
Received April 18, 2019, accepted May 28, 2019, date of publication June 5, 2019, date of current version June 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920877

Carrier-Scale Packet Processing Architecture
Using Interleaved 3D-Stacked
DRAM and Its Analysis
TOMOHIRO KORIKAWA 1, AKIO KAWABATA1, FUJUN HE 2, (Student Member, IEEE),
AND EIJI OKI 2, (Fellow, IEEE)
1Network Service Systems Laboratories, NTT Corporation, Musashino-shi, Tokyo 180-8585, Japan
2Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Corresponding author: Tomohiro Korikawa (tomohiro.koorikawa.xa@hco.ntt.co.jp)

ABSTRACT New network services such as the Internet of Things and edge computing are accelerating
the increase in traffic volume, the number of connected devices, and the diversity of communication. Next
generation carrier network infrastructure should be much more scalable and adaptive to rapid increase
and divergence in network demand with much lower cost. A more virtualization-aware, flexible and
inexpensive system based on general-purpose hardware is necessary to transform the traditional carrier
network into a more adaptive, next generation network. In this paper, we propose an architecture for carrier-
scale packet processing that is based on interleaved 3 dimensional (3D)-stacked dynamic random access
memory (DRAM) devices. The proposed architecture enhances memory access concurrency by leveraging
vault-level parallelism and bank interleaving of 3D-stacked DRAM. The proposed architecture uses the
hash-function-based distribution of memory requests to each set of vault and bank; a significant portion of
the full carrier-scale tables. We introduce an analytical model of the proposed architecture for two traffic
patterns; one with random memory request arrivals and one with bursty arrivals. By using the model,
we calculate the performance of a typical Internet protocol routing application as a benchmark of carrier-scale
packet processing wherein main memory accesses are inevitable. The evaluation shows that the proposed
architecture achieves around 80 Gbps for carrier-scale packet processing involving both random and bursty
request arrivals.

INDEX TERMS Communication systems, memory architecture, network function virtualization, perfor-
mance analysis, queueing analysis.

I. INTRODUCTION
New network services such as Internet of Things (IoT) and
edge computing are driving rapid increases in traffic vol-
ume, the number of connected devices and the diversity
of communication services [1]–[5]. Next generation carrier
network infrastructure should scale well and adapt to the
rapid increase and divergence in network demand with much
lower capital expenditure (CAPEX) and operating expen-
diture (OPEX). Network Function Virtualization (NFV) is
expected to realize more flexible and lower-cost network
infrastructures by replacing traditional purpose-built network
equipment with modern, general-purpose hardware.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongpeng Wu.

Development of virtualization technology and the
increased performance of commercial off-the-shelf (COTS)
hardware are significantly advancing NFV. As one example,
software-based packet processing on ×86 CPU-based com-
modity COTS servers can achieve over several tens of Gbps
processing sufficient for data plane packet functions [6]–[8].
Intel Data Plane Development Kit (DPDK) [9] and Sin-
gle Root I/O Virtualization (SR-IOV) [10] are examples of
the latest approaches that provide a framework for more
hardware-aware, fast packet processing.

However, there are several significant hurdles to realize
such a drastic change in carrier network infrastructure. One of
the significant issues addressed in this paper is realizing high-
performance packet processing at very large-scale carrier
networks without using the traditional dedicated equipment.

75500
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-4060-0396
https://orcid.org/0000-0003-2177-5027
https://orcid.org/0000-0002-2860-2930


T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

A carrier network must accommodate a large number of sub-
scribers across extremely wide areas such as a whole coun-
try, i.e. the carrier-scale network. Moreover, multiple grades
and types of network services are required to support each
subscriber’s communication demand, which makes a carrier
network more complex than typical data center networks.

Regarding packet processing performance, the current
COTS server architecture has a fatal bottleneck; main mem-
ory access is degraded by the frequent cache memory misses
imposed by the insufficient CPU cache memory size. The
poormainmemory access capability of×8CPU-basedCOTS
servers is the dominant barrier degrading the carrier-scale
packet processing performance as discussed in our previous
study [11].

This paper proposes a packet processing architecture
that realizes carrier-scale applications without any dedicated
hardware. The proposed architecture uses Hybrid Memory
Cube (HMC), a sort of 3 Dimensional (3D)-Stacked Dynamic
Random Access Memory (DRAM), to achieve acceptable
memory access performance. We introduce an analytical
model of the proposed architecture for two traffic patterns
wherein the memory requests are either random or bursty.
As an example of carrier-scale applications, we evaluate the
performance of Internet Protocol (IP) address table lookup.
The table is held in the HMC instead of CPU cache mem-
ory. The evaluations show that the proposed architecture can
achieve around 80 Gbps for both random arrival of requests
and bursty arrival of requests in carrier-scale packet pro-
cessing, in which main memory access is inevitable, since
CPU cache memory is insufficient to accommodate the huge
tables. This proposed architecture achieves both high perfor-
mance and versatility for carrier network virtualization.

This paper is an extended version of the work in [12].
We detail the background of DRAM and 3D-stacked DRAM
devices such as HMC and High Bandwidth Memory (HBM).
We extensively describe an analytical model of our pro-
posed architecture. We detail the states to describe the pro-
posed architecture and the state transitions and we formulate
the equilibrium equations for random arrivals of requests.
We consider bursty arrivals of requests where memory
requests concentrate on a particular partial table. We detail
the states and the state transitions and we formulate the equi-
librium equations for bursty arrivals of requests. We present
extensive performance evaluations of the proposed architec-
ture based on our analytical model. We describe the related
work on packet processing and present a direction for expand-
ing our analytical model to a general case.

The rest of this paper is organized as follows. Section II
provides the background of this work. Section III presents the
proposed architecture and its modeling. Sections IV and V
provide analyses of the proposed architecture for ran-
dom and bursty request arrivals, respectively. Section VI
presents performance evaluations of the proposed archi-
tecture. Section VII describes related work. Section VIII
describes a direction in which to expand our analytical model.
Finally, Section IX concludes this paper.

FIGURE 1. DRAM system overview.

FIGURE 2. Architecture of DRAM chip.

II. BACKGROUND
A. DRAM MEMORY SYSTEM IN COTS SERVERS
The DRAM memory system in COTS servers consists
of a memory controller and memory devices as shown
in Figure 1. The memory controller handles memory access
requests from requestors such as CPUs or Direct Memory
Accesses (DMAs) to read the data from memory devices or
write the data to memory devices. Note that the memory
controller logic is usually integrated inside the latest gener-
ation of CPUs. Memory controller and memory devices are
connected by a command bus and a data bus. Both buses are
accessible in parallel, which means that one requestor can use
the command bus while another requestor uses the data bus
at the same time. However, no more than one requestor can
use the same bus simultaneously.

Modern DRAM systems have a Dual Inline MemoryMod-
ule (DIMM) interface with multiple channels which allows
requestors to access multiple DIMMs simultaneously using
multiple command bus and data bus units. Note that multiple
DIMMs might be attached to a channel to share the buses in
the channel among theDIMMs,whichmeans that theDIMMs
attached to the channel cannot be accessed at the same time.
A DIMM is organized into ranks, and only one rank can be
accessed at a time. We only consider DRAMs with only one
rank for simplicity.

Each rank consists of multiple DRAM chips. Furthermore,
each DRAM chip comprises banks that can be accessed in
parallel if there are no collisions on either bus. Each bank
has a row buffer and an array of storage cells organized in
rows and columns as shown in Figure 2. Requestors can
only access the content of the row buffer, not the data in the

VOLUME 7, 2019 75501



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

storage array. To access a specific memory location, the row
that contains the desired data must be loaded into the row
buffer by an Activate command. When the controller wishes
to load a different row, the current row buffer has to be written
back to the array by a Precharge command in advance. The
actual Read or Write commands only handle the data in the
row buffer. A row that is cached in the row buffer is usually
referred to as an open row. On the other hand, a row that is
not cached in the row buffer is considered as a closed row.

