
Received May 6, 2019, accepted May 29, 2019, date of publication June 6, 2019, date of current version June 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2921316

Optimal Allocation of Hybrid Energy Storage
Systems for Smoothing Photovoltaic Power
Fluctuations Considering the Active Power
Curtailment of Photovoltaic
WEI MA 1, (Student Member, IEEE), WEI WANG 1, XUEZHI WU1,
RUONAN HU1, (Student Member, IEEE), FEN TANG 1, WEIGE ZHANG1,
XIAOYAN HAN2, AND LIJIE DING2
1National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
2State Grid Sichuan Electric Power Company, Chengdu 610041, China

Corresponding author: Wei Ma (16117385@ bjtu.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2018YFB0905200.

ABSTRACT Hybrid energy storage systems (HESSs) have become an effective solution for smoothing the
active power variations of photovoltaic (PV). In order to reduce the required capacities and costs of the
HESS, a coordinated control scheme is developed to mitigate the power variations of a PV plant by using
the HESS and the active power curtailment (APC) of PV. Furthermore, a multi-objective optimization model
is established to dispatch the output power of batteries and supercapacitors, considering the overall losses
and the state-of-charge (SOC) deviation of the supercapacitor. Based on the proposed smoothing strategy,
an allocation model is developed to optimize the energy and power capacities of the HESS with the aim of
maximizing the annual net income of the PV and HESS plant. The numerous simulations are carried out
to verify the effectiveness of the proposed smoothing and allocation methods by using the real data of a
PV plant. In addition, we also discuss the impacts of the different dispatching strategies of the HESS, grid
requirements of power variations, and solution methods on the HESS allocation results.

INDEX TERMS Hybrid energy storage system (HESS), photovoltaic (PV) power fluctuation, capacity
allocation, active power curtailment.

I. INTRODUCTION
To cope with the problems of climate change and envi-
ronmental pollution, the penetration of renewable energy
(e.g., wind and solar energy) in power systems has gradually
increased in recent years [1]. However, the active power vari-
ations of large-scale PV plants can cause voltage fluctuations
of power supply systems, resulting in a decline in power
quality [2], [3]. Nevertheless, they may seriously threaten
the reliability and stability of the utility grids if increasing
the penetration of PV in the future [4]. Therefore, the power
variations of grid-connected PV plants should be mitigated
within a specific range, such as 1%∼ 5%/min of its installed
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capacity proposed by Mexico [5] and 10%/min proposed by
the Puerto Rico Electric Power Authority (PREPA) [3].

In recent years, using battery energy storage (BES) has
become a popular way to smooth active power variations of
grid-connected PV plants at the point of common coupling
(PCC) [5]–[9]. A 16MW/71MWh BES system was built in
the Zhangbei national demonstration project of China, where
the upward (downward) active power variations are smoothed
by charging (discharging) BES [6]. Furthermore, several con-
trol strategies of BESwere developed to achieve better results
of smoothing PV power variations and reducing the costs of
batteries [5], [10]–[12].

To overcome the shortages of BES, such as lower cycle
life, lower efficiencies, and lower power rates [13]–[15],
the hybrid energy storage system (HESS) is a better solution
to smooth power variations of PV because it combines the
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advantages of batteries and supercapacitors [16]. The super-
capacitor energy storage (SCES) can provide higher power
rates during a short time, and its cycle life is extremely
long [17]. However, its cost per kWh is quite expensive.
Hence it is unacceptable to install too many supercapacitors
in a HESS [13], [14]. Consequently, a practical allocation
method of the HESS is needed to find its optimal energy and
power capacities, in order to achieve lower costs of a PV plant
and better performances of smoothing power variations.

Several works have been done on optimizing the loca-
tions and capacities of BES systems in active distribution
networks or microgrids [12], [18]–[21]. They are aimed at
preventing voltage violations caused by the uncertainty of
demand and renewable energy [19], minimizing the total
costs considering correlated forecast uncertainties of dis-
patchable resources [21]. Also, the sizing problems of the
BES have been investigated with the aim of peak shaving and
optimal power flow of power systems [18].

However, there is relatively little published research on the
optimal allocation of the HESS [18], [22]–[24]. A techno-
economic model is established to optimize the capacities
of a HESS by minimizing the net present cost of systems,
where the HESS is used to smooth power fluctuations of
a PV plant [23]. Concerning the peak shaving of power
systems, the spectral analysis method is utilized to solve the
allocation problem of the HESS under a higher penetration
level of wind power [22]. Also, to reduce the power shortage
rate of loads and line losses in active distribution networks,
the HESS capacities are optimized considering the demand
side response [24].

To the best of our knowledge, the sizing problem of aHESS
has still not been extensively examined when using the HESS
and the active power curtailment (APC) of PV to smooth PV
power variations [25], [26]. The main idea of the APC is
to reduce the active power of PV converters when needed,
instead of keeping them always operating in the maximum
point of power tracking (MPPT) mode [10]–[12], [25]. The
APC of PV can reduce the required capacities of a HESS.
Thus its corresponding investment and operating costs can
be reduced. On the other hand, the APC of PV may cause
an energy reduction in PV generation [12], [25]. As a result,
the trade-off between them needs further discussions.

In summary, this paper focuses on the optimal HESS sizing
method when using the HESS and the APC of PV to smooth
the active power variations of a grid-connected PV plant. The
main contributions of this work are summarized as follows:

(1) A coordinated smoothing strategy is developed to mit-
igate the power variations at the PCC by coordinating the
HESS output power and the power reduction in the PV.

