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ABSTRACT Image encryption is the most direct and effective technical means for protecting the security
of image information. Based on the space filling property of the Hilbert curve and the infinite property
of the H-geometric fractal, a new image encryption technique is proposed, which combines the pseudo-
randomness of a hyperchaotic system and the sensitivity to initial values. First, the hash value of a plaintext
image is calculated using the secure hash algorithm 3 (SHA-3) as the initial value of the piece-wise linear
chaotic map (PWLCM) and Rossler chaotic systems, which associates the key with the plaintext. In addition,
the chaotic sequences that are generated by the chaotic systems are used to scramble the global pixel positions
and the pixel values of the images, thereby disturbing the distribution of the pixel positions and the pixel
values. Second, the Hilbert curve and H-fractal are alternately used to scramble the local pixel positions
and diffuse the pixel values twice. Finally, the ciphertext feedback is used to further enhance the confusion
and diffusion characteristics of the algorithm in order to achieve higher security. The experimental results
and security analysis show that the encryption technique has enough key space to resist exhaustive attacks
and can effectively resist statistical attacks, differential attacks, noise attacks, and cropping attacks. It can
be used for military, judicial, and other privacy-related digital images secure storage and network security
transmissions.

INDEX TERMS Hilbert curve, H-geometric fractal, hyperchaotic system, SHA-3, image encryption, chaotic

cryptography.

I. INTRODUCTION
With the rapid development of Internet technology and mul-
timedia technology, increasingly more attention has been
paid to the secure transmission of information such as
images, videos, audio and so on [1], [2]. Compared with
text data, digital images have the characteristics of large
data volumes, strong correlations and high redundancy. Tra-
ditional encryption methods such as data encryption stan-
dard (DES), triple DES (3DES), and advanced encryption
standard (AES) [3], [4] are not suitable for image encryp-
tion due to their slow encryption speeds and small key
spaces [5], [6].

As a complex nonlinear dynamic system, a chaotic system
has the characteristics of sensitivity to the initial values,
pseudo-randomness, and unpredictable motion trajectories,
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which are consistent with the characteristics of cryptography,
and thus, it is widely used in image encryption [7]-[10].
In 2004, Chen et al. proposed a symmetric image encryption
scheme based on the 3D Cat map [11]. The scheme used the
3D Cat map to scramble the positions and pixel values of
the image and used the 2D Cat map to confuse the relation-
ship between plaintext images and ciphertext images, which
significantly improved the ability of the algorithm to resist
statistical attacks and differential attacks. In 2005, Guan et al.
proposed an image encryption algorithm based on a chaotic
system. The algorithm first used the Arnold cat map to scram-
ble the pixel positions of the images in the spatial domain
and then used the pseudo-random sequences generated by the
Chen chaos to preprocess the discrete chaotic signals so as to
realize the scrambling of pixel positions and the synchronous
diffusion of pixel values [12]. In 2008, Behnia et al. pro-
posed a digital image encryption scheme based on a hybrid
chaotic system, which mixed a typical coupling map with a
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one-dimensional chaotic map in order to enhance the
complexity and security of the algorithm [13]. In 2011,
Awad proposed a new method for image encryption using
chaotic systems. This method used a two-dimensional
chaotic system to scramble the pixel positions of the
image and used a piecewise linear chaotic map to per-
mute and diffuse the image over multiple rounds [14]. The
experimental results and security analysis show that the
algorithm can perform secure and effective real-time image
encryption.

However, a single chaotic system has some problems, such
as short periods, a limited precision effect and so on. For this
reason, a series of image encryption methods combined with
chaotic systems have emerged. In 2013, El-Latif et al. pro-
posed an image encryption method based on a combination
of a cyclic elliptic curve and a chaotic system. The method
combined the keys that were generated by the chaotic system
with the keys of the cyclic elliptic curve in order to obtain
stronger encryption keys and improve the security of the algo-
rithm [15]. In 2014, Wang et al. proposed an image encryp-
tion method based on a dynamic S-box in which the S-box
is composed of a chaotic system. The parameters and initial
state of the chaotic system are generated by using the external
256-bit key and the last pixel of the plaintext image as the first
S-box. By dividing the plaintext image into several blocks and
replacing the pixels with an S-box, the correlation between
the adjacent pixels is broken down, which greatly reduces the
computational and time complexity [16]. In 2015, Zhou et al.
proposed a symmetric image encryption algorithm based on
the oblique tent map. The algorithm eliminates the limitations
of images’ length and width and is suitable for the encryp-
tion of grayscale images and color images of any size [17].
In 2016, Tang et al. proposed an image encryption algorithm
that is suitable for multi-gray images. The algorithm decom-
posed the input image into bit planes, randomly exchanged
the bit blocks between different bit planes, and performed an
exclusive OR operation between the scrambled image and
the key matrix under the control of the chaotic map. The
algorithm used multiple keys and improved its security with
respect to the batch processing of a high-performance large
image database [18]. In 2018, Ping et al. proposed an image
encryption algorithm based on cellular automata and chaos.
The encryption algorithm included two stages of confusion
and diffusion. In the confusion stage, the two-dimensional
Logistic-adjusted-Sine map was used to scramble the pixel
position of the image to reduce the computational complexity.
In the diffusion stage, the image pixels were permuted by
a second-order cellular automaton. The result of each itera-
tion reversed and undistorted the encryption algorithm [19].
In 2019, Hanis et al. proposed a new improved Logistic
map based on the extended key space, the integer-based
key generation algorithm and the block image encryption
algorithm based on the improved Logistic map and butter-
fly structure. Compared with other encryption algorithms,
the algorithm has higher security and faster encryption
speed [20].
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With the research and development of fractal theory, frac-
tal encryption is favored by scholars as a new research
field [21]-[23]. Fractal theory is an important part of non-
linear science, and its mathematical basis is fractal geometry.
Fractal geometry has a fine structure of infinite nested levels
and has some self-similar characteristics in very small propor-
tions. The characteristics of the fractal geometry determine
the natural connection and structural similarity between the
fractal geometry and cryptography, which inspires people to
apply fractal geometry to the field of cryptography [24]-[26].