FIGURE 3. Schematic diagram of DRAM bank interleaving. (a) Without
bank interleaving. (b) With bank interleaving.

Figure 3 shows the schematic diagram of DRAM bank
interleaving. By issuing read commands to an open row at one
bank to another, these banks can be interleaved to increase
memory access performance with no additional hardware
modification.

B. 3D-STACKED DRAM
3D-stacked DRAM is a memory device that vertically
stacks traditional DRAM devices by using Through Silicon
Via (TSV) technology. There are several commercially avail-
able 3D-stacked DRAM devices such as Hybrid Memory
Cube (HMC) and High Bandwidth Memory (HBM). Since
3D-stacked DRAMs are based on general-purpose DRAMs,
they are general-purpose devices but higher performance. The
next level in performance is achieved by expensive dedi-
cated devices such as Ternary Content Addressable Mem-
ory (TCAM), which is the de facto choice of network search
engines [13], [14].

HMC comprises several DRAM layers on top of the bottom
layer, the logic base [15]. Figure 4 shows the schematic struc-
ture of HMC. The vertical units called vaults correspond to
memory channels in the traditional DRAM memory system,
and are accessible in parallel. Inside a vault, each DRAM
layer has several DRAM banks as with traditional DRAMs.

HBM also has several DRAM layers, channels, banks and
a logic layer, similar to HMC [16]. The major differences

FIGURE 4. Schematic structure of hybrid memory cube.

TABLE 1. Device specifications of DRAM, HMC and HBM.

between HMC and HBM are the number of channels, banks
and memory bus width. HMC has more channels and banks
than HBM, which means that HMC has more units that can
be accessed in parallel. HBM has a wider memory bus, which
makes it better-suited for applications such as graphic or
image processing [17], [18] and deep neural networks [19],
while HMC has packet-based high-speed serial links.

Table 1 describes the device specifications of DRAM,
HMC, and HBM, as available at the time of writ-
ing [15], [16], [20]. We can see that HMC has the most
channels and banks per device. Therefore, we use HMC to
accommodate the huge tables used by carrier-scale networks.

III. PROPOSED ARCHITECTURE AND MODELING
A. PROPOSED ARCHITECTURE
Figure 5(a) shows the schematic view of our proposed archi-
tecture. It consists of a multicore CPU, an FPGA, an HMC,
a DRAM and network interfaces. Although the proposed
architecture can have several CPUs, FPGAs, HMCs, and
DRAMs, we describe and model the proposed architecture
depicted in Figure 5(a) for simplicity.

Basically, incoming packets are processed as follows.
(1) Packets entering the network interfaces are directly sent
to and buffered in the DRAM by using DMA. (2) A CPU
core reads the header information of a packet buffered in the
DRAM and looks up tables held in the HMC to determine
the next action for the packet. A memory access request is
generated for each packet. (3) After finishing lookup and
determining the next action, the CPU core sends the packet
outside the proposed architecture via the network interface
that corresponds to the action.

A key to the proposed architecture is step (2) above. The
HMC must hold huge numbers of table entries. In order
to leverage both vault-level and bank-level parallelism,
we divide the original table into partial tables in each vault
and we copy them across vaults. The original table is divided

75502 VOLUME 7, 2019



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

FIGURE 5. Proposed architecture. (a) Overview of proposed architecture. (b) Table lookup subsystem by using an HMC.

into some partial tables inside a set of a vault and a bank so
that the original table comprises partial tables in a vault. Then,
the whole table data in a vault is copied to other vaults. The
number of partial tables equals the number of banks in each
vault, and the number of copies equals the total number of
banks of the HMC.

An FPGA is used to connect the CPUs to the HMC as well
as to distribute, using a hash function, memory requests to the
appropriate vault/bank sets. The FPGA contains two custom
circuits for the distributor and an HMC controller. The CPU
and the FPGA are linked via inter-chip connections such as
Intel Quick Path Interconnect (QPI) or Ultra Path Intercon-
nect (UPI), which is now practical given recent CPU+ FPGA
device architectures [21]–[23].

As shown in Table 1, an HMC has up to 32 channels.
However, the conventional system architecture such as the
latest generation Intel Xeon CPU has up to only six chan-
nels [24]. In addition, the conventional system architec-
ture has little room to increase the number of channels for
DRAM devices due to complex electrical wiring between a
CPU and DRAM devices. Therefore, the major advantage
of the proposed architecture over the conventional systems
is the number of memory channels, which enhances packet
processing performance by simultaneously accessing par-
tial tables through multiple vaults of the HMC. The pro-
posed architecture is based on common characteristics among
DRAM devices. Thus other types of DRAM devices such as
HBM can be used to accommodate tables in the proposed
architecture.

B. SYSTEM MODELING
We describe the behavior of the proposed architecture.
Figure 5(b) shows the architecture of the table lookup sub-
system formed by the HMC and FPGA. The HMC accom-
modates tables such as IP tables. The subsystem consists of a
distributor based on hash function, N queues, and the HMC.
The HMC consists of S vaults. Each vault has N banks.
A whole lookup table is separated into N partial tables, each
of which is allocated to a bank. S copies of each partial table
across vaults are made; each vault has the same entries.

When a memory request enters the distributor, the hash
function in the distributor classifies the request to one of N
queues by using packet information, such as destination IP
address. The calculation in this hash function is as simple as
to classify the result of an logical operation for some bits of
packet header, which is usually finished in one clock clycle
in FPGA. Requests entering queue n, where n ∈ [1,N ], are
served in a first in first out (FIFO) manner. Queue n has S
servers, each of which corresponds to a vault. The sth server
for queue n, where s ∈ [1, S], is denoted by server (n, s). The
maximum number of requests that can be accommodated,
including all the queues and servers, is K , where K ≥ NS.
A request entering the table lookup subsystem is blocked if
the number of requests already being handled by the subsys-
tem is K . The packet generating the blocked request is dis-
carded. The memory resources are shared by N queues under
the condition that the total number of accommodated requests
in the subsystem does not exceed K . In the worst case, K − S
requests are waiting for service in one particular queue and
S requests are served by the corresponding S servers. The
memory access rate by queue n to bank n at vault s is the
service rate of server (n, s); each server serves one request.
When more than one server, each of which corresponds to a
different bank, at vault s are active, or more than one request
is being served, bank interleaving is performed among them.
Otherwise, no bank interleaving is performed. When bank
interleaving is performed using w banks at vault s, we call the
interleavingw-degree bank interleaving; no bank interleaving
is performed when w = 1.
We describe our introduced analytical model. Each server

is in one of three states, idle, busy without bank interleav-
ing, and busy with bank interleaving. A server in idle state
does not serve any request. A server in busy state without
bank interleaving serves a request without bank interleaving.
A server in busy state with bank interleaving serves a request
with bank interleaving. When at least a server in idle state
for queue n exists, a request at the head of line is served in
the following server selection rule. If there is any server in
idle state that moves to busy state without bank interleaving,
it is selected. Otherwise, a server in idle state that moves to

VOLUME 7, 2019 75503



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

FIGURE 6. State transition for each server. (a) For general N . (b) For N = 2.

busy state with bank interleaving that has the least degree of
interleaving, is selected.

Figure 6(a) shows a state transition diagram for each
server.When sever (n, s) in idle state serves a request, the state
moves to busy state with w-degree bank interleaving so as
to minimize the value of w. When server (n, s) in busy state
with w-degree bank interleaving finishes serving a request
and does not serve any request, it enters idle state. When
server (n′, s) in idle state starts to serve a request, server (n, s)
(n 6= n′) in busy state with w-degree bank interleaving moves
to busy state with (w + 1)-degree bank interleaving. When
server (n′, s) finishes serving a request and does not serve any
new request, server (n, s) (n 6= n′) in busy state withw-degree
bank interleaving enters busy state with (w− 1)-degree bank
interleaving.

