover, lung
cancer is the leading cause of cancer death among both men
and women in both countries. Small cell lung cancer (SCLC)
and non-small cell lung cancer (NSCLC) are the two main
types of lung cancers. SCLC accounts for 15-20% of all lung
cancer cases. Compared with NSCLC, SCLC is characterized
by high malignancy, rapid progress, early metastasis spread,
and poor prognosis, and has a severe impact on the physical
and mental health of patients [3]. SCLC can be staged into
two categories: limited stage and extensive stage. Being at a
specific stage indicates how much cancer has spread through
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the body. In the limited stage, cancer is limited to one side
of the chest, while in the extensive stage, cancer has spread
throughout the lung to the lymph nodes or has metastasized
to other parts of the body [4]. Unfortunately, about two in
three patients with SCLC are in extensive stage upon the first
diagnosis and require systemic chemotherapy [5].
Computed tomography (CT) is the primary imaging
modality used to evaluate the tumor and determine the stage
of the disease [6]. Contrast-enhanced CT can provide cancer
images with high resolution and clear boundaries, which is
useful to reveal cancer characteristics. Since SCLC is an
aggressive malignancy characterized by rapid growth and
early metastatic spread, fast localization and delineation of
cancer regions in CT scans are very important for diagnosis
and treatment planning. Accurate segmentation of NCLS
can also assist clinicians in predicting the prognostic in
SCLC patients. In our recent study [7], it is shown that
the radiomics features extracted from cancer regions can
help to predict the clinical response of SCLC patients to
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FIGURE 1. lllustration of the challenges in SCLC segmentation.The red contours correspond to cancers produced by experienced

radiologists.

first-line chemotherapy. However, manual segmentation is a
time-consuming and tedious task and is subject to significant
inter- and intra-observer variations, which limit its value
in the clinical settings. Therefore, automatic segmentation
methods are highly demanded.

Approximately 90%-95% of SCLCs derive from lobar
or main bronchi and are characterized by mediastinal or
hilar lymphadenopathy. In a minority of cases, SCLCs
appear as peripheral nodules or relatively small bronchial
tumor [4]. However, the CT features of SCLC have not been
fully investigated [8]. The complexity of CT characteristics
makes automatic segmentation of SCLC a challenging task.
We show some examples of labeled SCLC CT scans to
demonstrate the challenges in Fig. 1. We can see from this fig-
ure that cancers may appear with different shapes and sizes.

Some methods have been proposed for the automatic seg-
mentation of lung lesions, such as pulmonary nodule [9], [10]
and NSCLC [11]. However, to the best of our knowledge,
no previous study has dedicated to the automatic segmenta-
tion of SCLC. Existing methods for medical image segmen-
tation can be divided into two major categories: (1) methods
based on hand-crafted features and (2) methods based on
data-driven deep features [12]. The first type of approach is
usually related to machine learning, where a discriminative
model is trained using hand-crafted features extracted from
the raw data. After extracting different global and local fea-
tures, a classifier is trained to determine which class each
voxel belongs to. On the contrary, the methods based on
data-driven deep features can learn more robust features spe-
cific to the task at hand, resulting in better segmentation
performance. In this paper, we focus on the convolutional
neural network (CNN), a data-driven deep features based
method that has been widely used in the field of medical
image analysis [13].
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Although initially developed for image classification,
CNNs can be used for semantic segmentation after some
modifications. The straightforward approach is to train the
model based on image patches and classify the labels of the
center pixels [14]. An obvious limitation of this approach
is that the feature representation is restricted to each patch,
ignoring the global features that are very important for seg-
mentation. The FCN proposed by Long et al. [15] can take
arbitrary size image as input and produce the output with
the same size as input. The approach solves the limitation of
the method based on central pixel classification by replac-
ing fully connected layers with 1 x 1 convolutions and
using upsampling layers to restore the original size. Later,
U-Net [16] modified FCN by adding multiple upsampling
layers and concatenating multi-scale features for medical
images segmentation.

