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ABSTRACT This paper concerns the optimal control problem of a general affinely pseudo-linearized
nonlinear system and puts forward the solving scheme based on adaptive dynamic programming and neural
network. In detail, a new more general affinely pseudo-linearized nonlinear system model is presented and
covers more practical scenarios than existing models in engineering. In consideration of the Bellman optimal
principle, the corresponding model particulars are then analyzed and its adaptive dynamic programming
solving scheme is derived. That is, the modified policy iteration is used to estimate the value function and
optimal control at each sampled state, and then the calculated state-control pairs and state critic values are
utilized to train two neural networks (one works as state evaluator and the other works as optimal control
generator, respectively). Through the above, the discrete state space is smoothed into a continuous state
space, and the notorious dimensional curse problem could be addressed. Moreover, in order to improve the
efficiency and precision of the network training, the samples calculating and network training processes are
simultaneously carried out in this paper. In the end, a related simulation experiment is applied and the results
demonstrate that the proposed method has more effectiveness and validation for the optimal control problem
of the newly proposed general system model than the compared methods.

INDEX TERMS Optimal control, adaptive dynamic programming, system identification, neural network.

I. INTRODUCTION
Control Technology, known as philosophy of cybernetics,
is used to perfect the system performances by properly chang-
ing the nominal system inputs, and plays an extremely impor-
tant role in present society. With the development of control
technology, it is utilized in many fields, such as the large
scale systems (for instance, the human population system,
the economics system, and so on), the engineering systems
(for example, the advanced robots [1], the aerospace vehi-
cles, and so on). In order to improve the system managing
efficiency, optimal control policies regarding various classes
of systems were put forward in the past. Those policies aim
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either, both at increasing the system performances or, and at
decreasing the system running costs.

In general, to the best knowledge of us, those studies in
optimal control community are of mainly three categories,
in terms of whether the system dynamics could be analyti-
cally obtained. Each of the three categories is detailed in the
following subsection.

A. OPTIMAL CONTROL POLICIES ON PATTERN-
DIFFERENT SYSTEM MODELS
The first category concerns systems with absolutely known
analytic dynamics. For those systems, canonical tech-
nics like inverse system theories [2], [3], linearization
methods [2], [3], variational methods [4], [5], Pontryagin
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minimum principle [4]–[6], and various dynamic pro-
gramming approaches (the heuristic dynamic programming,
the adaptive dynamic programming, et al. [7]–[9]) are intro-
duced to derive the corresponding optimal strategies. How-
ever, in practice, those methods could always be problematic,
complying with that the inverse system theory, the lineariza-
tion methods, et al. require the precise system models which
seems harsh to some engineering problems to obtain. Besides,
variational methods require no constraints in input signal,
meaning the input could be arbitrarily valued in real space
and it is also limited in practice. As for Pontryagin minimum
principle, the solution to this model is a little hardly to get
since it requires to solve a partial differential equation con-
strained by boundaries at two-endpoints [6].

The second category pays much attention to systems with
absolutely unknown analytic dynamics. For those problems,
researchers always model the systems dynamics (this is also
known as system identification) in the beginning with kinds
of tricks, for example, the stochastic Markov process (prob-
ability state transferring model), the deterministic Markov
process (state space model), the function fitting, the Neural
Networks, et al. In accordance with them, dynamic program-
ming approaches (the value iteration, the policy iteration, the
approximation dynamic programming, the adaptive dynamic
programming [6]–[9], theQ-learning [10], deep learning [11]
and so on) were utilized to get optimal policies.

The third category, on the other hand, shows its interests
on partially known analytic dynamics, especially the system
noised by various disturbances as Gaussian (see Gaussian
process in signal/imaging processing [12]), Colored, White,
specific-pattern dominated (see stochastic demands in inven-
tory control problem [6]) and so on. For these, one of
valuable solving scheme is that before designing or apply-
ing optimal control policy, system estimation technics are
always utilized to estimate the true values of state vari-
ables [12]–[14]. With those estimates instead of true system
sates, the optimal control policy could be generated (also
known as action, signal, et al.). Transparently, with this pre-
ceding procedure, the problem could be degraded into the
known-analytic dynamics optimal control problem. The sec-
ond valuable scheme is that the dynamic problem could
be modelled directly as Markov process and use stochastic
dynamic programming methods to address it afterwards [15].
That is, instead of consider the deterministic utility function,
the problem is optimized over the conditional expectation of
random variables [6].