We assume that a request arrives at the table lookup sub-
system following a Poisson arrival process with average rate
of λ, and the distributor based on a hash function distributes
the request among N queues. Therefore, a request is assumed
to arrive at each queue based on a Poisson arrival process
with average rate of λ

N . We assume that the service rate of
server (s, n) follows an exponential distribution with average
service rate of µw for w-degree bank interleaving, where
µ1 ≥ µ2 ≥ · · · ≥ µN with wµw ≥ µ1.

A theoretical model can provide the accurate performance
evaluation for the proposed architecture. The result from the
theoretical model can also be the reference for that from
a simulator. In this paper, we focus on analyzing the case
for N = 2, as it is the simplest case that includes bank
interleaving. The introduced methods can be used to build

the analysis models for other cases with N > 2. This paper
is the first work building two queueing models to analyze
the performance of proposed architecture under two types of
trafficmodels. For each trafficmodel, we describe all feasible
states of system with the proposed architecture and analyze
the transitions between them with considering the case of
N = 2.
Figure 6(b) shows a state transition diagram for each

server. When server (n, s) in idle state serves a request,
the state moves to busy state with or without bank interleav-
ing. When server (n, s) in busy state with bank interleaving
finishes serving a request and does not serve any new request,
it enters idle state. When server (n′, s) in idle state starts to
serve a request, server (n, s) (n 6= n′) in busy state without
bank interleaving moves to busy state with bank interleaving.
When server (n′, s) finishes serving a request and does not
serve any new request, server (n, s) (n 6= n′) in busy state
with bank interleaving moves to busy state without bank
interleaving.

IV. ANALYSIS OF PROPOSED ARCHITECTURE FOR
RANDOM ARRIVAL OF REQUESTS
A. STATES FOR SUBSYSTEM DESCRIPTION
We describe the analytical model of the proposed architecture
with N = 2 to analyze its performance. Since we assume a
Markov process for request arrivals and service times with
and without bank interleaving, a state in the subsystem is
expressed by (i, j, p), where i ∈ [0,K ] is the number of
requests for bank 1, j ∈ [0,K ] is the number of requests
for bank 2, and p ∈ [0, S] is the number of requests being
served with 2-interleaving for both banks. The service rates
for requests being served without memory interleaving and
with 2-interleaving are different. There can be some states
with the same (i, j) but different p, for each of which the
outgoing transfer rates to the states with (i− 1, j) or (i, j− 1)
due to the termination of service of a request depend on
the corresponding number of requests being served with
2-interleaving for both banks. Therefore, p is required to be
included to identify a state. Since the memory resources are
shared by queues 1 and 2, i+ j ≤ K must be satisfied. Let X
denote [0,K ].
We describe all possible feasible states to derivate the

number of states. The states are divided into three cases for
the values of i and j, two of which are further divided to
several sub cases with considering the range of p. In case 1,
i, j, and S are not equal to each other. In case 2, only two of
them are equal. In case 3, all of them are equal. γ1, γ2 and γ3
denote the number of feasible states for case 1, case 2, and
case 3, respectively. Γ denotes the total number of feasible
states in the subsystem, where Γ = γ1 + γ2 + γ3.

In case 1, i, j, and S are not equal to each other (i 6= j, i 6= S,
j 6= S). As the range of p depends on i, j, i+ j, and S, case 1 is
divided into three sub cases, case 1a, case 1b, and case 1c,
which depend on the range of i. γ a1 , γ

b
1 , and γ

c
1 denote the

number of feasible states for case 1a, case 1b and case 1c,
respectively.

75504 VOLUME 7, 2019



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

In case 1a, i ∈ [0, bS/2c], where the symbol of bxc denotes
the maximum integer that does not exceed x. When i = 0,
we have j ∈ (0, S) ∪ (S,K ] and p = 0. Therefore, there are
(S − 1) + (K − S) = K − 1 feasible states in this situation.
When i ∈ [1, bS/2c], the range of j is [0, i) ∪ (i, S − i] ∪
(S − i, S) ∪ (S,K − i]. If j ∈ [0, i), which means j < i < S
and i + j ≤ S, we get p ∈ [0, j], which has j + 1 feasible
states for each j. Therefore, there are

∑i−1
j=0(j+ 1) =

∑i
t=1 t

feasible states in total for each i when i ∈ [1, bS/2c] and
j ∈ [0, i). If j ∈ (i, S − i], which means i < j < S and
i + j ≤ S, we get p ∈ [0, i], which has i + 1 feasible states
for each j, where there are S − i − i possibilities. Therefore,
there are (S−2i)(i+1) feasible states in total for each iwhen
i ∈ [1, bS/2c] and j ∈ (i, S− i]. If j ∈ (S− i, S), which means
i < j < S and i + j > S, we get p ∈ [i + j − S, i], which
yields S− j+ 1 feasible states for each j. Therefore, there are∑S−1

j=S−i+1(S−j+1) =
∑i

t=2 t feasible states in total for each
i when i ∈ [1, bS/2c] and j ∈ (S − i, S). If j ∈ (S,K − i],
which means i < S < j, p = i. Therefore, there are K − S− i
feasible states in total for each i when i ∈ [1, bS/2c] and
j ∈ (S,K − i]. As a result, by summing all of the number
of feasible states for each i ∈ [0, bS/2c], the total number of
feasible states for case 1a is given by

γ a1 = K − 1+
bS/2c∑
i=1

[
i∑

t=1

t + (S − 2i)(i+ 1)

+

i∑
t=2

t + (K − S − i)

]
. (1)

In case 1b, i ∈ [bS/2c+1, S) and the range of j is [0, S−i]∪
(S− i, i)∪(i, S)∪(S,K− i]. If j ∈ [0, S− i], which means j <
i < S and i+ j ≤ S, we get p ∈ [0, j], which has j+1 feasible
states for each j. Therefore, there are

∑S−i
j=0 (j+1) =

∑S−i+1
t=1 t

feasible states in total for each i when i ∈ [bS/2c + 1, S) and
j ∈ [0, S − i]. If j ∈ (S − i, i), which means j < i < S and
i+j > S, we get p ∈ [i+j−S, j], which yields S−i+1 feasible
states for each j, where there are i− (S − i)− 1 = 2i− S − 1
possibilities. Therefore, there are (2i − S − 1)(S − i + 1)
feasible states in total for each of iwhen i ∈ [bS/2c+1, S) and
j ∈ (S−i, i). If j ∈ (i, S), whichmeans i < j < S and i+j > S,
we get p ∈ [i+ j− S, i], which has S − j+ 1 feasible states
for each j. Therefore, there are

∑S−1
j=i+1(S − j+ 1) =

∑S−i
t=2 t

feasible states in total for each i when i ∈ [bS/2c + 1, S)
and j ∈ (i, S). If j ∈ (S,K − i], which means i < S < j,
p = i. Therefore, there are K − S − i feasible states in total
for each i when i ∈ [bS/2c + 1, S) and j ∈ (S,K − i]. As a
result, by summing all of the number of feasible states for
each i ∈ [0, bS/2c], the total number of feasible states for
case 1b is given by

γ b1 =

S−1∑
i=bS/2c+1

[
S−i+1∑
t=1

t + (2i− S − 1)(S − i+ 1)

+

S−i∑
t=2

t + (K − S − i)

]
. (2)

Case 1c is divided into the four cases of i ∈ (S, bK/2c],
i ∈ (bK/2c,K − S), i = K − S, and i ∈ (K − S,K ]. If i ∈
(S, bK/2c], j ∈ [0, S) ∪ (S, i) ∪ (i,K − i],1 and there are
K − i−1 possibilities of j. If i ∈ (bK/2c,K −S), j ∈ [0, S)∪
(S,K − i], and there are K − i possibilities of j. If i = K − S,
j ∈ [0,K − i), and there are K − i possibilities of j. If i ∈
(K−S,K ], j ∈ [0,K− i], and there are K− i+1 possibilities
of j. As a result, the total number of feasible states for case 1c
is given by

γ c1 =

bK/2c∑
S+1

(K − i− 1)+
K−S∑
bK/2c+1

(K − i)

+

K∑
K−S+1

(K − i+ 1). (3)