Based on this theory, a new image encryption algorithm is
proposed based on the H-geometric fractal, the Hilbert curve,
and chaotic systems. The algorithm used the hash value of
the plaintext image to associate the plaintext with the key.
The chaotic sequence, Hilbert curve, and H-geometric fractal
of the image are used to scramble and diffuse the image
pixels several times to enhance the confusion and diffusion
characteristics of the algorithm.

The objective of this paper is to ensure more security over
conventional asymmetric cryptosystems using the space fill-
ing property of the Hilbert curve and the infinite property of
the H-geometric fractal. A novel chaos-based image encryp-
tion technique based on the Hilbert curves and H-fractals
is proposed. The hash value of a plaintext image is calcu-
lated employing the SHA-3 algorithm as the initial value of
the chaos systems, and the chaos-generated sequences are
applied to scramble the global pixel positions and the pixel
values of the images; the Hilbert curve and H-fractal are
alternately used to scramble the local pixel positions and
diffuse the pixel values twice. Finally, the ciphertext feedback
is applied to further enhance the confusion and diffusion
characteristics of the algorithm to achieve higher security.
Thus the multifold security makes the method more efficient
and can be utilized in judicial and other privacy-related image
secure storage and network security transmissions.

The remainder of the paper is organized as follows. Basic
theories are given in Section II to discuss the Hilbert curves,
the H-fractals, and the chaotic systems. In Section III, the
pixel scrambling, the pixel diffusion, the ciphertext feedback,
and the encryption process are introduced. The experimental
results and security analysis are presented in Section IV.
Finally, this paper is concluded in Section V.

Il. BASIC THEORY

A. HILBERT CURVE

The Italian mathematician Peano and the German mathe-
matician Hilbert gave the FASS curve filling a square grid
in 1890 and 1891, respectively [27], [28], and gave a method
for traversing each node in the grid using this continuous
curve, which is called the Hilbert curve. The Hilbert curve
is an FASS curve, that is, space-filling, self-avoiding, self-
similar, and simple curve. These curves are located in a
Euclidean space with a dimension greater than 1 and have
non-empty interiors within the space. Figure 1 shows a path
for the Hilbert curve to traverse the grid.
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FIGURE 1. The Hilbert curve.
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FIGURE 2. Eight different scrambling schemes.

The first-order Hilbert curve can be described as follows:
divide a square into four small squares starting from the
center of the square in the lower-left corner, then going to
the center of the square in the upper-left corner, then going
to the center of the square in the upper-right corner, and
then going down to the right. After arriving at the center
of the square at the bottom corner, this completes the first
iteration, and the result is shown in Figure 2(b). The positions
of the starting point and the end point of the Hilbert curve
determine its direction. In the image, it determines the order
in which it traverses the spatial pixels. Therefore, according
to the selection and combination of the starting and end points
of the Hilbert curve, eight different scrambling schemes can
be generated for the first-order Hilbert curve, as shown in
Figure 2.

Figure 2(b) is placed in the upper-left and upper-right
corners of the 2 x 2 grid shown in Figure 3(a). Two representa-
tions of the Figure 2(b) are rotated 90 degrees clockwise and
90 degrees counterclockwise, respectively, and then placed
in the lower-left and lower-right corner regions, respectively.
The second iteration curve can be obtained by connecting the
adjacent end points of the curve, as shown in Figure 3(a).
Figure 3(b) shows the Hilbert curve after three iterations.
By repeating the above operations, a two-dimensional Hilbert
curve that traverses the entire square grid can be obtained.

B. H-FRACTAL

Fractal Geometry was originally defined as a set by Man-
delbrot. Subsequently, Falconer, a British mathematician,
defined Fractal Geometry and its calculation methods in
his work Fractal Geometry: Mathematical Foundations and
Applications in 1990 [29]. Since then, fractal geometry has
been widely used in mathematics and physics. The specific
characteristics of fractal geometry are as follows:
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FIGURE 3. The generation process of a two-dimensional Hilbert curve,
(a) Hilbert's second iteration curve, (b) two-dimensional Hilbert curve.

(1) Fractal geometry has self-similarity, that is, the whole
and part of the fractal have similarity;

(2) Fractal geometry has a complex structure, that is,
the non-escape point inside the fractal geometry and
the distribution are concentrated and present a complex
structure; and

(3) Fractal geometry can usually be composed using sim-
ple iterative methods.

In fractal geometry, the common fractals are the H-fractal,
the Cantor set, the Koch curve, and the Julia set. The H-fractal
is a fractal tree structure composed of vertical line segments,
and each line segment is less than the square root of 2
times the next largest adjacent line segment. The Hausdorff
dimension is 2, and the H-fractal is arbitrarily close to each
point in the rectangle. Its Major applications include infor-
mation encryption, microwave engineering, and large-scale
integrated circuit design.