(2) A multi-objective optimization model of the HESS is
established to assign the total compensation power of the
HESS to the BES and the SCES with the aim of (a) mini-
mizing the total losses of the HESS, and (b) optimizing the
state of charge (SOC) of the SCES.

(3) Based on the proposed smoothing strategy, an alloca-
tion model is developed to optimize the energy and power

FIGURE 1. System topology and information flows of a PV plant including
a HESS.

capacities of the HESS, which fully considers the power
variation requirements of PV, energy losses caused by the
APC of PV, system investment costs, and the cycle aging
costs of batteries. Furthermore, to ensure the feasibility of
optimization results, numerous scenarios of the PV power
variations are considered in this allocation model.

(4) The proposed smoothing strategy and the allocation
model are conducted on the actual active power data of a
750kW PV plant. Numerous simulations are carried out to
verify the effectiveness and correctness of them. Moreover,
we have discussed the impacts of the PV power variation
requirements, initial parameters of the dispatching strategy of
the HESS, and the solution methods on the optimal allocation
results of the HESS.

The rest of the paper is organized as follows: Section II
describes the system structure of a PV plant with a HESS.
The mathematical model of the proposed smoothing strat-
egy is presented in Section III, including the overall control
scheme of the HESS and PV for smoothing power varia-
tions and the optimization model of dispatching the HESS
power. Section IV discusses the optimal allocation model
of the HESS. Case studies and discussions are presented in
Section V, and the conclusions of this work are summarized
in Section VI.

II. SYSTEM DESCRIPTION
Fig. 1 presents the system topology of a PV plant including
a HESS, which is used to mitigate the variations of the active
power injected into the utility from PV systems by charging
or discharging. The HESS consists of the BES and the SCES,
which are connected to the same AC bus. The overall power
of the HESS denoted by PHESS is the sum of the BES power,
PBES, and the SCES power, PSCES. The active power of PV
is denoted by PPV.

The energy management system (EMS) can receive real-
time data of the PV systems, the BES, and the SCES every
5 seconds. At the same time, the EMSwill update their power
commands calculated by the proposed smoothing strategies,
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FIGURE 2. Control methods of the PV and the HESS for smoothing PV power fluctuations.

ensuring the power variations at the PCC can meet the prede-
termined requirements.

In addition, this paper mainly focuses on the variations
of active power generated by PV plants, thus neglecting the
impacts of the variations of reactive power.

III. SMOOTHING STRATEGY
In this section, the active power variations of a PV plant
at the PCC is defined in subsection A. Then, the basic
idea of the proposed smoothing strategy is briefly described
in subsection B, and the detailed control methods of the
HESS and the PV converter are discussed in subsection C.
Finally, the optimal power dispatching strategy of theHESS is
presented in subsection D.

A. DEFINITION OF THE ACTIVE POWER VARIATIONS OF A
PV PLANT
This study mainly investigates the power variation of PV in a
time scale of one minute. Therefore, we define that the power
variation at time t is the difference between the maximum and
minimum active power injected into the utility within 1min.
The details of this definition are explained as follows.

Before the HESS provides the compensation power at
time t , the power generated by PV is denoted by PPV, m(t),
and PPCC, m(t) denotes the power measured at the PCC. Note
that PPV, m(t) is equal to PPCC, m(t) because the HESS has
not provided any compensation power at this moment. Let
δ(t) denote a set of the active power values measured at the
PCC from time t0 to t , thus δ(t) = {PPCC(t0),PPCC(t0 +
1t), . . . ,PPCC(t − 1t),PPCC, m(t)}, t ∈ {5 : 00, 5 : 00 +
1t, 5 : 00+ 21t, . . . , 20 : 00}, t0 = t −−1min,1t = 5s is
the sampling interval.

Overall, before the suppression, the current power varia-
tion, 1PPCC(t), can be calculated as follows:

1PPCC(t) =

{
Pmax − Pmin, if t2 is earlier than t1.
Pmin − Pmax, otherwise.

(1)

where Pmax denotes the largest element of the set δ(t), and t1
denotes the moment when Pmaxappears, while Pmin denotes
the smallest element of the set δ(t), and t2 denotes themoment
when Pmin appears.

This study requires that the variation of the PV power
at the PCC should less than ±10%CPV /min [3], where
CPV is the installed capacity of a PV plant. Namely,
if |1PPCC (t)| > 10%CPV , smoothing methods are required
to absorb the excessive power variations.

B. BASIC RULES OF THE PROPOSED SMOOTHING
STRATEGY
This paper uses the HESS and the APC of PV to jointly
smooth power variations of PV, and the general ideas of the
proposed smoothing strategy are as follows.

The PV power fluctuations can be divided into two types:
(a) downward fluctuations, and (b) upward fluctuations. The
downward fluctuations are smoothed by discharging the
HESS, while the upward fluctuations are smoothed by charg-
ing the HESS and reducing the output power of PV. Namely:

(1) If the upward power fluctuation exceeds the maximum
allowable charging power of the HESS, considering its SOC
and power capacity constraints, the excessive power fluctu-
ation will be absorbed by reducing the PV power. At the
same time, the HESS will be charged with the maximum
allowable power. Otherwise, the upward power fluctuation
will be completely smoothed by the HESS, and let the PV
operate in the MPPT mode.