Therefore, the total number of feasible states for case 1 is
given by

γ1 = γ
a
1 + γ

b
1 + γ

c
1 . (4)

In case 2, only two of them are equal. There are six sub
cases, which are i = j < S for case 2a, S < i = j for
case 2b, i < j = S for case 2c, j = S < i for case 2d,
j < i = S for case 2e, and i = S < j for case 2f.
γ a2 , γ

b
2 , γ

c
2 , γ

d
2 , γ

e
2 , and γ

f
2 denote the number of feasible

states for case 2a, case 2b, case 2c, case 2d, case 2e, and
case 2f, respectively. In case 2a, if i ∈ [0, bS/2c], which
means i + j ≤ S, we get p ∈ [0, i], which yields i + 1
feasible states for each i, so there are

∑bS/2c
t=0 (t + 1) feasible

states. If i ∈ [bS/2c + 1, S), which means i + j > S,
we get p ∈ [2i − S, i], which yields S − i + 1 feasible
states for each i, so there are

∑S−1
t=bS/2c+1(S − t + 1) feasible

states. Therefore, the number of feasible states for case 2a
is given by γ a2 =

∑bS/2c
t=0 (t + 1) +

∑S−1
t=bS/2c+1(S − t + 1).

In case 2b with S < i = j, clearly, p = S if i ∈ (S, bK/2c].
Therefore, bK/2c − S feasible states can be obtained for
case 2b, or γ b2 = bK/2c−S. In case 2cwith i < j = S, clearly,
p = i if i ∈ [0, S). Therefore, S feasible states are obtained
for case 2c, or γ c2 = S. In case 2d with j = S < i, clearly,
p = S if i ∈ (S,K − S]. Therefore, K − 2S feasible states
are obtained for case 2d, or γ d2 = K − 2S. In case 2e with
j < i = S, clearly, p = j if j ∈ [0, S). Therefore, S feasible
states are obtained for case 2e, or γ e2 = S. In case 2f with
i = S < j, clearly, p = S if j ∈ (S,K −S]. Therefore, K −2S
feasible states are obtained for case 2f, or γ f2 = K − 2S. As a
result, γ2 is given by

γ2 = γ
a
2 + γ

b
2 + γ

c
2 + γ

d
2 + γ

e
2 + γ

f
2

=

bS/2c∑
t=0

(t + 1)+
S−1∑

t=bS/2c+1

(S − t + 1)

+bK/2c + 2K − 3S (5)

1When K is an even number and i = K/2, (i,K − i] is (i, i], which is an
empty set.

VOLUME 7, 2019 75505



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

FIGURE 7. State transitions incoming to and outgoing from state (i, j,p).

In case 3, all of i, j and S are equal (i = j = S). p is
always equal to S and there is just one feasible state for case 3,
γ3 = 1.
Therefore, by summing all the number of states for each

case, the total number of feasible states in the subsystem is
given by,

Γ = γ1 + γ2 + γ3 (6)

Based on the discussion on feasible states in the subsystem,
we obtain the range of p as p ∈ [min(max(0, i+j−S), i, j, S),
min(i, j, S)]. Let Y (i, j) denote [min(max(0, i+ j−S), i, j, S),
min(i, j, S)].

B. STATE TRANSITION FOR (i, j,p)
Figure 7 shows the state transitions incoming to and outgoing
from state (i, j, p), where eight states are incoming to and
eight states are outgoing from state (i, j, p). Table 2 describes
the rate and condition for each transition. We number the
cases from 1 to 16.

C. EQUILIBRIUM STATES
Let P(i, j, p) be the probability that the subsystem is in state
(i, j, p). Let U be the set of states (i, j, p), where i ∈ X , j ∈ X ,

and p ∈ Y (i, j). In the equilibrium state, the total incoming
flows to state (i, j, p) are equal to the total outgoing flows
from state (i, j, p). The equilibrium equations for (i, j, p) ∈ U
are given by,

(q1 + q2 + q3 + q4 + q5 + q6 + q7 + q8)P(i, j, p)

= q9P(i− 1, j, p)+ q10P(i− 1, j, p− 1)

+q11P(i, j− 1, p)+ q12P(i, j− 1, p− 1)

+q13P(i+ 1, j, p)+ q14P(i+ 1, j, p+ 1)

+q15P(i, j+ 1, p)+ q16P(i, j+ 1, p+ 1), (7)

where qc, c ∈ [1, 16], equals the transfer rate of case c if the
conditions of case c are satisfied and 0 otherwise.

The condition that the sum of all state probabilities equals
one is given by, ∑

(i,j,p)∈U

P(i, j, p) = 1. (8)

We can compute the probability of each state P(i, j, p) ∈ U
by solving the multiple equations of (7) and (8).

D. BLOCKING PROBABILITY AND
AVERAGE WAITING TIME
We define the blocking probability PRb as the probability that
a request incoming to the table lookup subsystem is blocked
with the condition of i + j = K , or the request is not able to
enter the queue. PRb is given by

PRb =
∑
i∈X

∑
p∈Y (i,j)

P(i,K − i, p). (9)

We define the average waiting time at the subsystem,WR,
as the average duration time from when a request enters the
subsystem until the request exits the subsystem. The average

TABLE 2. State transitions incoming to and outgoing from state (i, j,p).

75506 VOLUME 7, 2019



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

number of requests in the subsystem, LR, is given by

LR =
∑
i∈X

∑
j∈X

∑
p∈Y (i,j)

iP(i, j, p)+
∑
i∈X

∑
j∈X

∑
p∈Y (i,j)

jP(i, j, p)

= 2
∑
i∈X

∑
j∈X

∑
p∈Y (i,j)

iP(i, j, p). (10)

The first/second terms on the right hand side of the first
equality indicate the average number of requests waiting
at queue 1/queue 2 and those being served, respectively.
The right hand side for the second equality is derived
by using

∑
i∈X

∑
j∈X

∑
p∈Y (i,j) iP(i, j, p) =

∑
i∈X

∑
j∈X∑

p∈Y (i,j) jP(i, j, p).

By using Little’s formula [25], WR
=

LR
λ
. Let λRe be

the throughput and let WR
e be the average effective average

waiting time, which are defined by λRe = λ(1 − PRb ) and
WR

e =
LR
λe
, respectively.

V. ANALYSIS OF PROPOSED ARCHITECTURE FOR
BURSTY ARRIVAL OF REQUESTS
We adopt the Interrupted Poisson Process (IPP) as the packet
arrival process to analyze the above table lookup subsystem
under bursty traffic conditions.

A. OVERVIEW OF IPP
There are two states as regards the arrival of packets, ON and
OFF states. The durations of ON and OFF states follow
exponential distributions with average inter-arrival times 1

α

and 1
β
, respectively. Once the ON state finishes, the OFF state

starts, and vice versa. The ON state includes a Poisson arrival
process of packets with average rate λ. There is no request
arriving at the table lookup subsystem when the state of the
arrival of requests is OFF. The state transition diagram of IPP
is shown in Figure 8.

FIGURE 8. State transition diagram of IPP.

We assume that, in the ON state, packets are consecutively
destined to the same bank until the ON state finishes. Let k ∈
[0,N ] denote the state of the arrival of a packet; k is set to
n ∈ [1,N ] when it is ON state in which the packet is destined
to bank n ∈ [1,N ], and zero otherwise. Consequently, for the
table lookup subsystem with N = 2, a state in the subsystem
is expressed as (i, j, p, k).

The total number of feasible states of (i, j, p, k) is 3Γ .
Equation (6) gives Γ , which is the total number of feasible
states of (i, j, p). In IPP, for each (i, j, p), there are three states
where k = 0, 1, 2.

FIGURE 9. State transitions incoming to and outgoing from states
(i, j,p,0), (i, j,p,1), and (i, j,p,2).