In the field of medical image analysis, especially for MRI
and CT images, a significant difference compared to natural
images is the inherent volumetric nature of the data. A slice-
by-slice learning strategy is inefficient and cannot capture
inter-slice correlations. One direct way to learn volumetric
information representations in medical images is to extend the
convolution kernels from 2D to 3D, such as 3D U-Net [17]
and V-Net [18]. In this way, the networks can take full advan-
tage of the 3D context for better performance. Despite giving
encouraging performances, 3D CNN has more parameters
than 2D CNN, and the training of 3D CNN is computationally
expensive, which limits the construction of very deep net-
works. Some works use downsampled images or 3D patches
to train 3D models, but this can lead to loss of image informa-
tion and zero-derivative problem [19]. In addition, volumetric
medical images are usually anisotropic [20]. Take our data
as an example; the voxel scale in depth (the z-axis, Smm)
is much larger than that in the xy plane (0.58-0.98mm).
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FIGURE 2. This figure shows the schematic structure of our proposed HSN.

Directly performing 3D convolutions with isotropic kernels
on these anisotropic volumetric images could be problematic.
A simple approach to address this problem is to re-sample all
images to isotropic resolution, but this will result in much
larger images, further increasing the computational cost and
memory demand.

To solve the above problems, we propose a novel method
called hybrid segmentation network (HSN) for SCLC seg-
mentation from 3D CT images that combines the advantages
of both 2D and 3D CNN. The design philosophy of HSN is
clear. For 3D CNN, we build a lightweight network similar
to 3D U-Net but use downsampled images and separable
3D convolutions to reduce the memory requirement and the
computational cost. For 2D CNN, we use dilated convolutions
to learn fine-grained semantic information while at the same
time maintaining high spatial resolution. We then propose a
hybrid features fusion module (HFFM) to fuse the 2D and 3D
features effectively. In this way, the 2D CNN can leverage the
3D context extracted from 3D CNN. In addition, we utilize
both 2D loss and 3D loss to optimize the network jointly.

In summary, the main contributions of this work are sum-
marized as follows:

o« We propose a hybrid segmentation network (HSN),
which consists of a lightweight 3D CNN to learn
long-range 3D contextual information and a 2D CNN
to capture fine-grained semantic information.

o We propose a multiscale separable convolution (MSC)
block to capture multiscale 3D context from anisotropic
dimensional CT images.

« We propose a hybrid features fusion module (HFFM) to
effectively fuse the 3D and 2D features and jointly train
the hybrid network.

o We apply the proposed model in a CT dataset containing
134 SCLC patients. Results show that the proposed
model achieves high performance in this challenging
dataset.
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The remainder of this paper is organized as follows.
In section II, we describe the technical details of our pro-
posed HSN model. In section III, we present the experimental
results and discussions. This paper is finally concluded in
Section I'V.

Il. METHODS

The proposed segmentation framework is shown in Fig. 2.
Our model is an end-to-end trainable neural network that
combines a lightweight 3D CNN to learn long-range
3D contextual information and a 2D CNN to capture
fine-grained intra-slice semantic information. We employ
spatiotemporal-separable 3D (S3D) convolutions to deal with
the anisotropic dimensions of CT volumes and reduce the
computational cost of the 3D CNN. In order to enlarge the
receptive field while preserving high resolution to retain a
large amount of semantic information about smaller objects,
we employ dilated convolutions in 2D CNN. We design a
hybrid features fusion module (HFFM) to fuse the 2D and
3D features effectively. We also utilize generalized Dice loss
function to tackle the problem of data imbalance during
training. In this section, we first introduce the key com-
ponents of our network. Then we describe our model in
detail.

« Spatiotemporal-separable 3D (S3D) convolution factor-
izes a standard 3D convolution into two consecutive
convolutional layers: one 2D convolution to learn spa-
tial features and one 1D convolution to learn temporal
features.

o Multiscale separable convolution (MSC) Block is an
Inception-ResNet-like architecture with S3D convolu-
tions to effectively capture multiscale 3D contextual
information.

o Dilated convolution, also known as ‘‘atrous convolu-
tion”, can be used to enlarge the receptive field while
preserving the resolution of feature maps.
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FIGURE 3. The S3D convolution. The kernel of size 3 x 3 x 1 does a 2D convolution and the kernel of size 1 x 1 x 3
does a 1D convolution. Combining them together we have the S3D convolution.

o Hybrid features fusion Module (HFFM) is designed to
effectively fuse 3D and 2D features to allow the network
to jointly train the 3D CNN and 2D CNN.