(2) On the other hand, smoothing downward power fluctu-
ations only relies on the HESS because the APC of PV cannot
help to smooth them by limiting the outputs of PV.

C. CONTROL METHODS OF THE HESS AND THE PV
CONVERTER
According to the basic rules discussed above, Fig. 2 shows the
specific control methods of the PV converter and the HESS
for smoothing power variations at the PCC.

As can be seen from Fig. 2, according to the power varia-
tion requirements, the variation limiter outputs the reference
power of the PCC, PPCC, ref(t), as follows:

PPCC,ref(t)=


Pmin+Pvar,max, if 1PPCC(t) > Pvar,max

Pmax−Pvar,max, if1PPCC(t) < −Pvar,max

PPCC,m(t), otherwise.
(2)
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where the values of Pmax and Pmin are directly gained from
(1); Pvar, max is the upper limit of the PV power variation,
and Pvar, max = 10%CPV . Hence, the expected compensation
power of the HESS, PHESS, ref(t), is presented in (3).

PHESS,ref(t) = PPCC,ref(t)− PPCC,m(t) (3)

where PHESS, ref > 0 means that the HESS needs to be
discharged. By contrast, PHESS, ref < 0 means that it needs
to be charged.

However, the HESS may not adequately supply the
required power (PHESS, ref(t)) due to its constraints of SOC
and power capacities. Thus its reference power needs to be
modified by the power limiter.

In this study, the SOC constraints of batteries and super-
capacitors are 20% – 90% and 10% – 90%, respectively.
The energy and power capacities of the BES and the SCES
are denoted by CE, b, CP, b, CE, sc, and CP, sc, respectively.
The real-time SOC data of batteries and supercapacitors are
SBES(t) and SSCES(t), respectively. Consequently, the max-
imum available charging and discharging power of the
HESS at time t can be gained according to the above con-
straints and SOC data. They are denoted by PHESS, max(t)
and PHESS, min(t), respectively, where PHESS, max ≥ 0 and
PHESS, min ≤ 0.
As a result, the real compensation power provided by the

HESS is PHESS, cmd(t)(|PHESS, cmd| ≤ |PHESS, ref|), as shown
in (4).

PHESS,cmd(t)

=


PHESS,max(t), ifPHESS,ref(t) > PHESS,max(t)
PHESS,min(t), ifPHESS,ref(t) < PHESS,min(t)
PHESS,ref(t), otherwise.

(4)

Considering the characteristics of different types of energy
storage (BES and SCES), such as efficiencies, cycle life-
time, and power rates, an optimization method is required to
dispatch the power between the BES and the SCES, i.e., to
ensure that PBES(t) + PSCES(t) = PHESS, cmd(t). Therefore,
this paper develops an optimal dispatching strategy of the
HESS to address the above concerns, which is discussed in
the following section.

Having determined the outputs of the HESS, we need to
determine whether or not to reduce the PV power. Unfor-
tunately, reducing PV power only helps to mitigate upward
power fluctuations. Therefore, the following three situations
are considered:

(1) If the excessive compensation power, 1PHESS(t),
which is equal toPHESS, ref(t) -PHESS, cmd(t), is less than zero,
the PV will actively reduce its output power, ensuring the
variation of the power at the PCC can meet the requirements.

(2) If 1PHESS = 0, indicating that the HESS has enough
capacities to cope with those power variations, the PV does
not need to reduce its output power. Hence, it continues to run
in the MPPT mode.

(3) If 1PHESS > 0, the HESS will be discharged with the
maximum allowable power, while keeping the PV running in

the MPPT mode. In order to ensure the HESS can completely
mitigate those downward variations, it is necessary to allocate
its capacities reasonably and control the SOC of batteries and
supercapacitors properly, which are discussed below.

In summary, the final output power of the PV converter is
calculated by (5).

PPV(t) =

{
PPV,m(t)−1PPV(t), if 1PHESS(t) < 0
PPV,m(t), otherwise.

(5)

where 1PPV (t) is the power reduction in PV converters, and
1PPV (t) = −1PHESS(t).
Consequently, through the coordination between the HESS

and the APC of PV, the variations of the active power at the
PCC are entirely within the allowable range.

D. OPTIMAL POWER DISPATCHING STRATEGY
OF THE HESS
This section discusses how to optimize the HESS power when
its overall power command, PHESS, cmd(t), has been deter-
mined by (4). Hence, a multi-objective optimization model
for the HESS is developed to dispatch the outputs of the
BES and the SCES, where the decision variables are PBES(t)
and PSCES(t). The objective functions and constraints of this
model are explained as follows.

1) OBJECTIVE FUNCTION
There are two objectives considered in the established opti-
mization model:

(1) To reduce total energy losses of the HESS and prolong
the actual service life of the BES, the SCES is preferred
to provide more compensation power because its overall
efficiency (90% - 95% [27]) is larger than that of the BES
(80% - 90% [27]). Moreover, the number of cycles of the
lithium-ion battery is quite small, about one-tenth of that of
a supercapacitor [27]. To this end, the sub-objective function
f1 is described as follows:

min f1 = [µ1 |PBES(t)| + µ2 |PSCES(t)|]1t (6)

where µ1 and µ2 are the loss factors of the BES and SCES,
respectively. In this work, µ1 = 10%, µ2 = 5% [27].