B. STATE TRANSITION FOR (i, j,p,k)
Figure 9 shows the state transitions incoming to and
outgoing from states (i, j, p, 0), (i, j, p, 1), and (i, j, p, 2).
Tables 3, 4 and 5 describe the rates and conditions for states
(i, j, p, 0), (i, j, p, 1), and (i, j, p, 2), respectively. We number
the cases from 1 to 22.

C. EQUILIBRIUM STATES
Let P(i, j, p, k) be the probability that the subsystem is in
state (i, j, p, k). Let V be the set of states (i, j, p, k), where
i ∈ X , j ∈ X , and p ∈ Y (i, j). In the equilibrium state,
the total incoming flows to state (i, j, p, k) are equal to the
total outgoing flows from state (i, j, p, k). The equilibrium
equations for (i, j, p, k) ∈ V are given by,

(r1 + r2 + r3 + r4 + r10 + r11)P(i, j, p, 0)

= r16P(i+ 1, j, p, 0)+ r17P(i+ 1, j, p+ 1, 0)

+r18P(i, j+ 1, p, 0)+ r19P(i, j+ 1, p+ 1, 0)

+r21P(i, j, p, 1)+ r22P(i, j, p, 2), (11a)

(r1 + r2 + r3 + r4 + r5 + r6 + r9)P(i, j, p, 1)

= r12P(i− 1, j, p, 1)+ r13P(i− 1, j, p− 1, 1)

+r16P(i+ 1, j, p, 1)+ r17P(i+ 1, j, p+ 1, 1)

+r18P(i, j+ 1, p, 1)+ r19P(i, j+ 1, p+ 1, 1)

+r20P(i, j, p, 0), (11b)

(r1 + r2 + r3 + r4 + r7 + r8 + r9)P(i, j, p, 2)

= r14P(i, j− 1, p, 2)+ r15P(i, j− 1, p− 1, 2)

+r16P(i+ 1, j, p, 2)+ r17P(i+ 1, j, p+ 1, 2)

+r18P(i, j+ 1, p, 2)+ r19P(i, j+ 1, p+ 1, 2)

+r20P(i, j, p, 0), (11c)

where rc, c ∈ [1, 22], equals the transfer rate of case c if the
conditions of case c are satisfied and 0 otherwise.

The condition that the sum of all state probabilities equals
one is given by, ∑

(i,j,p,k)∈V

P(i, j, p, k) = 1. (12)

VOLUME 7, 2019 75507



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

TABLE 3. State transitions incoming to and outgoing from state (i, j,p,0) in IPP.

TABLE 4. State transitions incoming to and outgoing from state (i, j,p,1) in IPP.

TABLE 5. State transitions incoming to and outgoing from state (i, j,p,2) in IPP.

By considering the symmetric feature of states (i, j, p, 1)
and (j, i, p, 2),

P(i, j, p, 1) = P(j, i, p, 2) (13)

is satisfied. In (11a) and (12), P(j, i, p, 2) is substituted
by P(i, j, p, 1) with (13). Then, (11c) can be omitted. The
number of decision variables to be solved is reduced from
3Γ to 2Γ .

75508 VOLUME 7, 2019



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

D. BLOCKING PROBABILITY AND
AVERAGE WAITING TIME
Blocking probability PBb , which is the probability that a
request incoming to the table lookup subsystem is blocked
with i + j = K , or the request is not able to enter the queue,
under the condition of ON state, is given by the following
conditional probability.

PBb =
∑
i∈X

∑
p∈Y (i,j)

2∑
k=1

P(i,K − i, p, k)
/ 1

α
1
α
+

1
β

=
α + β

β

∑
i∈X

∑
p∈Y (i,j)

2∑
k=1

P(i,K − i, p, k), (14)

note that
1
α

1
α
+

1
β

=
β
α+β

is the probability of ON state.

The average waiting time at the subsystem,WB is the aver-
age duration time from when a request enters the subsystem
until the request exits the subsystem. The average number of
requests in the subsystem, LB, is given by

LB =
∑
i∈X

∑
j∈X

∑
p∈Y (i,j)

2∑
k=0

iP(i, j, p, k)

+

∑
i∈X

∑
j∈X

∑
p∈Y (i,j)

2∑
k=0

jP(i, j, p, k)

= 2
∑
i∈X

∑
j∈X

∑
p∈Y (i,j)

2∑
k=0

iP(i, j, p, k). (15)

The right hand side for the second equality is derived by using∑
i∈X

∑
j∈X

∑
p∈Y (i,j)

∑2
k=0 iP(i, j, p, k) =

∑
i∈X

∑
j∈X∑

p∈Y (i,j)
∑2

k=0 jP(i, j, p, k).

By using Little’s formula [25],WB is given by,WB
=

LB
λ′
.

λ′ is the average arrival rate over both ON and OFF states in

the subsystem. λ′ is given by λ′ =
λ
α

1
α
+

1
β

=
λβ
α+β

.

As with the analysis of random arrival of requests, let λBe
be the throughput and WB

e be the average effective waiting
time, which are defined by λBe = λ

′(1 − PBb ) and W
B
e =

LB

λBe
,

respectively.

VI. EVALUATION
Based on the analytical results calculated with the model
and its analyses shown in Sections IV and V, we observe
performance dependency on each system parameter and
arrival pattern of requests of the proposed architecture. The
model can incorporate system parameters that reflect a real
implementation.

A. NUMERICAL RESULTS FOR RANDOM
ARRIVAL OF REQUESTS
We evaluate PRb , λ

R
e and WR

e of the proposed architecture
and investigate their dependency on ρR and µ2, by using
the analysis presented in Section IV. As a reference model,
we use the M/M/S/K model. We set K = 100, and the arrival

rate of λ is the same for both models. We set S = 32 for both
models unless otherwise stated. In M/M/S/K, the service rate
is µ = 1, and, in the proposed architecture, µ1 = µ = 1.
Let ρR be the traffic load, which is defined by, ρR = λ

Sµ .
The analytical results are obtained by using a computer with
3.60GHz Intel Core i7-7700 CPU and 32GB memory. In the
case of S = 32 and K = 100, the average computation
time to obtain PRb for each set of µ2 and ρR in the proposed
architecture is 252 [sec], where the number of states in the
analysis is 10607.

FIGURE 10. Blocking probability. (a) Depending on ρR with different µ2.
(b) Depending on µ2 with ρR = 1.2.

Figure 10(a) shows the blocking probability dependency
on ρR with different µ2. In the proposed architecture,
the blocking probability increases with ρR, and decreases as
µ2 increases. The blocking probability of the proposed archi-
tecture with µ2 = 0.5 is close to, but slightly higher than,
that of M/M/S/K. This is explained by the observation that,
when two subsystems have the same value of the product of
the number of servers and the service rate, the one with larger
service rate outperforms the other. In addition, 32 servers with
service rate µ = 1, all requests queued in the subsystem
are served, outperform 64 (= 32 × 2) servers with service
rate µ2 = 0.5, half of which serve requests queued in one
of the two separate queues; the former has greater statistical
multiplexing effect than the latter.

Figure 10(b) shows the blocking probability dependency
onµ2 with ρR = 1.2. In the proposed architecture, the block-
ing probability decreases as µ2 increases. The blocking

VOLUME 7, 2019 75509



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

probability of the proposed architecture with µ2 = 1 is
close to, but slightly higher than, that of M/M/S/K with
S = 64. This is explained by comparing 64 servers with
service rate µ = 1 and 64 (= 32 × 2) servers with service
rate µ2 = 1 as with the observation on Figure 10(a).
Figure 11 show the throughput dependency on ρR with

different µ2. The throughput in M/M/S/K increases with
ρR ≤ 1, and is saturated with ρR > 1. On the other
hand, the throughput of the proposed architecture saturates
at a larger point than M/M/S/K. The saturated throughput
increases with µ2.

FIGURE 11. Throughput depending on ρR with different µ2.

FIGURE 12. Effective waiting time. (a) Depending on ρR with different µ2.
(b) Depending on µ2 with ρR = 1.2.