In engineering, the relatively large numbers of practical
systems, like robots, airplane, could be analytically mod-
elled to some extent. And those models would always show
strongly nonlinearity, and are with modelling errors more or
less [7]–[9]. Besides, for an actual system, it always runs in
a real-time way, meaning it is as a dynamic system and the
performances optimization over it is a time series problem
rather than a static optimization one. Those two challenges,
the complicated nonlinear systems model and the dynamic
optimization problem, is what will be discussed in this paper.

By the art-of-the-state given above, it cannot be denied that
when it comes to the dynamic optimization problems, nomat-
ter deterministic or stochastic, the dynamic programming
approach outstands. Consequently, in the following subsec-
tion, the current studies on dynamic programming approach
are reviewed.

B. ADAPTIVE DYNAMIC PROGRAMMING APPROACH
TO NONLINEAR SYSTEM OPTIMAL CONTROL
Dynamic programming (DP) optimization could handle both
stochastic process and deterministic process, and it works
in accordance to Bellman Optimal Principle [6]. The typical
applications of DP are like the inventory control problem in
management [6], the linear quadratic optimal control problem
in engineering [4], [5], the value iteration and policy iteration
methods in Markov decision process [6], [15], theQ-learning
and SARSA algorithm in machine learning [6], [10], [16] and
so on.Most of themwork on the stochastic scenarios and opti-
mization applies over the conditional expectation. However,
DP is always cursed by dimensional issues [6], [15], meaning
the computation complexity becomes more and more hard,
and even impossible with the increase of the scale of state
space, the action space, et al. However, this is merely for
discrete problems. In reality, the state space or action space
could always be continuous, meaning that it would be impos-
sible to enumerate all possible states and actions, and no
mention to optimize over them. What’s more, the canonical
DP approaches always demand the realization in a backward
time direction (non-causal direction), that is, it precludes the
use of DP in real-time control [6].

On this dimensional curse problem, except the strait-
forward tricks, like the Myopic (one step greedy), the Look-
ahead policies (multi-step greedy) [6], researches put forward
the tricks of policy approximation using a cluster of policy
with distinct embedded parameters to represent all possi-
ble policies, and function fitting with sampled information
recovering the underlying continuous pattern [6], since those
superficial tricks of one/multi-step-greedy could not tell all
the story perfectly. The reason is that the one/multi step
greedy introduce too much truncation errors in objective
value function although the computing power of computers
are stronger and stronger. As for policy approximation, it is
also sometimes a little relatively hard to apply in practice
because modeling a proper prototype of policy is not simple
unless we know this prototype in advance.

Towards the function fitting schemes, in the beginning,
the basis function methods were focused. In the basis func-
tion methods, the continuous pattern is treated as the linear
combination of sufficient basis functions and then using the
sampled data to train the weights of each basis [6]. The basis
function method shows the sufficiency in Hilbert space by
the Riese’s representative theorem, the Fourier’s represen-
tation and the Parseval theorem [17]. However, it performs
limitedly in engineering due to that it is complicated to
choose the appropriate basis functions (from the Gaussian
basis, the polynomial basis, the sinusoid basis, et al.) for
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every specific practical problems and that the truncation error
introduced by the high-order basses in a complete basis space
is theoretically significant. Subsequently, with the booming
of the Neural Networks (NN) technics and the increasing
requiring precision in practice, the NN-based approximation
schemes are gradually popularized, especially the BP net-
works thanks to the structural simplicity and mention-worthy
nonlinear approximation capacity [7], [18], [19]. Together
with BP, the radial basis NN was also reported to be used on
this point [20].