C. CHAOTIC SYSTEMS

1) PIECE-WISE LINEAR CHAOTIC MAP (PWLCM)

The PWLCM system has gained increasing attention
in encryption algorithms because of its less sensitivity
towards external perturbation than the conventional Logistic
map [30], its simplicity in representation, efficiency in imple-
mentation, as well as good dynamical behavior [31]. And the
mathematical description of the one-dimensional PWLCM is
shown as follows:

S/p7 lfOSS<p
(s—p)/O05—p), ifp<s<05 ()
l—s, if0.5<s<1,

F(s)=
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FIGURE 4. Phase diagram of the PWLCM system with p = 0.1.

where s € [0, 1), when the control parameter p €
(0, 0.5), the PWLCM system evolves into chaotic state [32].
The PWLCM system has uniform invariant distribution and
very good ergodicity, confusion, and determinacy [33], so it
can provide excellent random sequence, and the generated
sequence is used to scramble the pixel position globally,
which improves the security of the whole cryptosystem. The
phase diagram of the PWLCM system with p = 0.1 is
depicted in Figure 4. One-dimensional discrete chaotic sys-
tem has the advantages of simple form and short time to
generate chaotic sequence, but its disadvantage is that the
key space is too small. Hyperchaotic system has more com-
plex dynamic behavior, and it has stronger anti-interference
ability and anti-deciphering ability. However, since the hyper-
chaotic system is more complex than the low-dimensional
one, the time increase of the hyperchaotic sequence may
directly affect the real-time requirement of secure communi-
cation. In the process of image encryption, the hyperchaotic
system is used to increase the key space.

2) HYPERCHAOTIC ROSSLER SYSTEM

The Hyperchaotic Rossler system is a nonlinear dynamic
system. It has the characteristics of an unpredictable motion
trajectory, sensitivity to the control parameters and initial
values, and boundedness of the motion trajectory. These char-
acteristics are consistent with the cryptography research, and
so the system is widely used in image encryption. The equa-
tion that describes a hyperchaotic Rossler system is shown in
formula (2).

X=—-y—2z

y=x4ay+w

i (2)
z=b+=x

W= cw — dz,

where x, y, z, and w are the state variables, and a, b, ¢, and d
are the control parameters. When a = 0.25, b = 3, ¢ = 0.05,
and d = 0.5, the above system is in a hyperchaotic state. The
phase diagrams of the four planes, x-y-z, x-y-w, x-z-w, and
y-z-w are shown in Figure 5.

IIl. ENCRYPTION ALGORITHM

The hyperchaotic system is used to permute and scramble
the pixels, the Hilbert curve is used to scramble the pix-
els, and the H-fractal structure is used to diffuse the pixels.
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FIGURE 5. Phase diagrams of the different planes of a hyperchaotic
Rossler system.

Finally, the ciphertext feedback further enhances the confu-
sion and diffusion abilities of the pixels, thus achieving image
encryption.

A. GENERATION OF CHAOTIC INITIAL VALUES

The Secure Hash Algorithm 3 (SHA-3) is one of the hash
functions [34] that can convert arbitrarily long character
information into hash values of the same length. The key that
is generated by the hash value of the SHA-3 algorithm, even
if the original image has a 1-bit difference, will be completely
different, thus corresponding to a different encryption key.
By associating the original image information with a hash
function, it can generate a larger key space that will enhance
the ability to resist exhaustive attacks, and the small changes
in the plaintext can spread to the whole ciphertext image,
which can be widely used in image encryption. Here we use
the hash function to generate the key that is the initial value
of the chaotic system in order to establish the association
between the key and the plaintext image.

The original image is subjected to an SHA-3(256) oper-
ation to generate a set of 256-bit hash values, which are
converted to binary values and used as the key K for the
initial value of the chaotic system. The initial values gener-
ated by this method have the advantages of randomness and
periodicity. The k is divided by bytes and can be divided
into 32 bytes, expressed as ki, ka, ..., k32. This will make
O =k @k ®... ks, 02 = ko @ kiop ® ... D ki,
03 =ki17@kig®...Dkog,and Q4 = ko5 D kog D ... D k32.
The initial values of the hyperchaotic Rossler system and the
PWLCM system are calculated as shown in formula (3).

xo = 01/256 + x|,

yo = 02/256 +y,

20 = 03/256 + z;, 3)
wo = 04/256 + W6

So = 04/256 + 5,

/ / / / / : LS
where x, ¥, 2o, Wy, and s, are the given initial values.
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FIGURE 6. Three types of Hilbert scanning curves, (a) 8 x 8-order Hilbert
curve, (b) 16 x 16-order Hilbert curve, (c) 32 x 32-order Hilbert curve.
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FIGURE 7. The images after Hilbert scrambling, (a) plaintext Lena image,
(b) a scrambled image, (c) decrypted Lena image.

B. PIXEL SCRAMBLING

1) LOCAL SCRAMBLING

To scramble the image pixels locally by using the Hilbert
curve, the pixel matrix of a given image is divided into
four sub-matrices and scanned using the Hilbert curve. Then,
the four sub-matrices are divided into four smaller sub-
matrices and scanned using the Hilbert curve. By analogy,
until each sub-matrix is a 2 x 2 pixel block, the Hilbert curve
is scanned according to the Hilbert curve. The traversing path
of the curve stores the pixel value of the image matrix A into
another image matrix B at one time. The new image matrix B
is the pixel matrix after traversing the Hilbert curve.