A. SPATIOTEMPORAL-SEPARABLE 3D CONVOLUTION

In order to build a lightweight 3D CNN model under
anisotropic images, we employ spatiotemporal-separable 3D
(S3D) convolution [21]. S3D convolution, as shown in Fig. 3,
also called pseudo-3D convolution [22], has been widely
used in 3D video tasks. Briefly, it splits one k x k x k
convolution into a k x k x 1 convolutionand a 1 x 1 x k con-
volution. Given a standard 3D convolutional layer that takes
a feature map F of size Dy X Dr x Dr x M as input, where
Dr denotes the spatial width, height, and depth of a cubic
input feature map, M is the number of input channels. Here
we assume the feature map has the same spatial dimension.
Through the convolution operation, a feature map G of size
Dg xDg xDg x N is produced, where D denotes the spatial
width, height and depth of a cubic output feature map, N is
the number of output channels. The convolution operation is
implemented by a kernel K of size Dx x Dx x Dx x M x N
where Dk is the spatial dimension of the kernel assumed to
be cubic. The output feature map of standard 3D convolution
with stride and padding can be computed as:

Gx,y,z,n = Z Ki,j,k,m,an+i—l,y+j—1,Z+k—l,m (1)
ij,k,m

In the context of S3D convolution, the full 3D convolution can
be replaced by two consecutive convolutional layers: one 2D
convolution to learn spatial features and one 1D convolution
to learn temporal features. The first stage of S3D convolution
can be computed as:

Gx,y,z,m = § Ki,j,m,mFx+i—1,y+j—l,z,m (2)

ij.m

here we assume that the input and output have the same
number of M channels. The second stage of S3D convolution
is a 1D convolution which can be computed as:

G/x,y,z,n = ZKk,m,an,)r,z+k—l,m (3)

k,m

The total computational cost of the S3D convolution is:

Dk -Dx -M -M -Dp -Dr - Dp + Dg -M -N -Dr -Df - Dp

the cost of first stage the cost of second stage

“
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FIGURE 4. The figure illustrates the multiscale separable

convolution (MSC) block. It contains four cascaded branches with
different sizes of filters (1 x 1 x1,3x3x3,5x5x5,and7x7 x7)and a
residual connection.

By replacing standard 3D convolution with S3D convolu-
tion we get a reduction in computational cost of:

Dk -Dx -M ‘M -Df -Dr -Dp + Dk ‘M - N -Df -Df - Dp

Dk -Dg -Dg -M -N -Dp -Dr - D
M 1

= + —
Dx-N D%

&)

From the above, it can be seen that we can get a significant
reduction in computational cost by using S3D convolutions.
The S3D convolution is initially proposed for video under-
standing tasks, where the k x k x 1 filter is performed on
the spatial domain and the 1 x 1 x k filter is performed on
adjacent feature maps in time. In the context of volumetric
medical images, we employ S3D convolutions to separately
learn inter- and intra-slice features, which is beneficial to
address the problem of anisotropic dimensions.

B. MSC BLOCK

Inception [23] and ResNet [24] are two powerful architec-
tures widely used in deep learning. Inception structure adopts
convolutional layers with different kernel sizes in a paral-
lel way to efficiently recognize details at different extents.
ResNet employs identity mapping to accelerate the speed of
the training process and reduce the effect of vanishing gra-
dient problem. Inception-ResNet [25], a hybrid architecture
that combines the Inception and ResNet, has become a base-
line component in many state-of-the-art CNNs. Motivated
by the Inception-ResNet architecture and the S3D convolu-
tion, we proposed multiscale separable convolution (MSC)
block to extract 3D contextual information from anisotropic
images. As shown in Fig. 4, MSC block contains four
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FIGURE 5. Schematic visualization of the 3D CNN part of our HSN model.

cascaded branches with different sizes of filters (1 x 1 x 1,
3x3x3,5%x5x%x5and7 x 7 x7)and aresidual connection.
To reduce the computational cost, we add anextra 1 x 1 x 1
convolution before each S3D convolution to limit the number
of feature maps.