(2) The SCES needs to reserve some energy to smooth
the sudden rise or drop in the PV power. Thus the reference
value of its SOC is set to 50%. To this end, the sub-objective
function f2 is applied to minimize the deviation of the SCES
SOC, as follows:

min f2 =

∣∣SSCES(t −1t)− PSCES(t)1t/CE,sc − 50%
∣∣

1SSCES,max
(7)

where 1SSCES, max is the maximum possible SOC deviation
of the SCES, and 1SSCES, max = 40% because its SOC
constraint is [10%, 90%].

2) MULTI-OBJECTIVE OPTIMIZATION MODEL
Combining the two sub-objective functions (f1 and f2),
a multi-objective optimization model is established in (8),
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where β(0 ≤ β ≤ 1) is the weight coefficient and its value is
discussed in the following section.
Objective function:

min f (PBES,PSCES) = β
f1 − f1,min

f1,max − f1,min
+ (1− β) f2 (8)

In (8), the range of f1 is [f1,min, f1,max], which is used
for normalization. The normalization of f2 is not required
because its range is [0, 1].
Constraints:

PBES(t)+ PSCES(t) = PHESS,cmd(t) (9)

PBES(t)× PSCES(t) ≥ 0 (10){
|PBES(t)| ≤ CP.b

|PSCES(t)| ≤ CP.sc
(11)

20% ≤ SBES(t −1t)−
PBES(t)1t

CE,b
≤ 90%

10% ≤ SSCES(t −1t)−
PSCES(t)1t

CE,sc
≤ 90%

(12)

where (9) is the power balance constraint; (10) requires that
the power flow directions of the BES and the SCES should not
be opposite at time of t; (11) is the power capacity constraint,
and (12) is the SOC constraint.

3) ADAPTIVE CONTROL METHOD FOR WEIGHT COEFFICIENT
In this study, the weight coefficient, β, is not a constant, while
it varies with the real-time state of the supercapacitor’s SOC.
Hence an adaptive control method is proposed to dynamically
adjust the value of β.

In a HESS, compared with the BES, the energy capacity of
the SCES is usually allocated much smaller due to its higher
capital costs, but its power capacity is usually larger because
supercapacitors can be charged or discharged with higher
power rates [14]. When there is a sharp drop in PV power,
the HESS needs to be discharged continuously for a while,
because its total discharging power and time are determined
by themagnitude and the requirement of PV power variations.
However, if β is a constant, the supercapacitor’s SOC will
quickly reach its lower limit, which may significantly weaken
the smoothing ability of the HESS.

Therefore, this study only adjusts the value of β when the
HESS is discharging; otherwise, β is a predefined constant
because the APC of PV can help to smooth the upward power
variations if the supercapacitor’s SOC reaches its upper limit,
as follows:

β(t) =

{
g(SSCES(t −1t)), if PHESS,cmd(t) > 0
β0, otherwise.

(13)

where g(x) is a piecewise function, as shown in (14) and
Fig. 3; β0 is the initial weight coefficient determined by the
analytic hierarchy process (AHP) method [28]. In this work,
β0 = 0.7.

g(x) =


0, if 0 ≤ x ≤ 10%
k(x + b)3, if 10% < x < 50%
β0, otherwise.

(14)

FIGURE 3. Schematic diagram of the piecewise function g(x).

where k and b are related to β0 and the SOC constraint of the
SCES. In this work, b = −0.1 and k = β0/(0.5+ b)3.

IV. OPTIMAL ALLOCATION MODEL OF THE HESS
This section establishes an allocation model to optimize the
energy and power capacities of theHESSwhen the smoothing
strategy discussed above is utilized to smooth the power
variations of a PV plant.

A. PROBLEM DESCRIPTION
The decision variables of this problem are CE, b, CP, b, CE, sc,
and CP, sc. For a PV plant, the capacity optimization results of
the HESS should achieve the following two aims:

(1) The optimal energy and power capacities of the HESS
can cope with the various power variations of this PV plant.

(2) The net income of this PV plant should be the largest
with the optimal solution.

In addition to the above concerns, it is vital to consider the
charging and discharging characteristics of supercapacitors
and batteries, such as C-rates and cycle lifetime, instead of
onlymaximizing the system revenues. Also, the energy losses
caused by the APC of PV and the initial investment costs of
systems need to be carefully considered.

Furthermore, to reduce the total calculation time, it is
reasonable to evaluate the annual revenues and costs of the
HESS and PV systems by using several typical days of PV
data rather than the whole year data.

B. MATHEMATICAL MODEL
A nonlinear programming optimization model is established
to maximize the annual net income of the PV plant while
optimizing the HESS capacities. The objective function, ζ ,
consists of the following five parts:

(a) The PV plant can benefit from providing solar energy
to utilities, and its annual revenue is denoted by Rsell.

(b) The initial investment costs of systems are converted
into the equivalent annual investment costs denoted by Oinv.
(c) The annual operation and maintenance costs of systems

are denoted by OOM.
(d) The cycle aging costs of batteries, Oc, b, are considered

due to its limited lifetime (about 2000-5000 full cycles), while
the cycle aging costs of supercapacitors are neglected because
its lifetime is even more than 500000 full cycles [27].