Three types of Hilbert scanning curves are illustrated
in Figure 6, in which Figures 6(a)-(c) are an 8x8-order
scanning curve, a 16x16-order scanning curve, and a
32x32-order scanning curve, respectively. Given a 256 x 256
Lena image, the Lena image that is scanned by the Hilbert
curve is shown in Figure 7(b). By observation, it can be found
that the original image has completely lost its features, which
achieves the purpose of scrambling the plaintext image. After
Hilbert scrambling, a Lena image is decrypted using the
reverse operation of the Hilbert curve, and the image is shown
in Figure 7(c). Therefore, using the Hilbert curve scan to
scramble a plaintext image has a large number of scrambling
paths and a great scrambling cycle and scrambling effect,
which enhances the security of the image transmission.

2) GLOBAL SCRAMBLING

The Hilbert curve is suitable for local scrambling. Here
we use the PWLCM system to achieve global scrambling.
We iterate the PWLCM system M x N times and gener-
ate the chaotic sequences. The generated chaotic sequences
are arranged in ascending order, and the permutation index
sequence of each element in the sorted sequence in the
original chaotic sequence is recorded. Then, the permutation
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FIGURE 8. The formation process of an H-fractal.
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FIGURE 9. The image after H-fractal operations, (a) Plaintext Lena image,
(b) The diffused image, (c) Decrypted Lena image.

matrix is filled according to each row of M values to obtain
a permutation matrix, and the image’s pixel positions are
globally scrambled.

C. PIXEL DIFFUSION
Diffusion technology is a technique to replace the image pixel
values, and the change in a pixel value will affect the change
in the other pixel values such that the pixels in the differ-
ent positions are coupled. Then, the encrypted image can
resist the known-plaintext attacks. Here, we use the H-fractal
to conduct local diffusion of the image’s pixel values. The
formation process of a second-order H-geometric fractal is
shown in Figure 8.

For a first-order H-fractal, the pixel values of endpoints
1 and 7 are bitwise exclusive OR operations and are assigned
to endpoint 1. The pixel values of endpoints 3 and 9 are
bitwise exclusive OR operations and are assigned to endpoint
3. The pixel values of the two intersections 4 and 6 are
bitwise exclusive OR operations and are assigned to point 4.
The analogous operations are repeated throughout the image,
as shown in Figure 8. Figure 9(b) is the image that was
obtained after the H-fractal diffusion operation of the Lena
image, and Figure 9(c) is the image that was obtained after
the diffusion image is decrypted using the H-fractal reverse
operation. It can be seen that the original image has changed
significantly and that the diffusion process is reversible, but
some features of the original image can still be seen. There-
fore, we alternately use the H-fractal twice for the image
diffusion operation to enhance the diffusion ability of the
cryptosystem.

D. CIPHERTEXT FEEDBACK

The ciphertext diffusion operation makes minor changes to
the plaintext that are spread to the whole ciphertext, thereby
disrupting the relationship between the plaintext image and
the ciphertext image. It can effectively resist cryptographic
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FIGURE 10. Flowchart of the encryption process.

attacks such as the chosen plaintext attacks and realize cipher-
text diffusion. The image matrix is converted into a one-
dimensional sequence S = {s1, 52, 53, ..., SmMxn } of length
M x N in the first order row. Then, let the sequence of the
ciphertext diffusion be SE = {sey, se, se3, ..., sepxn }. The
ciphertext diffusion is as follows in formula (4):

se(i) = s(i) @ se(i — 1), 4

where the initialization elements are se(0) = 128, and
i=1,2,...,M xN.

E. ENCRYPTION PROCESS

The digital image encryption algorithm proposed in this paper
combines the Hilbert scanning curve and the H-geometric
fractal structure, which mainly includes the following steps.
First is position scrambling, which uses the chaotic sequences
generated by the chaotic map to scramble and disturb
the image pixels. Second, the Hilbert curve scanning and
the H-geometric fractal were alternately used to realize the
scrambling of the pixel positions and the diffusion of the
pixel values. Finally, the pixel is further diffused through
the ciphertext feedback. The encryption flowchart is shown
in Figure 10, and the specific steps are as follows.

Stepl: Convert the grayscale image P into a
two-dimensional image matrix P of size M x N.

Step2: The SHA-3 hash function is used to calculate the
hash value K of the image matrix P, and the chaotic initial-
ization parameters xg, Yo, 20, Wo, and sq are obtained.

Step3: Use the one-dimensional PWLCM system to gen-
erate chaotic sequences and conduct global scrambling of the
image matrix Pp, and the image matrix P; is obtained.

Step4: terate the hyperchaotic Rossler system to generate
four chaotic sequences with lengths of M x N/4. Then,
take the third to thirteenth digits after the decimal point
and conduct 256 modular operations on them. The M x N
sequence matrix is composed of N elements in each row, and
the sequence matrix and image matrix P, are subjected to a
bitwise OR operation to obtain the diffused image matrix P3.

Step5: The image matrix P4 is obtained by using the
H-geometric fractal for the first diffusion operation of the
image matrix P3.
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FIGURE 11. Experimental results of the proposed technique. (a) Lena
image. (b) Lena cipher image. (c) Lena decrypted image. (d) Peppers
image. (e) Peppers cipher image. (f) Peppers decrypted Image.

(g) Cameraman image. (h) Cameraman cipher image. (i) Cameraman
decrypted image.

Step6: The image matrix Ps is obtained by using the Hilbert
scanning curve in the image matrix Py.