C. 3D CNN

The architecture of our proposed 3D CNN is shown in Fig. 5.
It is an encoder-decoder structure similar to 3D U-Net [17],
but we carefully make some modifications to make it suit-
able for the lung tumor segmentation task. Our 3D CNN
follows the standard U-Net architecture with an encoder to
progressively extract image features and a decoder to gen-
erate the segmentation maps. In the encoder part, we use
MSC blocks instead of simply 3D convolutions to handle the
highly anisotropic dimensions and reduce the computational
cost. In more detail, in the original 3D U-Net, each level
contains two 3 x 3 x 3 convolutions. In our proposed method,
we replace it with two MSC blocks. To reduce the size of the
feature maps, we use striding S3D convolutions. The goal of
the decoder is to generate high-resolution feature maps with
semantic information from the encoded features. To achieve
it, we first upsample the low-resolution feature maps using
3D bilinear upsampling. We then concatenate the upsampled
features with the features from the corresponding level of
the encoder. Following the concatenation, an MSC block is
used to adjust the number of feature maps. Compared with
the original 3D U-Net, the proposed lightweight 3D CNN has
fewer parameters and computational cost, which is essential
for our hybrid segmentation network.

D. 2D CNN
In a typical CNN, the use of consecutive pooling opera-
tions or striding convolutions significantly reduces the feature
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resolution in order to learn global information. The highly
abstract features with low resolution have great advantages
for image classification task but will impede the semantic seg-
mentation task where an output with full resolution labeled
image is essential. This situation is likely to be an even
bigger problem in the context of medical image segmentation.
Therefore, we must address the following question: how to
learn fine-grained semantic information for identifying small
cancer regions. In order to answer this question, we adopt
dilated convolutions in the design of our 2D CNN. Compared
with standard convolution, dilated convolution introduces a
parameter called dilation rate to insert zeros between the
values in a kernel. Mathematically, considering a feature map
y[i] of dilated convolution of the input x[i] with filter w[k],
the dilated convolution is computed as follows:

ylil =) x[i+ rk]wlk] (6)
k

where r corresponds to the dilation rate, which indicates the
stride with which we sample the input signal. When using
dilated convolution, it is equivalent to upsampling the filter
by inserting r — 1 zeros between two adjacent filter values for
each spatial dimension and then performing the convolution
using the upsampled filter. When rate = 1, dilated convolu-
tion degenerates to standard convolution. Dilated convolution
allows us to achieve a large receptive field while at the
same time maintaining high spatial resolution at the output
to capture fine-grained features for identifying small objects
and blurred boundaries. We also propose a dilated unit block
(DUB), which consists of two sequential dilated convolutions
with the residual connection. Fig. 6 shows the architecture
of the proposed 2D CNN. For an input image of 512 x 512,
we first use a 3 x 3 convolution to generate 16 feature maps.
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FIGURE 6. Schematic visualization of the 2D CNN part of our HSN model.

Then we alternately use DUBs and striding S3D convolutions
to extract features until the feature responses are 16 times
smaller than the input dimension. To combine features at
different scales, we upsample the feature maps at different
scales to the resolution of 256 x 256 and then concatenate
them. After concatenation, a Squeeze-and-Excitation (SE)
block is used to effectively select and combine features. First
proposed in SENet [26],the SE block can explicitly model
the interdependencies between the channels of feature maps,
which can be used to recalibrate features. Unlike the original
SE block, we replace the 3 x 3 kernels with large kernels of
size 7 x 7 to further increase the valid receptive field for better
performance [27].