(e) A penalty function, Cpf, is added in this model to assess
the performance of smoothing power variations of PV. i.e., if
the variations of the smoothed PV power are acceptable, then
Cpf is equal to zero; otherwise, the value of Cpf is quite large.
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Objective function:

max ζ (d) =
(
Rsell − Oinv − OOM − Oc,b

)
− Cpf (15)

where d is the decision variable, and d = [CE, b, CP, b, CE, sc,
CP, sc]. The details of the function Rsell, Oinv, OOM, Oc, b, and
Cpf are explained in the following section.
Constraints:

0 < CP,b,CP,sc ≤ CPV (16a)

0 < CE,b ≤ CE,b,max (16b)

0 < CE,sc ≤ CE,sc,max (16c)

CP,b/CE,b ≤ δ1 (16d)

CP,sc/CE,sc ≥ δ2 (16e)

In (16), (16a) indicates that the power capacities of HESS
should be less than the PV capacity. CE, b,max and CE, sc, max
are upper limits of the energy capacities of the BES and the
SCES, respectively. Considering the C-rate of a battery, (16d)
requires that the power and energy ratio of the BES should be
less than δ1 (δ1 > 0). Considering the SCES can be charged
or discharged with a higher C-rate, its power and energy ratio
should be greater than δ2(δ2 > 0). In addition, in this work,
δ1 = 1, δ2 = 10 [22]–[24].

C. CALCULATION METHODS OF THE OBJECTIVE
FUNCTION
In the following, T is a set of all the sampling points in a day,
T= {t1, t2, . . . , tn}, and tj ∈T, 1 ≤ j ≤ n. Let setDdenote the
typical days of PV power variations, D = {d1, d2, . . . , dm},
and di ∈D, 1 ≤ i ≤ m. Also, the probabilities corresponding
to each typical day are denoted by a set P= {p1, p2, . . . , pm},
and pi ∈P. For example, PBES(tj, di) is the active power of the
BES at time tj on the d thi day; pm represents the probability of
the typical day dm in a year.

1) ANNUAL REVENUE OF SELLING PV POWER (Rsell )
The annual revenue of selling PV power is presented in (17),
where ρelec is the unit price of solar power ($/kWh).

Rsell = 365ρelec1t
∑

di ∈ D
pi ∈ P

pi

∑
tj∈T

PPCC(tj, di)

 (17)

2) ANNUAL INVESTMENT COSTS OF SYSTEMS (Oinv)
The initial investment costs of the PV, the BES, and the SCES
are denoted by I1, I2, and I3, respectively. They are as follows:

I1 = ρpvCPV (18a)

I2 = ρbatCE,b + ρpcsCP,b (18b)

I3 = ρscCE,sc + ρpcsCP,sc (18c)

where ρpv, ρbat, ρsc, and ρpcs are the capital costs related to
the capacities of the PV plant, batteries, supercapacitors, and
converters, respectively ($/kWp, $/kWh, $/kWh, and $/kW).

FIGURE 4. The number of cycles of a lithium-ion battery at various DODs.

The initial investment costs of them are converted into the
annual investment costs related to their lifetime L1, L2, and
L3 (years).

Oinv =

3∑
k=1

Ik
r(1+ r)Lk

(1+ r)Lk − 1
(19)

where r is the discount rate, and r = 10% [29].

3) ANNUAL OPERATION AND MAINTENANCE COSTS
OF SYSTEMS (OOM)
OOM is related to the operating losses of the HESS and the
fixed maintenance costs of systems, as shown follows:

OOM = r1I1 + r2 (I2 + I3)+ 365ρelec1t

×

∑
di ∈ D
pi ∈ P

pi

∑
tj∈T

µ1
∣∣PBES(tj, di)∣∣

+µ2
∣∣PSCES(tj, di)∣∣

 (20)

where r1 and r2 are coefficients used to calculate the fixed
maintenance costs, and r1 = 0.2%, r2 = 0.5% [25].

4) ANNUAL CYCLE AGING COSTS OF BATTERIES (Oc, b)
The degradation of lithium-ion batteries is a complicated
electrochemical process affected by several factors, such as
depth of discharge (DOD), temperatures, and C-rates [30].
In order to simplify the analysis, this study only takes into
account the impacts of various DODs on the battery’s degra-
dation. The relationships between the number of cycles of a
battery, Nbat, and DODs, dfc, are described in (21) and shown
in Fig. 4 [31].

N (dfc) = Ncycle,100% (dfc)−kp (21)

where Ncycle,100% is the number of cycles if dfc = 100%;
kp is a constant, 0.8 ≤ kp ≤ 2.1, which can be deter-
mined by a curve fitting method according to the battery’s
datasheets [31]. In addition, Ncycle,100% = 2500 and
kp = 1.759 in this work [32].
However, it is hard to ensure that every two adjacent charg-

ing and discharging processes can form a full cycle with a
specific DOD. Therefore, the rainflow counting algorithm
(RCA) [32], [33] is utilized to count the equivalent full cycles
of the BES, as shown in Fig. 5.
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FIGURE 5. A schematic diagram of counting the equivalent full cycles of
batteries by using the RCA.

As can be seen from Fig. 5, when providing a SOC profile
of the BES on the d thi day, di ∈D, the RCA can output the
total number of full cycles, Nfull(di), and the DODs of each
full cycle, dfc(h, di), h = 1, 2, . . . ,Nfull(di).