Regarding the dynamic programming approach in
time-series optimal control problem, the calculated state-
action (state-control) pairs are usually used to train an action-
generating network, and the state evaluating values are used
to train a critic network. Through the above, an optimal con-
trol generating method could be gotten in terms of real-time
states in a continuous space. Generally, to guarantee the
density of the information needed to train two networks,
the samples obtaining process and the networks training
process could be carried out simultaneously, until the con-
vergence of the network training [7], [18], [19]. This novel
idea on NN-based DP was firstly presented by Miller, Sutton,
and Werbos in 1990 [21], and further developed in later
decades [7]–[9], [18], [19], [22], [23].

Because of different views and different application fields
on this point, the conceptually equivalent numbers of termi-
nologies on this technic are proposed, like the approximate
dynamic programming, the asymptotic dynamic program-
ming, the reinforcement learning, the adaptive dynamic pro-
gramming, the Neuro-Dynamic programming and the neural
dynamic programming. Fortunately, 2006NSFWorkshop and
Outreach Tutorials on Approximate Dynamic Programming
recommended all of the above items should be uniformly rep-
resented as Adaptive/Approximate Dynamic Programming.
On optimal control problem for nonlinear systems,

researchers in the past mainly focus on one specific
class of affinely pseudo-linearized nonlinear system model
showed in (1).

xk+1 = f (xk )+ g(xk )uk (1)

where x stands for the system state; k denotes the discrete
time index; f (·) and g(·) are functions with certain properties
to build the model; u is the system input [7], [8], [19];
xk denote the system state at time index k; and uk denote the
system input at time index k . In the following, the notation
x(k) and xk mean the same. Similarly, the notations u(k), u(xk )
and uk are equivalent.
In order to obtain the optimal control policy of it, schol-

ars proposed various adaptive dynamic programming (ADP)
schemes based on the approximate solution of the Hamilton-
Jacobi-Bellman (HJB) equation [7]–[9], [19], [21]. Among
all of them, typical adaptive critic schemes are the heuris-
tic dynamic programming (HDP), the action-dependent
heuristic dynamic programming (ADHDP), the dual heuris-
tic programming (DHP), the iterative ADP, the globalized
dual heuristic programming (GDHP), et al. Actually, those

different schemes aim at different application cases and dif-
ferent approximation precision. From the viewpoint of author,
the existing methods introduced in literatures belong to one
of the following three categories.

The first category is represented by heuristic dynamic pro-
gramming (HDP) [7], [18], [19], [21]. They target to solve
the typical scenario modelled by (1). Namely they constructs
the sample state-action pairs and state critic value calculating
algorithm and then train two networks (Critic NN and Action
NN) to refactor the continuous pattern, so that the curse of
dimensionality could be handled.

In the second category, the uncertain case of (1) should be
mentioned, that is, the case noised by disturbances [18], [23],
as shown in (2).

xk+1 = f (xk )+ g(xk )uk +1Fk (2)

where 1Fk stands for the possible noises. For this derivative
problem, scholars introduce robust ADP control system by
either modifying the cost function adding penalty to new
items, or designing new scheme to bound the impacts caused
by noises [18], [23].

The third category, cares about that the nonlinear sys-
tem model could be absolutely unknown and a third NN is
applied to identify the dynamics of the system [9], [24], [25].
In the basis of some assumptions on system dynamics,
the stability and convergence analysis admit the effectiveness
of the proposed method which requires the use of three
independent NN.

Although well studied on problem (1), the pseudo affine-
linearized may not always make sense, considering of the
low-generality of the system model. Hence, the target of
this paper is to discuss a more general pseudo-linearized
model, and design the corresponding NN based adaptive
dynamic programming scheme to obtain the optimal control
policy of it.

C. MOTIVATION AND DISCUSSION ON
A NEW MORE GENERAL MODEL
The mentioned more general system is modeled as (3).

xk+1 = F(xk , uk )

= f00(xk )+ g10(xk )uk + f01(uk )+ g11(uk )xk (3)

where f00(·), g10(·), f01(·) and g11(·) are proper functions with
certain properties that will be discussed in Section III.

Practically, the model of (3) covers more application sce-
narios since theoretically it is a more concise approximation
model for every given nonlinear dynamics F(x, u) and the
detailed explanation on this point is in Section III.