E. HYBRID FEATURES FUSION MODULE

The feature maps produced by the two CNNs are different in
size and level of feature representation. Therefore, we cannot
simply sum or concatenate these features. The feature maps
produced by 3D CNN are volumetric, whereas the feature
maps produced by 2D CNN are two-dimensional. Moreover,
the 3D features mainly encode 3D contextual information,
and the 2D features encode fine-grained semantic informa-
tion of 2D slices. In other words, the features of 3D CNN and
the features of 2D CNN are at a different level of feature rep-
resentation. Therefore, we propose a hybrid features fusion
module (HFFM) to fuse these features effectively, as shown
in Fig. 7. We first upsample the feature maps before the last
1 x 1 x 1 convolutional layer in the 3D CNN to the size
of 256 x 256 x 64. Let X3; € R™<€1x236x256x64 pe the
feature maps, where m denotes the batch size and c¢; denotes
the channels. Let Xpy € R"*€2%236%256 1y the feature maps
from 2D CNN, where n denotes the batch size and ¢, denotes
the channels. For simplicity, we set the batch size of 3D
CNN equal to 1, that is, X3y € RC1%256x256x64 Ror 2D
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FIGURE 7. Hybrid features fusion module (HFFM).

CNN, we sample a stack of adjacent slices from only one
CT volume along the z-axis. To fuse the 3D and 2D features,
we first crop a stack of adjacent slices from X3, with the same
slices indices as we sampled for 2D CNN, then permute the
dimensions to have the form X}, € R"*¢1*256x236 Then X},
and X», can be concatenated,
H = Cat (ng’ de) ., He Rnx(cl+cz)x256x256 (7
By doing so, the hybrid features H can be optimized in the
context of 2D CNN, while at the same time the 3D informa-
tion is integrated for accurate lung tumor segmentation. It is
worth noting that this fusion strategy can be easily extended
to large batch size. After the fusion, we add a convolution
to refine H, followed by an upsampling layer to increase
the size of feature maps to the original input size. Then a
1 x 1 x 1 convolution is used to generate two channels of
feature maps. Finally, a softmax layer is applied to generate
the final segmentation.

F. LOSS FUNCTION
To reduce the impact of data imbalance during training,
we utilize generalized Dice loss (GDL) [28] to optimize our
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network, which is defined as:

GDL:l_EZ Wi D Pk Tk
K kex Wk (an"k + Zn r"k)

where p is the softmax output of the network and r is the
one-hot encoding of the ground truth segmentation maps,

®)

each with K classes and N voxels. wy = 1/ (eryzl rkn)
is the weight to provide invariance for different label set
properties. We use both 2D loss GDL,p and 3D loss GDL3p
to train our model jointly.

IIl. RESULTS AND DISCUSSION

A. DATASET

Our dataset consists of 134 contrast-enhanced CT images,
which collected from Shandong Cancer Hospital Affiliated
to Shandong University under the approval of the institutional
review board. All CT images used in this study were acquired
under pulmonary CT examination using a Philips Brilliance
1281 CT scanner (Philips Healthcare, Amsterdam, Nether-
lands) with a standard clinical protocol of 120 kV voltage,
220 mA current, 1.0 helical pitch, 64 x 0.625 mm collimation,
and 5-mm reconstruction interval. Using an imaging matrix
of 512 x 512 pixels, the pixel size associated with the scans
ranged from 0.58 to 0.98 mm. All scans were annotated
by two radiologists with more than ten years of experience
in CT imaging of thoracic malignancies. They outlined the
boundaries of the primary tumors on a transversal plane using
Itk snap software (version 3.4; www.itksnap.org) [29]. Each
radiologist reviewed the segmented images and any discrep-
ancies were resolved by discussion until a consensus was
reached.