In conclusion, the battery cycle aging costs can be eval-
uated by a function related to the DOD of each full cycle
and the initial investment costs of the battery, as described
follows:

Ocycle = 365
∑

di ∈ D
pi ∈ P

pi

Nfull(di)∑
h=1

ρbatCE,b

Ncycle,100%
dfc(h, di)kp


(22)

5) PENALTY FUNCTION (Cpf)
The penalty function,Cpf, is described in (23), where a
is a pretty large constant; Enow

exceed and Eago
exceed represent

the amounts of the power variations that are larger than
±10%/min before and after smoothing, respectively. The
range of Cpf is [0, a], and a = 108 in this work. Also,
0 ≤ Enow

exceed ≤ E
ago
exceed.

Cpf = α
(
Enow
exceed/E

ago
exceed

)
(23)

where Eago
exceed can be calculated by (24), and the same formu-

las can be used to calculated Enow
exceed if 1PPCC(tj) represents

the power variations at the PCC after the suppression.

Pexcess(tj) =


∣∣1PPCC(tj)∣∣− Pvar,max,

if
∣∣1PPCC(tj)∣∣ > Pvar,max

0,
otherwise.

(24a)

Eago
exceed = 3651t

∑
di ∈ D
pi ∈ P

pi

∑
tj∈T

Pexcess(tj, di)

 (24b)

D. SOLUTION METHODS
This study uses the particle swarm optimization algorithm
with inertia weight (PSO-IW) [34] to solve the optimal allo-
cation model of the HESS because it has been widely used in
numerous fields, such as the optimization of active distribu-
tion networks, the voltage and frequency regulation, and the

optimal power flow [35], [36]. The overall idea of using the
PSO-IW to solve the established allocation model is shown
in Fig.6, and the specific solution processes are as follows:

Algorithm 1 Optimize the HESS Capacities Using the PSO-
IW Algorithm (Upper Level)
1: Input data: power variation requirements,

economic parameters, and other necessary
parameters.

2: Set parameters of the PSO-IW algorithm: such
as population sizes, Nmax, and the number of
iterations, Niterate.

3: Initialize the population:
V(1)
= [d(1)1 , d(1)2 ,. . . , d(1)Nmax].

4: Start iteration:
5: for k = 1 to Niterate do
6: Call the smoothing strategy and calculate the

values of the objective function, ζ (V(k)).
7: Update the best population, dbest.
8: Generate a new set of populations, V(k+1).
9: end for
10: Output the optimal capacities of the HESS, dbest,

and the optimal value of the objective function,
ζ (dbest).

Algorithm 2 Smoothing Strategy (Lower Level)

1: Input data: population, V(k), the number of the
typical days, Ntypd, active power data of each
typical day, etc.

2: for a = 1 to Nmax do
3: Set the energy and power capacities of the HESS

equal to d(k)a .
4: for b = 1 to Ntypd do
5: The proposed smoothing strategy is applied

to the typical day b.
6: Save the smoothing results.
7: end for
8: Calculate the objective function, ζ (d(k)a ).
9: end for
10: Return the values of the objective function,

ζ (V(k)).

In this work, all optimization models and solution methods
are programmed on the MATLAB @R2015b platform. Fur-
thermore, to solve the multi-objective optimization model (8)
when dispatching the output power of the BES and the SCES,
the optimization tool fmincon(·) provided by the MATLAB
toolboxes is used, because it can effectively solve this prob-
lem with less computing time.

V. CASE STUDY
A. TYPICAL DAYS OF PV POWER VARIATIONS
In this work, the typical days, which can reflect the general
characteristics of the PV power variations, were established
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FIGURE 6. Overall idea of using the PSO-IW to solve the established
allocation model.

FIGURE 7. Typical days of PV power variations: (a) category A has the
lowest level of power variations, including sunny, rainy, and snowy days;
(b) category B has the medium level of power variations; and (c) category
C has the highest level of power variations, representing the PV power on
cloudy days.

based on the real data of a 750kWp PV plant in Sri Lanka.
The data recorded the active power of this PV plant from
January 01, 2012 to November 31, 2012 (365 days) with the
sampling interval of 5s.

These data sets were divided into three main categories
by using the K-means clustering algorithm [37], according
to the magnitude and frequency of power variations. The
number of days included in each category is 55 days (15%),
204 days (56%), and 106 days (29%), respectively. To reduce
computing time, four days of data were selected from each
category as the typical days of PV power variations (total
12 days), as shown in Fig. 7.

B. SIMULATION PARAMETERS
Simulation parameters are configured as shown in Table 1,
where the economic parameters of PV systems, lithium-
ion batteries, supercapacitors, and converters are obtained
according to the latest IRENA reports [38]–[40]. The price
of selling PV power is obtained from the official website of
the U.S. Energy Information Administration [41].

C. ALLOCATION RESULTS
Based on the same typical days shown in Fig. 7, the optimal
energy and power capacities of the HESS of the two different
smoothing strategies, including the proposed strategy and the
reference strategy proposed in [26], were calculated using

TABLE 1. Simulation parameters.

the established optimal allocation model. Different from the
proposed smoothing strategy, the reference strategy only uses
the HESS to smooth power variations without limiting the PV
power. The allocation results are presented in Table 2.