The difficulties to settle this optimal control problem
includes: (a) The state space and the action space (the term
action is used to denote the control signal) are continuous,
meaning the dimensional curse problem is always existing;
(b) The newly proposed systemmodel of (3) is more complex
than existing model, meaning the algorithm to generate the
optimal control is harder to design.
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The general motivation of handling this new problem is:
1) New Optimal Control Generating Algorithm

Designing: The state samples is randomly collected in
state space firstly, and the optimal control generating
algorithm is designed to obtain the corresponding opti-
mal control (optimal action) at those states. However,
in the following, it can be found that the dilemma
is that the derived equations are impossible to get
the closed-form solutions, compared to the existing
methods for the model of (1). Therefore, the numerical
methodswill be designed to obtain numerical solutions.

2) Network Training: Since the actual state space and
action space are continuous, it is impossible to enu-
merate and investigate all of the states to obtain the
corresponding optimal controls. Hence, the sampled
information is used to train two networks. The one is
for state evaluating (critic network) and the other is
for optimal control generating (action network). Note
that in the first part (New Optimal Control Generating
Algorithm Designing), many enough state-action pairs
are collected which could be used as samples to train
an action network. Besides, during the implementation
of the designed algorithm, the state evaluating values
could also be calculated, meaning states and their eval-
uating values are used as pairs to train a critic network.

D. CONTRIBUTIONS IN THIS PAPER
In summary, all the novelties and possible contributions are
displayed in this paper.

1) This paper shows the system (3) is more general com-
pared to the popularly existed one. See Section III.

2) This paper derives the corresponding Hamilton-
Jacobia-Bellman equation to the new model, and
designs the optimal control generating method, as well
as the value function approximation (fitting) scheme
(See (10), (11) and Section IV).

3) This paper proposes the complete algorithm to obtain
the optimal control (See Section IV and Algorithm 1).

4) This paper proves the effectiveness of the presented
NN-based methodology in approximating the deriva-
tive of a continuously differentiable function (See
Theorem 1).

E. PAPER STRUCTURE
This paper is constructed as follows. The first section is
Introduction, in which the problem this paper concerns is
posted and the arts-of-the-state related are reviewed. As a
warming-up, some related background knowledge pertaining
to BP Neural Network, system and control are provided in
Section II, in order to make the paper more understand-
able to readers even having no related field basics. After
that, the focused problem is mathematically formulated in
Section III. Then in Section IV, the detailed methodology in
terms of how to solve the formulated problem is presented.
In the last, the main results of this paper as well as related
discussions, and the future work are concluded in Section VI.

II. BACKGROUND
Before proceeding to the next sections, this section provides
some backgrounds to make the paper more readable for read-
ers from different fields.

A. BP NEURAL NETWORK
In engineering, BP Neural Network (NN), an canoni-
cal and important unsupervised machine learning method,
is widely used to approximate unknown functions with given
input-output data pairs [26]–[28]. The overall system struc-
ture of a typical two-layer BP NN is showed in Fig. 1.

FIGURE 1. The structure of a typical two-layer BP neural network.

It generally consists of three parts called input, hidden and
output layer, respectively. For this specific structure, it is also
called as two-layer BP NN, indicating one hidden layer and
one output layer.

When use a two-layer NN (input-hidden-output) to approx-
imate a function, it has

V (x) = ωT · φ(vx + b)+ p (4)

where x is the input vector with dimension of n× 1; ω is the
weight vector from the hidden layer to output with dimension
of l × 1; l is the number of neurons in the hidden layer;
v is the weight vector from the input to the hidden layer with
dimension of n×l; φ(·) is the fixed activation function. In this
paper, the Tan-Sigmoid function φ(x) = −1+ 2/(1+ e−2x)
is use as activation function for its nice analytical property
(differentiability, its derivative is φ′(x) = 4e−2x/(1+ e−2x)2;
and b, p are the constant bias terms.

The power of two-layer BP NN is illustrated in Lemma 1.
Lemma 1: Any smooth function f (x) can be approximated

arbitrarily-closely on a compact set using a two-layer neural
network (NN) with appropriate weights. The weights can be
estimated by gradient descent method. Specifically, the esti-
mate f̂ (x) of f (x) is with the form of f̂ (x) = ωT ·φ(vx+b)+p,
where the parameters could be found in (4).
Proof: See [27], [28].