Step7: The second-order H-geometric fractal that is formed
by the iteration of Step 5 is rotated clockwise by 90 degrees
to obtain the deformed H-geometric fractal. The H-geometric
fractal that deforms the image matrix Ps is also used for the
image diffusion operation to obtain the image matrix Psg.

Step8: The image matrix P7 is obtained from the final
round of the Hilbert scanning operation of the image
matrix Pg.

Step9: The ciphertext feedback operation is performed on
the scanned image of the Hilbert curve to obtain the matrix
Pg, namely, the ciphertext image.

The decryption algorithm is the inverse of the above pro-
cess, and the algorithm is also applicable to color image
encryption, which only needs RGB decomposition of the
image’s pixel values.

IV. EXPERIMENTAL RESULTS AND SECURITY ANALYSIS
In this paper, the standard Lena, Peppers, and Cameraman
gray images of size 256 x 256 are used to verify the feasibility
and effectiveness of the algorithm. The algorithm is simu-
lated using MATLAB 2018a on the Windows 10 operating
system. The initial parameters x; = —50,y, = —15,
7y = 70,w, = 35, and 5, = 0 are obtained by using the
Gram-Schmidt standard orthogonalization method and the
fourth-order Runge-Kutta algorithm. The plaintext, cipher-
text and decrypted images of Lena, Peppers, and Cameraman
are shown in Figure 11, respectively.

A good encryption algorithm should have enough key
space to resist exhaustive attacks. The algorithm is sensitive
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FIGURE 12. Decryption diagrams after small changes in the keys.

(a) Decryption diagram of the xo + 108 key. (b) Decryption diagram of
the key yo + 108 key. (c) Decryption diagram of the key zy + 108 key.
(d) Decryption diagram of the key w + 108 key.

to keys and can resist common attacks, such as statistical
attacks, differential attacks, data loss attacks, noise attacks,
and cropping attacks. This part mainly analyzes and discusses
the performance and security of the proposed encryption
method.

A. EXHAUSTIVE ATTACK ANALYSIS

1) KEY SPACE ANALYSIS

The encryption keys in this paper include xo, yo, zo, wo, lo,
and the 256-bit hash values. For the initial values xy, yo, 20,
and wg of the hyperchaotic Rossler system and the initial
value so of the PWLCM system, if the calculation accuracy
is 1078, the key space size is 10*°, and the key space of
the 256-bit hash values is 2128, which means that the total
key space of the encryption system is § = 10%0 x 2128 =
3.40 x 1078, Therefore, there is a large enough key space to
resist exhaustive attacks.

2) KEY SENSITIVITY ANALYSIS

To test the sensitivity of the keys, for the hyperchaotic Rossler
system, the initial values of xp, yo, 20, and wq are increased
by 1078 and the other keys are unchanged. Figure 12 shows
the corresponding decrypted image. The encryption keys
X0, Y0, 20, and wg are changed 1078, respectively. The original
keys and the modified keys are used to encrypt the three
images, and the NPCRs and UACTs of the two cipher images
are calculated, as shown in Table 1. The decryption keys
X0, Y0, Z0» and wg are changed 103, respectively. The original
keys and the modified keys are applied to decrypt the three
images, and the NPCRs and UACIs of the two plain images
are calculated, as shown in Table 2. It can be seen that the
small changes in the keys cannot correctly decrypt the origi-
nal image, and so the algorithm has strong key sensitivity.

B. STATISTICAL ATTACK ANALYSIS

1) HISTOGRAM ANALYSIS

To some extent, the statistical characteristics of the images
can reflect the distribution of the gray values of the

74740

TABLE 1. Key sensitivity analysis in encryption process.

Metrics (%) Lena Peppers Cameraman
« NPCR 99.6231 99.6109 99.5651
0 UACI 33.5321 33.4425 33.4992
NPCR 99.6246 99.6002 99.5926
Yo UACI 33.3530 33.4549 33.4689
- NPCR 99.5865 99.6246 99.5911
0 UACI 33.4180 33.4043 33.6870
W NPCR 99.6017 99.5743 99.6262
0 UACI 33.5293 33.4215 33.4932

TABLE 2. Key sensitivity analysis in decryption process.

Metrics (%) Lena Peppers Cameraman
NPCR 99.4110 99.4370 99.4781
o UACI 27.6737 28.9922 32.6395
NPCR 99.4675 99.4431 99.3317
Yo UACI 25.6549 26.2443 30.2600
2 NPCR 91.4703 91.3666 91.4871
0 UACI 25.5309 26.4983 28.2465
NPCR 99.0952 99.0112 99.1028
"o UACI 26.6241 27.4034 32.2962

TABLE 3. Chi-square test results of plain images and cipher images.

Images Plain image Cipher image Pvalue  Decision
Lena 3.9851x10% 260.4141 0.4823 Accept
Peppers 3.1630x10% 254.7656 0.4807  Accept
Cameraman  1.6127x10° 268.8047 0.4952 Accept

original images. Whether the statistical distribution of the
original images can be changed is also an important evalua-
tion index in image encryption [35], [36]. The purpose of this
algorithm is to resist gray statistics attacks. The statistical his-
tograms of the Lena, Peppers, and Cameraman plain images
and the cipher images are shown in Figure 13. From the
experimental results, it can be concluded that the statistical
histograms of the encrypted images obtained by the pixel
diffusion and replacement operations are very uniform, which
shows that the algorithm has good resistance to statistical
attacks, and the attacker cannot analyze the original gray
value distribution range.