As can be seen fromTable 2, the proposed allocationmodel
is suitable for optimizing the HESS capacities of different
smoothing strategies. The energy capacity of the SCES of
the reference strategy is significantly larger (about 125%)
than that of the proposed strategy, while the other optimal
capacities of them are almost the same. They indicate that
the APC of PV can help to reduce the supercapacitor’s
capacity. Thus the corresponding initial investment costs of
the SCES can be much smaller. Furthermore, the annual
energy losses of the HESS are smaller, resulting from the
optimization of dispatching the compensation power of the
HESS and the reduced utilization ratio of the HESS due to the
APC of PV.

It is clear that the total amount of the annual PV power
generation of the proposed smoothing strategy is reduced by
about 0.0805% due to the curtailed PV energy, causing the
revenue reduction in selling PV energy. However, from the
perspective of the comprehensive economics of the PV plant,
using the proposed strategy to mitigate the power variations
of PV plants can improve its annual net income, reduce the
initial investment costs of systems, and reduce the overall
capacities and operating losses of the HESS.

D. SMOOTHING RESULTS
To verify the correctness of the optimal allocation results,
i.e., dbest = [180, 170, 24, 390], a typical day was selected
from category C in Fig. 7 to evaluate the smoothing results of
the proposed smoothing strategy. Namely, let the capacities of
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TABLE 2. Optimal energy and power capacities of the HESS for two different smoothing strategies.

FIGURE 8. Smoothing results of the proposed smoothing strategy: (a) the
profiles of the active power at the PCC and (b) power variations at the
PCC.

the HESS equal to dbest, then the proposed smoothing strategy
is used to smooth the power variations of the selected typical
day. As a result, after the compensation, the profiles of the
active power at the PCC, PPCC, and its variations, 1PPCC,
calculated by (1) are shown in Fig. 8.

It can be clearly seen from the profiles in Fig. 8, the vari-
ations of the smoothed PV power are strictly limited to
the range of ±10%/min. Furthermore, based on the same
capacities of the HESS, i.e., dbest, we also investigated the
smoothing results of other several days, which were selected
from the category A, B, and C randomly. It was found that
the power variations of all those typical days could be effec-
tively suppressed within the allowable range (±10%/min).
Therefore, simulation results proved the effectiveness of the

FIGURE 9. Profiles of the active power and SOC of the BES and the SCES:
(a) output power and (b) SOC profiles.

proposed smoothing strategy and the correctness of the opti-
mal allocation results.

Fig. 9 shows the profiles of the active power and SOC of
the BES and the SCES. In Fig. 9(a), the SCES provided more
power components, and its power change rates were faster
compared with the BES. In other words, the utilization of
the SCES is higher because reducing the overall losses of
the HESS is considered in the multi-objective optimization
model (sub-objective function f1 (6)) while dispatching the
HESS power. Thus the SCES is preferred. On the other hand,
the SOC of the SCES shown in Fig. 9(b) fluctuated within
the range of 10% to 90%, and its average value fluctuated
around 50%, which was considered in the sub-objective func-
tion f2 (7). They verified the correctness and effectiveness
of the established multi-objective optimization model of dis-
patching the HESS power.

E. DISCUSSIONS
1) INITIAL WEIGHT COEFFICIENT OF THE SMOOTHING
STRATEGY
In the proposed smoothing strategy, as shown in Fig. 3,
theweight coefficientβ of two sub-objective functions (f1 and
f2) changes with the real-time status of the supercapacitor’s
SOC, and its initial value was set to 0.7, i.e., β0 = 0.7.
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FIGURE 10. Impacts of the initial weight coefficient β0) of the proposed
smoothing strategy on the allocation results of the HESS: (a) optimal BES
capacities, (b) optimal SCES capacities, and (c) annual energy losses of
the HESS and annual net income of systems with different β0.

Thus the impacts of the value of β0 on the allocation results
of the HESS need to be discussed. Fig. 10 shows the profiles
of the optimal capacities of the BES and the SCES, the total
annual losses of the HESS, and the annual net income of
systems with the different values of β0.
Fig. 10(a) shows that there has been a slow decrease in

the optimal capacities of the BES when increasing the β0
from 0 to 0.7, whereas the optimal capacities of the SCES
increase steadily (Fig. 10(b)). Nevertheless, it can be seen
from Fig. 10(c) that there has been a significant decline in
the total energy losses of the HESS, which indicates that

β0 plays an essential role in allocating the HESS capacities
because β0 represents the utilization rate of the SCES while
dispatching the power demand of the HESS. The larger the
value of β0, the higher the utilization rate of the SCES. For
example, if β0 = 0, the SCES is less preferred to respond to
the HESS power demand for smoothing PV power variations,
thus the optimal capacities of the BES are the largest, and the
optimal capacities of the SCES are the lowest. Furthermore,
the annual energy losses of the HESS are the highest due to
the lower efficiency of the BES, if we set β0 = 0.
Another important finding is that the annual net income of

systems reaches a peak at β0 = 0.5 (as shown in Fig. 10(c)),
indicating the system revenue exists a maximum point as
β0 changes. Therefore, based on the simulation results, it is
recommended to set the value of β0 within the range of [0.4,
0.7], achieving the maximum revenue of systems and the
reasonable allocation results of the HESS.

2) ALLOWABLE RANGES OF PV POWER VARIATIONS
In this work, the allowable variation range of the PV power
was assumed to be ±10%/min. However, when increasing or
decreasing the allowable range, the optimal capacities of the
BES and the SCES, the energy losses caused by reducing the
PV power, and the annual net income of systems are shown
in Fig. 11.