B. IMPLEMENTATION

The dataset was randomly split into three subsets, with 84,
20, and 30 subjects for training, validation, and testing respec-
tively. The proposed CNN was trained on an NVIDIA 1080Ti
GPU, with 11GB of RAM for 100 epochs. Approximate
training time was 12 hours. The model was trained using
Adam Optimizer [30] with following hyperparameters: learn-
ing rate = 0.001, betal = 0.9, beta2 = 0.999 and epsilon =
le-8. Learning rate was reduced by a factor of 5 whenever
the validation loss has not reduced in the last 20 epochs.
The code was written in PyTorch Library [31] using Python.
We did not use data augmentation techniques such as rotation,
scaling, elastic deformations, mirroring, etc., to focus on the
discussion of network structure. Instead of standard Rel.U,
we use the LeakyReLU [32] as activation function in our pro-
posed HSN. Compared to standard ReLLU, LeakyReLU can
retain the negative part of the feature information, thus pre-
venting the optimization from getting trapped into the local
minimum. For 2D CNN, we use batch normalization [33]
to normalize the inputs to reduce the internal covariate
shift problem. For 3D CNN with small batch size, we use
instance normalization [34] due to the superior performance
of instance normalization in the case of small batch size [35].
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FIGURE 8. Mean DSC on the validation set along with the training
progress.

C. EVALUATION METRICS

We quantitatively evaluated the segmentation accuracy using
Dice similarity score (DSC), sensitivity, and precision. The
DSC measures the similarity between the segmentation
results and ground truth. The DSC is defined as follows:

. 2TP
" FP+2TP+FN
where TP is the number of true positives, FP is the number

of false positives and FN is the number of false negatives.
Sensitivity is defined as:

DSC 9

L TP
Sensitivity = ———— (10
TP + FN
Precision is defined as:
. TP
Precision = —— (11
TP + FP

DSC, sensitivity, and precision are all measures of voxel-wise
overlap between the segmentation results and ground truth.
The higher the values, the better the segmentation perfor-
mance.

D. COMPARED METHODS

1) 3D CNN

We performed a pure 3D CNN similar to 3D U-net [17].
Briefly, each CT volume was resampled to 256 x 256 x 64
to fit the 11GB GPU memory maximumly. Each layer in
the encoder consists of two 3 x 3 x 3 convolutions with
instance normalization and LeakyReLLU. We adopted 3 x3 x 3
convolutions with strides of 2 to gradually downsize image
dimensions by a factor of 2 and simultaneously double the
numbers of feature maps. The initial number of filters was 16,
and the endpoint feature size was eight times spatially smaller
than the input volume. In the decoder, each layer consists of a
3D bilinear upsampling layer with a factor of 2, followed by
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TABLE 1. Evaluation results of various methods on the testing set.

2D CNN M-net 3D CNN HSN
DSC median 0.751 0.840 0.844 0.898
mean =+ std 0.692 + 0.190 0.789 + 0.123 0.840 + 0.049 0.888 £+ 0.033
. median 0.690 0.0.849 0.863 0.889
Sensitivity
mean =+ std 0.690 + 0.193 0.819 +0.125 0.830 + 0.076 0.872 £+ 0.059
.. median 0.845 0.845 0.863 0.925
Precision
mean =+ std 0.766 + 0.201 0.781 +0.154 0.856 + 0.060 0.909 + 0.048
i_-__[:i 10 1.0
087 % 0.8 - i 0.8 % i:gr_i
0.6 ©
.0 ) =0.6
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FIGURE 9. Boxplots of evaluation metrics on the testing set with various methods.

two 3 x 3 x 3 convolutions with instance normalization and
LeakyReLU. Shortcut connections were used to provide the
decoder with detailed information from the encoder. In the
end, the output segmentation was resampled to the original
resolution using nearest-based sampling.

2) 2D CNN

Compared with the 3D model, the 2D model allows larger res-
olution images as input. Therefore, full resolution slices were
used to leverage detailed spatial context. We performed the
pure 2D CNN similar to 3D CNN except that the 3D convo-
lutions were replaced by 2D convolutions and the 3D bilinear
upsampling layers were replaced by 2D bilinear upsampling
layers.

3) M-NET

M-net [38] is a CNN based method that originally proposed
for brain structures segmentation from Magnetic Resonance
Images (MRI). Briefly, it is an end-to-end trainable network
that takes a stack of consecutive slices as input to leverage
3D information and adopt a large 3D kernel to output a 2D
slice, and the followed convolutions are operated only on
2D information.