Chi-square test: Chi-square ( x2)is an important criterion
for analyzing uniformity of a histogram [37]-[40]. The cal-
culation method is as follows:

2 256 (f; — g)°
=D ®)
where g is the expected frequency and g = (M x N)/256,
M and N are the size of an image, and f; is the observed
frequency of a gray value i (0 < i < 255).

When the significant level is 0.05, and the correspond-
ing ideal chi-square value is 293.2478. The results of the
calculation are shown in Table 3. As can be seen from the
results that the ciphertext chi-square values are less than
293.2478, and our encryption technique passed the chi-square
test. Therefore, the proposed encryption technique in this
paper can effectively resist statistical attacks.
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FIGURE 13. Histogram analysis of the three plain images and cipher
images, (a) statistical histogram of the Lena plain image, (b) statistical
histogram of the Lena cipher image, (c) statistical histogram of the
Peppers plain image, (d) statistical histogram of the Peppers cipher
image, (e) statistical histogram of the Cameraman plain image,

(f) statistical histogram of the Cameraman cipher image.

2) CORRELATION ANALYSIS

The correlation of the adjacent pixels is an important eval-
uation index of digital image security analysis [41], [42],
which reflects the scrambling degree of an image’s pixel
distribution. The smaller the correlation of the adjacent pixels
in an encrypted image, the better is the scrambling effect, and
vice versa, the worse is the scrambling effect. The correlation
between the adjacent pixels of a plain image is very strong,
and thus, attackers can easily obtain plaintext information by
various means. The purpose of using an image encryption
method is to reduce the correlation between the pixels and
obtain the relevant cipher image. Taking the Lena image and
its cipher image as an example, 10,000 pairs of adjacent
pixels are randomly selected, and their correlation curves
in the horizontal, vertical, positive, and negative directions
are obtained as shown in Figure 14. According to formulas
(6)-(9), the correlation coefficients in the horizontal, vertical,
positive, and negative directions are calculated, respectively.

Em=yY (©)
pw= Y w-E@?, ™
vy = v I G- E@0i-E0). ®)
poy = V) o

VD) x /D)’
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FIGURE 14. Correlation analysis of the Lena plain image and the Lena
cipher image in four directions. (a) Horizontal correlation of the Lena
plain image. (b) Vertical correlation of the Lena plain image. (c) Positive
diagonal correlation of the Lena plain image. (d) Negative diagonal
correlation of the Lena plain image. (e) Horizontal correlation of the Lena
cipher image. (f) Vertical correlation of the Lena cipher image. (g) Positive
diagonal correlation of the Lena cipher image. (h) Negative diagonal
correlation of the Lena cipher image.

where x and y are the gray values of the adjacent pixels
in the image, N represents the number of selected sample
points, E(x) is the mean, D(x) is the variance, and cov(x, y)
is the covariance. Similarly, the correlation coefficients of the
adjacent pixels between the plain image and the cipher image
are shown in Table 4, which shows that the algorithm has
good security.

3) INFORMATION ENTROPY ANALYSIS

Information entropy represents the degree of uncertainty of
the system. It can be used to express the uncertainty of image
information. The more confused the image information is, the
higher the information entropy. For a gray image, the more
uniform the distribution of the gray values is, the greater
the information entropy, the greater the randomness, and
the higher the security. The formula for the global Shannon
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TABLE 4. The correlation coefficients of the plain and cipher images of
the three groups of images in the horizontal, vertical, positive diagonal,
and negative diagonal directions.

Images Horizontal ~ Vertical P'osmve Negatlve
diagonal  diagonal
Plain 09644 09332 09035 09236
image
Lena  Cipher
-1P 0.0015 -0.0014  -0.0028 -0.0037
image
Plain 9604 09651 09419  0.9434
Peppers 1mage
Cipher 0035 0.0050  0.0025  -0.0059
image
Plain = 09504 09194 08984 09031
image
Cameraman Cinher
-P 0.0072 -0.0113  -0.0065 -0.0040
image
TABLE 5. The results of information entropy.
Tmages Plain image Global Local Result
entropy entropy entropy
Lena 7.4532 7.9979 7.9023 Passed
Peppers 7.5797 7.9976 7.9026 Passed
Cameraman 6.9046 7.9975 7.9021 Passed

entropy is defined as follows:

Hny==3" PlogPmy),  (10)

where L is the gray level of the image, m; is the i th gray value
on the image, and P (m;) is the probability that m; appears.
For an L = 256 gray image, the theoretical value of the global
entropy is 8. The closer the global entropy is to the theoretical
value, the less likely the image will be attacked. Wu et al. pro-
posed a calculation method named ‘local Shannon entropy’,
which overcomes the shortcomings of inaccuracy, incon-
sistency, and low efficiency of global entropy [43], [44].
Local entropy is an improved method of global entropy.
Local entropy randomly selects non-overlapping blocks in the
image and then calculates the average value of the Shannon
entropy. The (k, Tp)-local Shannon entropy on the image
block is defined as follows:

. k ;

Hetn® =), @ (11)
where S, S2, ..., Sk are non-overlapping blocks with Tp
pixels randomly chosen from encrypted image. H(S;)
(i = 1,2,..., k) represents the information entropy of ;.
We set k = 30,7 = 1936 and randomly select k image
blocks with Tp pixel for test. And the range of (30, 1936)-
local Shannon entropy should be between [7.901901305,
7.903037329], with respect to «-level confidence of 0.05.
Table 5 shows the results of the information entropy for
multiple images. It can be seen from the results that the cipher
image possesses high randomness.