The most interesting finding is that there has been a steady
decrease in the optimal energy capacity of the SCES when
decreasing the allowable range from±20%/min to±2%/min
(Fig. 11(b)), whereas the optimal energy and power capacities
of the BES increase steadily (Fig. 11(a)). This result may be
explained by the fact that reducing the allowable variation
range results in the HESS needs to absorb more excessive
power variations, i.e., the total throughput energy of theHESS
is dramatically increased. As a result, the required capaci-
ties of the BES need to be increased because the battery is
capable of absorbing or releasing sustained energy, while the
supercapacitor is good at providing higher rates of power.
Furthermore, to maximize the system revenue, the energy
capacity of the SCES needs to be reduced due to its expensive
costs.

Another important finding is that the frequency of reduc-
ing the PV power is increased if the variation requirement
is stricter (from ±20% to ±2%/min), thus correspondingly
causing more energy losses, as shown in Fig. 11(c). On the
other hand, it indicates that the APC of PV will be more
effective and useful for helping the HESS achieve a better
smoothing result. By contrast, if the allowable range is larger,
for example, ±20%/min, the HESS has enough capacities to
cope with all power variations, thus limiting PV power is not
needed.

Also, it can be seen from Fig. 11(c) that the annual net
income of systems can even become negative if the allowable
range is less than ±5%/min because the owner of the PV
plant needs to install more energy storage systems. This
may reduce the motivation of users to develop PV systems.
Therefore, the policy makers of utilities should make more
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FIGURE 11. Impacts of the power variation requirements on the
allocation results of the HESS: (a) optimal BES capacities, (b) optimal
SCES capacities, and (c) annual energy losses caused by reducing the PV
power and annual net income of systems with different requirements of
PV power variations.

contributions to balance the development of renewable
energy and the safety and stability of utilities. One possi-
ble solution is that the utilities may give some subsidies to
owners of PV plants if the power variation requirements are
extremely strict.

3) SOLUTION METHODS
This study used the PSO-IW algorithm to optimize the HESS
capacities, and the total number of iterations was set to 200.
Simulations were conducted on a 64-bit workstation with

FIGURE 12. Convergence profiles of the objective function (−ζ (d)) with
different solution methods.

Windows 10 Pro, Intel Xeon E5-2609 @2.4-GHz CPU, 12G
RAM, and a MATLAB-R2015b platform. The convergence
profiles of the objective function, −ζ (d), with the PSO-IW
algorithm and the genetic algorithm (GA) [42] are presented
in Fig. 12, where the total computational time of each algo-
rithm is about 12 hours.

As can be seen from Fig. 12, the convergence of the
PSO-IW algorithm is better than the GA. Although the GA
can also gain the optimal results, its optimization perfor-
mance is slightly less than the PSO-IW. Furthermore, other
solution methods can also be used to solve this allocation
model, such as the artificial bee colony (ABC) algorithm [43]
and other improved GA and PSO algorithms.

One disadvantage of these two solution methods is that
they need too much computation time because the established
allocation model considered a wide variety of power fluctua-
tion scenarios of PV. Nevertheless, this model also optimized
the output power of the HESS, while allocating the HESS
capacities. Fortunately, the allocation problem is an off-line
optimization rather than a real-time (online) control. The
allocation problem needs to consider numerous influencing
factors, thus it is acceptable to spend much time on it.

4) OTHER FACTORS
Other parameters, such as the costs of batteries and superca-
pacitors, the unit price of solar energy, and the battery life
will also affect the optimal capacities of the HESS and the
revenue of the PV and HESS systems. Therefore, numerous
simulations were carried out to investigate their impacts on
optimization results. In conclusion, costs reduction in super-
capacitors will increase the optimal capacities of the SCES
and improve the system revenues. Furthermore, increasing
the lifetime of batteries will correspondingly reduce the opti-
mal energy capacities of the BES.

VI. CONCLUSIONS
In this work, a coordinated control strategy of the PV active
power curtailment and the HESS is developed to mitigate
the variations of PV power, ensuring the real-time active
power variations at the PCC are less than ±10%/min of its
rated capacity. Based on the proposed smoothing strategy, an
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optimal sizing model of the HESS is established to optimize
the energy and power capacities of the HESS, while maximiz-
ing the annual revenues of the PV and HESS systems. The
main conclusions are as follows:

(1) The proposed allocation method has been proved to
be effective in finding the optimal capacities of the HESS,
which has fully considered the investment and operating costs
of systems, lifetime aging costs of batteries, and the energy
reduction in mitigating PV active power. Furthermore, it also
considered a variety of scenarios of the PV power variations
to guarantee the applicability and feasibility of the optimiza-
tion results.

(2) This study has also shown that mitigating active power
of PV can reduce the required capacity of supercapacitors,
compared with the smoothing method of using the HESS
alone. Also, the proposed smoothing strategy can also reduce
the losses and costs of the HESS and improve the net revenues
of the system.

(3) It has been found that the optimal energy and power
capacities of the BES will increase and the optimal energy
capacity of the SCES will decrease, as the allowable range of
PV power variations becomes narrower.

A limitation of this study is that the calculation time of
the proposed allocation model is relatively long because it
optimizes the capacities and output power of the HESS at
the same time. In addition, considering numerous possible
scenarios of PV further increases its computational time.
Therefore, further studies are required to reduce the number
of typical scenarios of PV so that the calculation time could
be reduced.
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