All of these networks were trained for 100 epochs using
generalized Dice loss function. The mean validation DSC
along 100 training epochs of different models is presented
in Fig. 8. The results show that the 2D CNN achieves the
lowest DSC. M-net achieves better performance than the
2D model, thanks to its ability to combine a slice and its
neighbors to learn a wider range of information. However,
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they both yield inferior performance compared with the 3D
model. Our proposed HSN achieves the highest and most
robust DSC among all models. We attribute this performance
improvement to the ability of HSN to fuse 2D and 3D features
into a single model.

We selected the trained models with highest validation
DSC for each network to test on the testing set. The segmen-
tation results for all networks on the testing set are reported
in Table 1. Fig. 9 presents the boxplot of each evaluation
metric for different networks. Based on these results, we can
observe that HSN outperforms all other networks in terms of
all metrics. The comparison results demonstrate the efficacy
of our proposed HSN, indicating that the combination of 3D
and 2D features is beneficial to CNN models in lung cancer
segmentation.

Fig. 10 shows representative segmentation results of dif-
ferent networks on the testing set. These segmentation results
demonstrate that HSN has better performance with high spa-
tial and appearance consistency

E. ABLATION ANALYSIS OF HSN

1) COMPARE OF LOSS FUNCTION

When dealing with severe class imbalance problems,
the choice of the loss function is crucial to obtaining accu-
rate segmentation results. We employed generalized Dice
loss (GDL) function to address the class imbalance problem
in CT images. Since many works have demonstrated Dice
loss can achieve more robust results than Cross Entropy
loss [19], [36], we focus on the difference in performance
between Dice loss and generalized Dice loss.
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3D CNN HSN

FIGURE 10. This figure shows the qualitative segmentation results of different compared methods on the testing set. The rows represent three
slices from different CT scans, and the columns represent the segmentation results produced by various methods. The blue contour corresponds
to ground truth, while red contour corresponds to the segmentation results.
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FIGURE 11. The learning process of HSN with different loss functions.

The Dice loss is defined as:

2
Dice =1— = Z —Z" Prk Tk
K Zn Pnk + Zn Fnk

kekK

(12)

where p is the softmax output of the network, and r is the
one-hot encoding of the ground truth segmentation maps,
each with K classes and N voxels. Compared with the Dice
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FIGURE 12. Mean DSC on the validation set with different loss functions.

loss, GDL introduces a weight wy to provide invariance to the
different label set properties.

We retrained the proposed HSN with Dice loss function
and tested it on the test set. Fig. 11 shows the learning
process of HSN with different loss functions and Fig. 12
shows the mean DSC on the validation set along with the
training progress. In Fig. 11, the loss curve of the model
trained with GDL is lower than that trained with Dice loss
and is more robust. In Fig. 12, the validation DSC curve of

75599



IEEE Access

W. Chen et al.: HSN for Small Cell Lung Cancer Segmentation

TABLE 2. Evaluation results of various ablation experiments on the testing set.

HSN HSN_Dice HSN-3D HSN-N HSN-L
DSC median 0.898 0.893 0.889 0.882 0.885
mean= std 0.888 £0.033 |0.881 £0.046 |0.877 £ 0.055 0.872 £ 0.064 0.869 £ 0.068
Sensitivit median 0.889 0.898 0.893 0.871 0.901
‘ Y meant std 0.872 +0.059 [0.88040.068 |0.874+0.073 0.850 £ 0.083 0.878 & 0.075
Precision median 0.925 0.896 0.888 0.918 0.881
mean std 0.909 £ 0.048 | 0.886 +0.059 |0.884 + 0.062 0.901 £ 0.069 0.866 £ 0.088
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FIGURE 13. Boxplots of evaluation metrics on the testing set with various ablation experiments.

the model trained with GDL is smoother, indicating that GDL
is more robust to challenging CT image segmentation. The
quantitative results for the testing set are presented in Table 2
and Fig. 13. Compared with the original HSN, the model
trained with Dice loss has alower DSC, alower precision, and
a higher sensitivity, but all have higher deviations. The results
demonstrate that GDL is an effective objective function to
solve the class imbalance problem and achieve robust results
in our lung cancer segmentation task.