Figure 12(a) show the effective waiting time depen-
dency on ρR with different µ2, where the effect of blocked
requests is eliminated. The effective waiting time decreases

asµ2 increases. Figure 12(b) shows the effective waiting time
dependency onµ2. We have the observation similar to that on
Figure 10(b).

B. NUMERICAL RESULTS FOR BURSTY
ARRIVAL OF REQUESTS
We evaluate PBb , λ

B
e and WB

e of the proposed architecture for
IPP and investigate their dependency on ρB and µ2, by using
the analysis presented in section V.We compare the proposed
architecture for IPP with a Poisson arrival process. We set
K = 100 and S = 32 unless otherwise stated. Let ρ be the
traffic load, which is defined by, ρB = λ′

Sµ =
λβ

(α+β)Sµ .
For performance comparison, we use the same ρB for

different models. The analytical results are obtained by using
a computer with 3.60GHz Intel Core i7-7700 CPU and 32GB
memory. In the case of S = 32 and K = 100, the average
computation time to obtain Pb for each set of µ2 and ρB in
the proposed architecture is 853 [sec], where the number of
states in the analysis is 21214.

We introduce parameters, h > 0 and l > 0, which are
defined by l = α

λ
and h = α

β
. Then, λ′ = α

(h+1)l and
ρB = α

(h+1)lSµ . When h → 0, IPP approaches a Poisson
arrival process. Note that, with h→ 0, each packet continues
to have the destination of the same bank, which is different
from the model presented in Section IV. For any h, when
l → ∞, IPP approaches a Poisson arrival process and the
proposed architecture with IPP approaches the model pre-
sented in Section IV, where the destination of each packet
is randomly assigned to either bank.

Figure 13(a) shows the blocking probability dependency
on l and h with ρB = 1.2 for µ2 = 0.7. As h becomes
large, the blocking probability increases. As l becomes large,
the blocking probability decreases. We observe that, when
l → ∞, the blocking probability of IPP approaches that
of the Poisson arrival process presented in Section IV for
any h. The lower h is, the faster the blocking probability of
IPP approaches that of the Poisson arrival process. h → 0
indicates that ON state probability is close to 1, and l →∞
indicates that ON state period is close to zero. Each sit-
uation is equivalent to the Poisson arrival process, which
is a special case of IPP. Figure 13(b) shows the blocking
probability dependency on ρB and h with l = 1.0 for
µ2 = 0.7.

Figures 14 and 15 show the throughput and effective wait-
ing time dependency on l and h with ρB = 1.2 for µ2 = 0.7,
respectively.

C. PACKET PROCESSING PERFORMANCE
We can calculate the packet processing performance of the
proposed architecture by using the numerical results shown in
Sections VI-A and VI-B assuming that current carrier-scale
packet processing performance is bounded bymemory access
performance. In the following evaluation of packet process-
ing performance, we focus on IP routing as an example

75510 VOLUME 7, 2019



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

FIGURE 13. Blocking probability. (a) Dependency on l and h with ρB = 1.2
and µ2 = 0.7. (b) Dependency on ρB and h with l = 1.0 and µ2 = 0.7.

FIGURE 14. Throughput dependency on l and h with ρB = 1.2
and µ2 = 0.7.

of carrier-scale packet processing. By using an IP address
lookup algorithm such as DIR-24-8-BASIC [26], packet
processing of IP routing is finishedwithin one or twomemory
accesses at most. Its lookup table has in nature 232 entries
which correspond to the whole IPv4 address space. The con-
tent in each entry is the next hop information corresponding
to the prefix of the entry. In detail, based on a real traffic
pattern, the lookup tables comprise two lookup tables called
TBL24 and TBLlong each of which has the entries corre-
sponding to the upper 24 bits and lower 8 bits, respectively,
where the longest prefixmatch is finishedwithin twomemory
accesses. Therefore, we can calculate the packet processing
performance of IP routing by using the number of achievable

FIGURE 15. Effective waiting time dependency on l and h with ρB = 1.2
and µ2 = 0.7.

TABLE 6. Example of packet processing performance.

memory accesses per unit of time as derived from the numer-
ical results in Sections VI-A and VI-B, as well as the number
of necessary memory accesses to the IP address lookup per
packet, and the additional delay of the distributor based on
hash function. The packet processing latency is obtained as
the number of required memory accesses times the sum of
the average effective waiting time and the additional delay
of the distributor. We assume that the hash function works
as a pipeline, where it does not affect any other performance
metric of the proposed architecture except for the latency.

In NFV-aware carrier network systems, multiple types
of carrier-scale packet processing applications in the same
system simultaneously. The DIR-24-8-BASIC algorithm
requires 33 MB of memory for its routing table which cor-
responds to the whole IPv4 address space [26]. Therefore,
cache memories inside the latest generation of CPUs, such
as Intel Skylake, cannot accommodate the large tables for
multiple carrier-scale packet processing applications.

For example, let service rate µ be 8 M services per sec-
ond, which is an estimate since typical latency inside the
HMC itself is usually taken to be between 100-180 ns with
average of 125 ns [27], [28], and let the traffic load be 1.2.
Table 6 lists the calculation results of M/M/S/K, proposed
architecture with Poisson arrival, and that with IPP arrival.
In this example, we assume the service rate of interleaved
bank µ2 = 0.7µ, l = 0.1, h = 0.5, and the additional delay
of the distributor is 10 ns which corresponds to one clock
cycle at 100 MHz circuits in the FPGA. We also assume that
each IP address lookup requires two memory accesses each
of which is associated with a request distribution based on
hash function.

In the proposed architecture, memory access requests are
served simultaneously by using multiple vaults of HMC.

VOLUME 7, 2019 75511



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

This may change the order of egress packets from the pro-
cessor, which affect the performance of upper layer such as
Transmission Control Protocol (TCP) [29]. In order to elim-
inate the misordered packets, there are several approaches:
to exchange signals among multiple processes or threads
so that every packet can be served in order, or to buffer
the packets and sort them before transmitted from the
processor [30], [31].

VII. RELATED WORK
Several software-based packet processing schemes for COTS
server implementation have been proposed [6]–[8], [32].
RouteBricks [6] is the first software-based router applica-
tion to leverage the parallel processing offered by modern
multi-core CPUs. Lagopus [7] is a DPDK-enabled OpenFlow
switch that can achieve over 10 Gbps performance at more
than 1 M flow entries without any hardware modification.
These approaches significantly improved packet processing
performance compared to previous software schemes run-
ning on single-core CPUs and DPDK. However, their per-
formance directly depends on the high-speed cache memory
of the CPUs, which unfortunately is too small to support
carrier-scale packet processing given the huge multiple tables
involved. PacketShader [32] consolidates parallel processing
by using Graphics Processing Unit (GPU) to achieve nearly
40Gbps packet processing performance. However, their work
makes the constraining assumption of homogeneous packet
processing to leverage the GPU’s Single Instruction Multiple
Data (SIMD) performance, and so does not suit carrier-scale
packet processing. Poptrie [8] is the latest and fastest soft-
ware IP routing table lookup; it offers over 200 M lookups
per second with just a single CPU core. The IP address
lookup performance itself is sufficient for carrier-scale packet
processing. However, this software is also dependent on the
small cache memories inside the CPU.

A packet matching system using HMCwas studied in [33].
However, no discussion is made on leveraging vault-level
parallelism and bank interleaving of HMC, since the main
problem targeted by the work is implementing a fast packet
matching circuit in FPGA. There is a study that utilizes
3D-stacked DRAM devices including HMC as the main
memory of a system [34]. The work mainly details the pro-
duction process of 3D-stackedDRAMdevices, and there is no
discussion on evaluating system performance. CasHMC [35]
is a cycle-accurate simulator for HMC. This simulator does
not consider bank interleaving, and the simulation results are
valid only current HMC devices.

The thermal feasibility of a system with 3D-stacked
DRAM is studied in [36]–[38]. They consider thermal feasi-
bility of Processing in Memory (PIM). PIM uses logic layer
functionality more aggressively, which produces more heat
and requires stronger cooling systems. They conclude that
PIM use cases with 3D-stacked DRAM are feasible if the
system has high-end active cooling. Therefore, the proposed
architecture is more feasible since it uses HMC for simple

memory access, and so can use the commodity coolers of
COTS systems.