C. DIFFERENTIAL ATTACK ANALYSIS
A differential attack makes small changes in the plain image
and then encrypts the plain image and the changed image.

74742

TABLE 6. Comparative analysis of the NPCRs and UACIs of the three
groups of images.

Images Lena Peppers Cameraman
NPCR (%) 99.5636 99.6292 99.6445
UACI (%) 33.4417 33.3796 33.6711

The relationship between the plain image and the cipher
image is obtained by comparing two encrypted images. Nor-
mally, two criteria, the number of pixel change rate (NPCR)
and the unified average changing intensity (UACI), are
used to measure whether the encryption method can resist
differential attacks. The mathematical formulas are as
follows:
0, if P1(i,))=P2(i))

COD=N P 2P, (12

PSS el (N)

NPCR = M <N x 100%, (13)
Y SN PG — P2 ()
UACI = ST x 100%, (14)

where M and N represent the length and width of the image,
respectively, P1(i,j) and P»(i,j) represent the correspond-
ing ciphertext pixel values before and after the plaintext
changes, respectively. The closer the NPCR is to 100%,
the more sensitive the image encryption scheme is to the
plain image, and the stronger its ability to resist differ-
ential attack. The ideal values of NPCR and UACI are
99.6094% and 33.4635%, respectively. The closer the val-
ues are to their ideal values, the stronger is the method’s
ability to resist differential attacks. The NPCRs and UACIs
of the three images and their comparisons with other
references are shown in Table 6. As can be seen from the
results that this scheme has strong resistance to differential
attacks.

D. NOISE ATTACK ANALYSIS

The anti-noise attack ability of a cryptosystem is the standard
for measuring the anti-interference ability of the system. The
information will be disturbed by noise in the transmission
process, which distorts the cipher image, and then the deci-
phered image will be affected to a certain extent. Common
noises are salt and pepper noise, Gauss white noise, and Pois-
son noise. To analyze the anti-noise ability of the encryption
algorithm, salt and pepper noise with different intensities is
added to the cipher image and decrypted image. The cipher
image with noise and the deciphered image with noise are
shown in Figure 15.

The mean square error (MSE) is the cumulative square
error between two images, which is used to measure the
avalanche effect. And the peak signal-to-noise ratio (PSNR)
is usually used to quantitatively analyze the similar-
ity between the plain image and the deciphered image.
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FIGURE 15. Cipher images with varying degrees of noise and
corresponding decryption images. (a) Ciphertext with noise intensity of
0.01. (b) Ciphertext with noise intensity of 0.05. (c) Ciphertext with noise
intensity of 0.1. (d) Decrypted image with noise intensity 0.01.

(e) Decrypted image with noise intensity 0.05. (f) Decrypted image with
noise intensity 0.1.

TABLE 7. The MSE, PSNR, and FSIM with the Lena images have varying
degrees of noise added.

Noise intensities MSE PSNR FSIM
0 0 oo 1

0.01 350.8314 22.6798 0.8853

0.05 1534.9511 16.2698 0.6349

0.1 2817.0228 13.6329 0.4937

The mathematical formulas of the MSE and PSNR are
described as follows:

1 N M .. N
MSE = o3 3 1CH G = G @Dl (15)
PSNR 201 ( 255 > (16)
= 0 —_— N
810\ /AsE

where M and N represent the height and width of the image,
respectively, C; (i,j) and C> (i, ) represent the gray value
of the plain image and the deciphered image at point (i, j),
respectively.

The feature similarity index (FSIM) is the similarity score
calculated using the FSIM algorithm, which is shown in
literatures [45]-[47]. FSIM is used to measure the similar-
ity between two images. When the FSIM between the two
images is close to 1, there is a strong similarity between
the two images. The MSE, PSNR, and FSIM between the
plain image and the deciphered image are shown in Table 7.
The correlations between the plain image and the deciphered
image are shown in Table 8. Through comparative analysis,
it can be seen that the encryption algorithm has a better anti-
noise attack ability.

E. CROPPING ATTACK ANALYSIS

A good image encryption algorithm can still restore the
plain image features after different degrees of cropping of
the cipher image. The cipher image is cropped as shown
in Figures 16(a)-(d), and then the restoration degree of the
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TABLE 8. Correlations in the four directions after the Lena images have
varying degrees of noise added.

. N01§§ Horizontal ~ Vertical P'osmve N'e gative
intensities diagonal diagonal
0 0.9644 0.9332 0.9035 0.9236
0.01 0.8314 0.7997 0.7817 0.7959
0.05 0.4807 0.4939 0.4568 0.4645
0.1 0.2601 0.2754 0.2711 0.2521

TABLE 9. Correlations in the four directions of the Lena deciphered
images under different cropping intensities.

.C TOPPINE  orizontal  Vertical Ppsﬁlve N? gative

intensities diagonal  diagonal
1/64 0.8797 0.8575 0.8225 0.8521
1/16 0.7057 0.6661 0.6355 0.6480
1/4 0.2957 0.2830 0.2794 0.2896
12 0.0718 0.0721 0.0644 0.0699

TABLE 10. The MSE, PSNR, and FSIM with the Lena images have varying
degrees of cropping added.