2) THE EFFECTIVE OF S3D CONVOLUTION

Our data set consists of CT images of highly anisotropic
dimensions. Therefore, we proposed to use S3D convolutions
to tackle this problem. To investigate the impact of S3D con-
volutions on the segmentation performance, we trained HSN
with standard 3D convolutions. In particular, we replaced
each S3D convolution with standard 3D convolution in HSN
while preserving the entire network architecture. The evalua-
tion results are summarized in Table 2. Boxplots of all metrics
on the testing set are shown in Fig. 13.

The results shown in Table 2 and Fig. 13 indicate that the
use of S3D convolution in our model leads to a performance
boost against the standard 3D convolutional version by 1.1%
in terms of mean DSC. The results show the advantages
of employing S3D convolutions for anisotropic CT images
segmentation by decomposing 3D learning into 2D convolu-
tions to learn intra-slice features and 1D convolutions to learn
inter-slice features.
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3) THE EFFECTIVE OF DILATION RATE

The goal of 2D CNN is to provide fine-grained semantic
information about smaller and less salient objects for accurate
segmentation. Therefore, it is essential to preserve high spa-
tial resolution on the output feature maps. Simply reducing
pool layers or striding convolutional layers lead to a reduction
in the receptive field. Thus, We proposed to use dilated con-
volutions to enlarge the receptive field to learn long-distance
contextual information while maintaining the resolution on
the output feature maps.

To investigate whether the proposed dilated CNN helps to
learn fine-grained semantic information, we compared it with
its standard 2D convolutional version, i.e., HSN-N, which had
the same architecture as HSN but all of its 2D convolutional
layers were performed without dilation. As stated in [37],
a convolutional kernel with large dilation rate is too sparse to
capture any local information, leading to “gridding issue”.
To investigate the impact of large dilation rates on the seg-
mentation performance, we also built and evaluated another
HSN model with larger dilation rate, i.e., 2D HSN-L, which
increased the dilation rate of 3 in the original HSN to 5.

The evaluation results are shown in Table 2 and Fig. 13. We
can observe that HSN with dilation rate of 3 achieved the best
DSC. The results suggest that dilated convolution can boost
the segmentation performance, but the rate of dilation should
be carefully considered.

Fig. 14 presents qualitative segmentation results of
different ablation experiments on the testing set. These
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FIGURE 14. This figure shows the qualitative segmentation results of different ablation experiments on the testing set. The rows represent four slices
from different CT scans, and the columns represent the segmentation results produced by various methods. The blue contour corresponds to ground

truth, while red contour corresponds to the segmentation results.

segmentation results demonstrate that HSN behaves very well
in segmenting lung cancers, even for small regions, which
we attribute to the long-range 3D contextual information and
fine-grained 2D semantic segmentation learned by our model.

IV. CONCLUSION

Automatic non-small cell lung cancer segmentation of CT
image can provide precise cancer contours and contribute to
the construction of computer-aided diagnostic systems. How
to effectively design a model for accurate cancer segmen-
tation is a hot topic in the field of medical image analysis.
Over the past few years, deep learning techniques, especially
deep convolution neural networks, have been widely used for
medical image segmentation. However, due to the complexity
of medical images, there is no general-purpose method for
obtaining accurate segmentation. In this paper, we proposed
a novel end-to-end deep convolutional network for small cell
lung cancer segmentation of CT image, capable of fusing
2D and 3D features for better segmentation performance.
Particularly, we developed a light-weight 3D CNN to learn
long-range 3D contextual information and developed a 2D
CNN to capture fine-grained semantic information. Then we
proposed a hybrid features fusion module to fuse the 2D and
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3D features effectively. Our approach combined the advan-
tages of 2D and 3D CNN to learn sufficient information,
while at the same time being efficient in terms of computation
and memory requirement. Our experiments showed that the
HSN achieves better performances than other state-of-the-art
methods.

Some limitations of our study should be acknowledged.
First, the CT scans were acquired at a single center, and more
scans from different institutions would be needed to improve
the generalization performance of our model. Second, scans
of healthy people were not included in the dataset. Incorpo-
rating the data of healthy population into the training process
would further improve the performance of the model. Future
work will focus on these limitations and investigate whether
the segmentation results might help doctors treat cancer in the
clinical setting.
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