Dividing an original table into several partial tables is stud-
ied in [39]–[41]. They divide a table to make table data more
memory efficient; the goal is to make the table fit inside a
device with fixed memory capacity such as a TCAM, on-chip
memories in FPGA, and external SRAM.

Table update schemes are studied in studies that introduce
table data structures such as [8], [26], [39]. In our proposed
architecture, the HMC has multiple vaults to accommodate
whole tables. Tables inside the HMC are updated sequentially
for each vault by using a table update scheme corresponding
to the table data structure.

VIII. DIRECTION TO EXPANSION OF ANALYTICAL
MODEL FOR GENERAL N ≥ 2
We consider the analytical model for a system with general
N ≥ 2. A state in the system is expressed by a vector, that
consists of the following components. First, in ∈ [0,K ] is
the number of requests for bank n ∈ [1,N ]. Second, pinin′ ∈
[0, S], where n, n′ ∈ [1,N ] and n 6= n′, is the number of
requests being served with 2-interleaving for banks n and n′.
The number of pinin′ is NC2, where nCm = n!

(n−m)!m! . Third,
pnn′n′′ ∈ [0, S], where n, n′, n′′ ∈ [1,N ], n 6= n′, n′ 6= n′′,
and n′′ 6= n, is the number of requests being served with
3-interleaving for banks n, n′, and n′′. The number of pnn′n′′
is NC3. In the same way, we define pnn′n′′n′′′···, which is the
number of requests being served with (N − 1)-interleaving.
The number of pnn′n′′n′′′··· for (N−1)-interleaving is NCN−1 =
N −1. Finally, p123···N ∈ [0, S] is the number of being served
requests with N -interleaving for all banks.

IX. CONCLUSION
We proposed an architecture that allows an HMC to
support carrier-scale packet processing. The proposed archi-
tecture enhances memory access concurrency by leverag-
ing the vault-level parallelism and bank interleaving offered
by HMC. The architecture uses a hash-function-based dis-
tributor of memory requests to among the sets of vault and
bank, each of which accommodates a portion of the origi-
nal huge (carrier-scale) tables. We introduced an analytical
model of a bank-interleaved HMC subsystem for two traffic
patterns where the arrivals of memory requests are either
random of bursty. The analytical results for random arrival
of requests showed the performance of the proposed archi-
tecture and its dependency on traffic load and bank inter-
leaving. The analytical result for bursty arrival of requests
detailed the performance dependency on the burstiness of
the input traffic. The evaluation result of packet processing
performance showed that our proposed architecture achieves
around 80 Gbps in carrier-scale packet processing wherein
main memory accesses are inevitable; CPU cache memory
is too small to accommodate the huge tables even if request
arrivals are bursty.

75512 VOLUME 7, 2019



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

REFERENCES
[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-

vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[2] Mobile-Edge Computing—Introductory Technical White Paper. Accessed:
Jul. 1, 2018. [Online]. Available: https://portal.etsi.org

[3] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang,
‘‘A survey on mobile edge networks: Convergence of computing, caching
and communications,’’ IEEE Access, vol. 5, pp. 6757–6779, 2017.

[4] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, Jan. 2017.

[5] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, ‘‘Mobile-
edge computing architecture: The role of MEC in the Internet of Things,’’
IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84–91, Oct. 2016.

[6] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, ‘‘RouteBricks: Exploiting paral-
lelism to scale software routers,’’ in Proc. ACM SIGOPS, 2009, pp. 15–28.

[7] Lagopus Switch, a High Performance Software OpenFlow 1.3 Switch.
Accessed: Sep. 15, 2017. [Online]. Available: http://www.lagopus.org/

[8] H. Asai and Y. Ohara, ‘‘Poptrie: A compressed trie with population count
for fast and scalable software ip routing table lookup,’’ SIGCOMM Com-
put. Commun. Rev., vol. 45, no. 4, pp. 57–70, Aug. 2015.

[9] Intel Data Plane Development Kit. Accessed: Sep. 15, 2017. [Online].
Available: http://dpdk.org/

[10] PCI-SIG Single Root I/O Virtualization (SR-IOV) Support in Intel Virtu-
alization Technology for Connectivity. Accessed: Sep. 15, 2017. [Online].
Available: https://www.intel.com

[11] T. Korikawa, A. Kawabata, and A.Masuda, ‘‘Toward carrier-scale general-
purpose node,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC),
Jan. 2017, pp. 536–540.

[12] T. Korikawa, A. Kawabata, F. He, and E. Oki, ‘‘Carrier-scale packet
processing system using interleaved 3D-stacked DRAM,’’ in Proc. IEEE
ICC, May 2018, pp. 1–6.

[13] D. E. Taylor, ‘‘Survey and taxonomy of packet classification techniques,’’
ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.

[14] M. J. Akhbarizadeh,M. Nourani, R. Panigrahy, and S. Sharma, ‘‘A TCAM-
based parallel architecture for high-speed packet forwarding,’’ IEEE Trans.
Comput., vol. 56, no. 1, pp. 58–72, Jan. 2007.

[15] Hybrid Memory Cube Specification 2.1. Accessed: Jan. 21, 2019. [Online].
Available: http://www.hybridmemorycube.org/

[16] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, ‘‘HBM
(high bandwidth memory) DRAM technology and architecture,’’ in Proc.
IEEE Int. Memory Workshop (IMW), May 2017, pp. 1–4.

[17] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler,
M. Rhu, and W. J. Dally, ‘‘Architecting an energy-efficient DRAM system
for GPUs,’’ in Proc. IEEE HPCA, Feb. 2017, pp. 73–84.

[18] High-Bandwidth Memory (HBM) Reinventing Memory
Technology. Accessed: Jan. 21, 2019. [Online]. Available:
https://www.amd.com/Documents/High-Bandwidth-Memory-HBM.pdf

[19] M. Zhu, Y. Zhuo, C. Wang, W. Chen, and Y. Xie, ‘‘Performance evalu-
ation and optimization of HBM-enabled GPU for data-intensive applica-
tions,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 5,
pp. 831–840, May 2018.

[20] DDR4 SDRAM, Micron. Accessed: Jan. 21, 2019. [Online]. Available:
https://www.micron.com/products/dram/ddr4-sdram/

[21] N. Oliver, R. R. Sharma, S. Chang, B. Chitlur, E. Garcia, J. Grecco,
A. Grier, N. Ijih, Y. Liu, P. Marolia, H. Mitchel, S. Subhaschandra,
A. Sheiman, T. Whisonant, and P. Gupta, ‘‘A reconfigurable computing
system based on a cache-coherent fabric,’’ in Proc. Int. Conf. Reconfig-
urable Comput. FPGAs, Nov./Dec. 2011, pp. 80–85.

[22] Y. Watanabe, Y. Kobayashi, T. Takenaka, T. Hosomi, and Y. Nakamura,
‘‘Accelerating NFV application using CPU-FPGA tightly coupled archi-
tecture,’’ in Proc. ICFPT, Dec. 2017, pp. 136–143.

[23] D. J. M. Moss, S. Krishnan, E. Nurvitadhi, P. Ratuszniak, C. Johnson,
J. Sim, A. Mishra, D. Marr, S. Subhaschandra, and P. H. W. Leong,
‘‘A customizable matrix multiplication framework for the intel HARPv2
Xeon+FPGA platform: A deep learning case study,’’ in Proc. ACM/SIGDA
FPGA, 2018, pp. 107–116.

[24] 2nd Generation Intel Xeon Scalable Processors Brief. [Online]. Available:
https://www.intel.com/content/www/us/en/products/docs/processors/
xeon/ 2nd-gen-xeon-scalable-processors-brief.html

[25] J. D. C. Little, ‘‘A proof for the queuing formula: L = λW,’’ Oper. Res.,
vol. 9, no. 3, pp. 383–387, Jun. 1961.