B. SYSTEM, STATES AND CONTROL
In control community, the problem of driving the system
states or system outputs to specific changing patterns are
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F(x, u)

= F00 + F10x + F11u+ F20x2 + F21xu+ F22u2 + F30x3 + F31x2u+ F32xu2 + F33u3 + . . .

= (F00 + F10x + F20x2 + F30x3 + . . .)+ (F11u+ F22u2 + F33u3 + . . .)+ (F21x + F31x2 + . . .)u+ (F32u2 + . . .)x + . . .

=: f00(x)+ f01(u)+ (F21x + F31x2 + . . .)u+ (F32u2 + . . .)x + . . .

=: f00(x)+ f01(u)+ g10(x)u+ g11(u)x + O(x, u) (6)

Fuk := 2Ruk +
[
g0(xk )+

df1(uk )
duk

+
dg1(uk )
duk

xk

]T
∂V ∗ (xk+1)
∂xk+1

∣∣∣u∗k = 0 (11)

concerned [2], [29]. The system model is usually give as

xk+1 = f (xk , uk ) (5)

where xk , xk+1 means the system states at time points k ,
k + 1, respectively; uk is the system inputs and f (·, ·) is the
system transfer function. Generally, f (·, ·) has the linear form
so that the corresponding system is called linear system. The
system control thus means that the changing laws of system
states or system outputs (system behavior) is altered into the
desired patterns through the time by giving the proper system
input uk . A typical scenario could be to keep the temperature
of a room (the system state xk ) by sensing the real temperature
of the room and regulating the working power of the air
conditioning (the system input uk ).

III. PROBLEM FORMULATION
Considering the affinely pseudo-linearized system model
give in (3), it can be shown that (3) is more general than
existing popular model showed in (1).

According to Taylor’s expansion theorem, a smooth func-
tion F(x, u) could be expressed as (6), as shown at the top of
this page. In (6), Fij denotes the corresponding coefficients
which could be found in any calculus textbook or online, and
O(x, u) is the tail.
Without loss of generality, (6) could be written as (3).

Obviously, the model in this paper show stronger universality,
compared to the canonical one in (1).

Consuming that without loss of generality [7], x = 0 is an
equilibrium point. That is, f0(0) = 0 and f1(0) = 0.
Remark 1: Setting zero as an equilibrium point is meaning-

ful in engineering, since many engineering systems concern
the state retaining (perturbation rejection) problems. Besides,
the property of response on retaining the zero-valued state
after disturbance is used to check whether the system is
stable or not, to some extent. Therefore, as a result, it can
be calculated that f0(0) = 0 and f1(0) = 0. If in practice
the equilibrium point is not zero, it is just needed to give a
compensation term to xk + 1 by specific structure of (3).
Remark 2: It is clear that with Remark 1, the ultimate target

is driving the system state xk to zero from any initial value
in finite k < ∞ (or even acceptable k < K , where K is a
constant) time steps.

Then an optimal control sequence u(k) is desired to find
such that the infinite horizon cost function given in (7) could
be minimized for all xk .

V (xk )=
∞∑
n=k

U (xk , u(xk )) =
∞∑
n=k

xTn Qxn+u
T (xn)Ru(xn) (7)

whereU (xk , u(xk )) is called Utility function andQ >0, R >0,
meaning the quadratic function is considered as the utility
critic in this paper. For simplicity, uk is used to represent u(xk )
afterwards.

Subsequently, the (7) could be written as

V (xk ) = xTk Qxk + u
T
k Ruk +

∞∑
n=k+1

(xTn Qxn + u
T
n Run)

= xTk Qxk + u
T
k Ruk + V (xk+1) (8)

With Bellman’s optimality principle [6], it can be known
that for the infinite horizon case, the optimal value function
V ∗ (xk ) is time invariant and satisfies the discrete time
Hamilton-Jacobia-Bellman equation (DT-HJB)

V ∗(xk ) = min
uk

[xTk Qxk + u
T
k Ruk + V

∗(xk+1)] (9)

It is should be noted that DT-HJB equation evolves back-
ward in time.