Cropping intensities MSE PSNR FSIM
1/64 209.8402 249119 0.9316
/16 745.0669 19.4089 0.7814
1/4 2541.2408 14.0803 0.5139
12 5046.4875 11.1009 0.3854

deciphered image relative to the plain image is analyzed.
The cipher images are cut by 1/64, 1/16, 1/4, and 1/2,
respectively, and then decrypted. The results are shown
in Figures 16(e)-(h). The results of the correlations in four
directions of the Lena deciphered images under different
cropping intensities are shown in Table 9. The MSE, PSNR,
and FSIM between the plain image and the deciphered image
are shown in Table 10. It can be seen that when the cipher
image is subjected to different degrees of cropping attacks,
the plain image features can be restored to a certain extent.
Therefore, the algorithm has a good ability to resist cropping
attacks.

F. COMPUTATIONAL COMPLEXITY ANALYSIS

The time consumption part of any chaotic map based encryp-
tion algorithm is the generation of the chaotic sequences,
scramble operations, and diffusion operations. This algorithm
uses the PWLCM system and Rossler system based chaotic
sequences, Hilbert scanning based scramble operations, and
H-fractal and ciphertext feedback based diffusion operations.
The proposed algorithm uses gray images of size M x N to
perform encryption operations. M and N denote the row and
column of the image.

In the chaotic sequence generation stage, the computa-
tional complexity of generating the PWLCM system and the
Hyper-chaotic Rossler system are O(M x N). This increases
the efficiency of the proposed algorithm as compared to the
other image encryption method.

In the scramble stage, the Hilbert scanning based scram-
ble operations are performed. Scrambling of pixel elements
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FIGURE 16. Deciphered Lena cipher images with different cropping Intensities. (a) Lena cipher image
with 1/64 cropping. (b) Lena cipher image with 1/16 cropping. (c) Lena cipher image with 1/4 cropping.
(d) Lena cipher image with 1/2 cropping. (e) Lena deciphered image with 1/64 cropping. (f) Lena
deciphered image with 1/16 cropping. (g) Lena deciphered image with 1/4 cropping. (h) Lena deciphered

image with 1/2 cropping.

TABLE 11. Comparisons of the encryption time between the proposed
scheme and other literatures (seconds).

Images Lena Peppers Cameraman
Ref[48]  0.53 0.60 0.67
Ref[49] 0.48 0.53 0.65
Ref[50]  0.57 0.66 0.72
Proposed  0.93 0.95 0.99

means shifting of pixel elements. The shift operations may
be left or right and up or down. Hence the computational
complexity of the two round of the Hilbert scanning is O(2 x
M x N). Therefore, the proposed algorithm is more efficient
than other technique.

In the diffusion stage, the H-fractal and ciphertext feedback
based diffusions are conducted. All the diffusion operations
are performed by using bitwise XOR operations. the com-
putational complexity of the two round of the H-fractal is
O(2 x M x N). Hence the overall computational complexity
of the proposed cryptosystem is O(5 x M x N).

G. SPEED ANALYSIS

To evaluate the running speed, tests are performed on the
encryption speed of the proposed algorithm in comparison
with other algorithms. The speed analysis is evaluated in a

system that have configurations 3.5GHz processor with 8GB
RAM and Windows 10 operation system. Table 11 shows
the encryption time to encrypt different images using the
proposed cryptosystem and the comparisons of encryption
time between the proposed scheme and some existing image
encryption schemes.

H. PERFORMANCE COMPARISON ANALYSIS

This section compares the performance of proposed scheme
and other schemes for Lena image with the size 256 x 256.
The comparison has done in terms of correlation coefficient,
NPCR, UACI, and entropy and tabulated in Table 12. Sim-
ulation results and security analyses demonstrate that the
proposed algorithm has large key space, high sensitivity to
the keys and can resist well-known attacks, such as, statis-
tical attack, differential attack, noise attack, and cropping
attack. All these features illustrate that our algorithm is very
suitable for image encryption and it can be applied in the
secure communication of image files. Due to the use of a
4D hyperchaotic system, the computational complexity and
simulation time computed by our algorithm is a little higher
compared with some existing studies, and in the future,
we will improve this encryption technique and design other
algorithm to attain the combination of high security and quick
speed.

TABLE 12. Performance comparisons with the existing methods for Lena image in size 256 x 256.

. Horizontal Vertical Diagnal
Metrics coefficient coefficient coefﬁgcient NPCR UACI Entropy
Padmapriya et al. [51] -0.0033 0.0033 0.0117 99.62 3345 7.9975
Chai et al. [52] 0.0114 -0.0011 -0.0032 66.61 33.46 7.9969
Ravichandran et al. [53] -0.0025 -0.0016 0.0116 99.59 33.43 7.9972
Guo et al. [54] -0.0074 0.0069 -0.0191 99.50 31.6551 7.9963
Bakhshandeh et al. [55] -0.0063 0.0095 0.0089 99.46 37.6389 7.9974
Ye et al. [56] 0.0008 0.0016 0.0115 99.3011 34.5754 7.9970
Proposed 0.0015 -0.0014 -0.0028 99.5636  33.4417 7.9979
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V. CONCLUSIONS

By

combining the Hilbert scanning curve with the

H-geometric fractal structure, a chaotic image encryp-
tion algorithm is proposed. Through Hilbert scanning, the
H-geometric fractal and chaotic systems, two rounds of pixel
position scrambling and pixel value diffusion are realized.
The experimental results show that the algorithm has a large
key space to resist exhaustive attacks and can also resist statis-
tical attacks, differential attacks, noise attacks, and cropping
attacks. It can be widely used in secure image information
transmissions.
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