[26] P. Gupta, S. Lin, and N. McKeown, ‘‘Routing lookups in hardware at
memory access speeds,’’ in Proc. IEEE INFOCOM, vol. 3, Mar. 1998,
pp. 1240–1247.

[27] R. Hadidi, B. Asgari, B. A. Mudassar, S. Mukhopadhyay, S. Yalamanchili,
and H. Kim, ‘‘Demystifying the characteristics of 3D-stacked memories:
A case study for Hybrid Memory Cube,’’ in Proc. IEEE IISWC, Oct. 2017,
pp. 66–75.

[28] R. Hadidi, B. Asgari, J. Young, B. A. Mudassar, K. Garg, T. Krishna, and
H. Kim, ‘‘Performance implications of NoCs on 3D-stacked memories:
Insights from the hybrid memory cube,’’ in Proc. IEEE ISPASS, Apr. 2018,
pp. 99–108.

[29] K. C. Leung, V. O. K. Li, and D. Yang, ‘‘An overview of packet reordering
in transmission control protocol (TCP): Problems, solutions, and chal-
lenges,’’ IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 4, pp. 522–535,
Apr. 2007.

[30] S. Govind, R. Govindarajan, and J. Kuri, ‘‘Packet reordering in network
processors,’’ inProc. IEEE Int. Parallel Distrib. Process. Symp.,Mar. 2007,
pp. 1–10.

[31] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard,
and N. McKeown, ‘‘Scaling Internet routers using optics,’’ in Proc. ACM
SIGCOMM, 2003, pp. 189–200.

[32] S. Han, K. Jang, K. Park, and S.Moon, ‘‘PacketShader: AGPU-accelerated
software router,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 4,
pp. 195–206, 2010.

[33] D. Rozhko, G. Elliott, D. Ly-Ma, P. Chow, and H.-A. Jacobsen, ‘‘Packet
matching on FPGAs using HMC memory: Towards one million rules,’’
in Proc. ACM/SIGDA FPGA, 2017, pp. 201–206.

[34] T. Kirihata, J. Golz, M. Wordeman, P. Batra, G. W. Maier, N. Robson,
T. L. Graves-Abe, D. Berger, and S. S. Iyer, ‘‘Three-dimensional dynamic
random access memories using through-silicon-vias,’’ IEEE J. Emerg. Sel.
Topics Circuits Syst., vol. 6, no. 3, pp. 373–384, Sep. 2016.

[35] D.-I. Jeon and K. S. Chung, ‘‘CasHMC: A cycle-accurate simulator
for hybrid memory cube,’’ IEEE Comput. Archit. Lett., vol. 16, no. 1,
pp. 10–13, Jan./Jun. 2017.

[36] M. J. Khurshid and M. Lipasti, ‘‘Data compression for thermal mitigation
in the hybrid memory cube,’’ in Proc. IEEE 31st Int. Conf. Comput. Design
(ICCD), Oct. 2013, pp. 185–192.

[37] Y. Zhu, B. Wang, D. Li, and J. Zhao, ‘‘Integrated thermal analysis
for processing in die-stacking memory,’’ in Proc. 2nd MEMSYS, 2016,
pp. 402–414.

[38] Y. Eckert, N. Jayasena, and G. H. Loh, ‘‘Thermal feasibility of die-stacked
processing in memory,’’ in Proc. 2nd Workshop Near-Data Process., 2014,
pp. 1–5.

[39] Y. Wu and G. Nong, ‘‘A scalable pipeline architecture for IPv4/IPv6 route
lookup,’’ in Proc. 18th IEEE ICON, Dec. 2012, pp. 416–421.

[40] J.-Y. Huang and P.-C. Wang, ‘‘TCAM-based IP address lookup
using longest suffix split,’’ IEEE/ACM Trans. Netw., vol. 26, no. 2,
pp. 976–989, Apr. 2018.

[41] H. Le and V. K. Prasanna, ‘‘Scalable tree-based architectures for IPv4/v6
lookup using prefix partitioning,’’ IEEE Trans. Comput., vol. 61, no. 7,
pp. 1026–1039, Jul. 2012.

TOMOHIRO KORIKAWA received the B.S. and
M.S. degrees from Waseda University, Tokyo,
Japan, in 2012 and 2014, respectively. In 2014,
he joined as a Researcher of Network Service Sys-
tems Laboratories in Nippon Telegraph and Tele-
phone (NTT) Corporation, Tokyo, Japan, where he
is doing research in network system architecture
and network design.

VOLUME 7, 2019 75513



T. Korikawa et al.: Carrier-Scale Packet Processing Architecture Using Interleaved 3D-Stacked DRAM and Its Analysis

AKIO KAWABATA received the B.E., M.E., and
Ph.D. degrees from the University of Electro-
Communications, Tokyo, Japan, in 1991, 1993,
and 2016, respectively. He is also associated with
the Department of Communication Engineering
and Informatics at the University of Electro-
Communications in Tokyo, Japan, for research
activities. In 1993, he joined Nippon Telegraph
and Telephone (NTT) Corporation Communica-
tion Switching Laboratories, where he has been

engaging to develop switching systems, and researching network design
and switching system architecture. He served as a Senior Manager of R&D
Department at NTT East from 2011 to 2014. He is an Executive Research
Engineer and Project Manager of Network Service Systems Laboratories
at NTT.

FUJUN HE received the B.E. and M.E. degrees
from the University of Electronic Science and
Technology of China, Chengdu, China, in 2014
and 2017, respectively. He is currently pursuing
the Ph.D. degree with Kyoto University, Kyoto,
Japan.

He was an Exchange Student in the University
of Electro-Communications, Tokyo, Japan, from
2015 to 2016. His research interests include mod-
eling, algorithm, optimization, resource allocation,
survivability, and optical networks.

EIJI OKI (M’95–SM’05–F’13) received the B.E.
and M.E. degrees in instrumentation engineering
and the Ph.D. degree in electrical engineering
from Keio University, Yokohama, Japan, in 1991,
1993, and 1999, respectively. He was with Nip-
pon Telegraph and Telephone Corporation (NTT)
Laboratories, Tokyo, from 1993 to 2008, and
with the University of Electro-Communications,
Tokyo, from 2008 to 2017. From 2000 to 2001,
he was a Visiting Scholar with the Polytechnic

Institute of New York University, Brooklyn. In 2017, he joined Kyoto
University, Japan, where he is currently a Professor. His research interests
include routing, switching, protocols, optimization, and traffic engineering
in communication and information networks.

75514 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	DRAM MEMORY SYSTEM IN COTS SERVERS
	3D-STACKED DRAM

	PROPOSED ARCHITECTURE AND MODELING
	PROPOSED ARCHITECTURE
	SYSTEM MODELING

	ANALYSIS OF PROPOSED ARCHITECTURE FOR RANDOM ARRIVAL OF REQUESTS
	STATES FOR SUBSYSTEM DESCRIPTION
	STATE TRANSITION FOR (i,j,p)
	EQUILIBRIUM STATES
	BLOCKING PROBABILITY AND AVERAGE WAITING TIME

	ANALYSIS OF PROPOSED ARCHITECTURE FOR BURSTY ARRIVAL OF REQUESTS
	OVERVIEW OF IPP
	STATE TRANSITION FOR (i,j,p,k)
	EQUILIBRIUM STATES
	BLOCKING PROBABILITY AND AVERAGE WAITING TIME

	EVALUATION
	NUMERICAL RESULTS FOR RANDOM ARRIVAL OF REQUESTS
	NUMERICAL RESULTS FOR BURSTY ARRIVAL OF REQUESTS
	PACKET PROCESSING PERFORMANCE

	RELATED WORK
	DIRECTION TO EXPANSION OF ANALYTICAL MODEL FOR GENERAL N 2
	CONCLUSION
	REFERENCES
	Biographies
	TOMOHIRO KORIKAWA
	AKIO KAWABATA
	FUJUN HE
	EIJI OKI