The optimal control sequence {u∗k} should meet the first-
order necessary condition, that is

∂(xTk Qxk + u
T
k Ruk )

∂uk
+
∂xk+1
∂uk

T ∂V ∗(xk+1)
∂xk+1

∣∣∣u∗k = 0 (10)

and therefore the formula of (11), as shown at the top of this
page, could be obtained.

If instead considering the model of (1), a degraded result
of (11) could be calculated as

2Ruk + gT (xk )
∂V ∗(xk+1)
∂xk+1

∣∣∣u∗k = 0 (12)

meaning

u∗k = −
1
2
R−1gT (xk )

∂V ∗(xk+1)
∂xk+1

(13)

For the degenerated problem (1) and (13),
Al-Tamimi et al. [7] present an effective iterative algorithm
called heuristic dynamic programming. The main story of it
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is that it could construct a policy iteration loop to alternately
estimate the value function and obtain the optimal solution.
That is, the iteration could be evolved between (14) and (15)
with the initial value V0(xk ) = 0

uki = argmin
u
(xTk Qxk + u

T
k Ruk + Vi(xk+1))

= −
1
2
R−1gT (xk )

∂Vi(xk+1)
∂xk+1

(14)

Vi+1(xk ) = min(xTk Qxk + u
T
k Ruk + Vi(xk+1))

= xTk Qxk + u
T
kiRuki + Vi(xk+1) (15)

where i is the iteration steps at time point k and xk+1 is give
by (1). Obviously, with this iteration algorithm, the dynamic
programming scheme could be applied in forward in time,
which is practical in engineering. Further, with the samples
got by (14) and (15), two NN could be trained to recognize
the underlying continuous value function and optimal con-
trol generation function, through which it could handle the
dimensional curse issue.

As for the term ∂Vi(xk+1)
∂xk+1

in (14), it could use the fitted
function to approximate.

If a two-layer NN (input-hidden-output) is used to approx-
imate the value function, that

V (x) = ωT · φ(vx + b)+ p (16)

The meaning of each notation should be found in (4).
Additionally, Theorem 1 gives its derivative.
Theorem 1: The derivative function df (x)/dx of

any first-order derivative smooth (namely the continu-
ously differentiable) function f (x) could be approximated
arbitrarily-closely on a compact set using a two-layer Neural
Network (NN). In detail, if f̂ (x) = ωT · φ(vx + b) + p, then
the estimate to the derivative df (x)/dx should be

df̂ (x)
dx
=
df̂ (x)
dx
= ωT · ∇φ(vx + b) · v (17)

where ∇ is the gradient operator.
Proof: Let f̂n(x) be the sequence during executing the gra-

dient descend method to update the weights of NN, namely,
f̂n(x) = ωTn · φ(vnx + bn)+ pn, where n is the iteration steps
from initial values. Thus, if n → ∞, then f̂n(x) → f̂ (x).
According to Lemma 1, it can be obtained that

lim sup
n→∞

[
f (x)− f̂n(x)

]
= 0, ∀x ∈ X (18)

where X is the domain of x, and X is a compact set (meaning
bounded and closed in real space). In addition, due to that
f (x) is continuous, we also have f̂n(x) is continuous as n →
∞ [30], this could also be concluded by the definition of f̂n(x).
Since f (x), f̂n(x) are first-order derivative continuous

over X (Note: f̂n(x) is first-order derivative continuous due
to its definition.), namely, f (x), f̂n(x) ∈ C1(X ), that

lim sup
n→∞

[
df (x)
dx
−
df̂n(x)
dx

]
=

d
dx

lim sup
n→∞

[
f (x)− f̂n(x)

]
= 0 (19)

The above equality holds due to the property of uniform
convergence of f̂n(x) over a compact set, meaning the differ-
entiation and limitation are interchangeable [30].

Finally, by derivation of f̂ (x), (17) can be obtained.
The experimental validation of Theorem 1 could be further

found in one numerical experiment in Subsection V-A.
Thus according to Lemma 1, the derivative of V (x) should

be

dV (x)
dx
= ωT · ∇φ(vx + b) · v (20)

where ∇ is the gradient operator.
In order to update weight vectors ω and v during training

process, we could just follow the Back-propagation algo-
rithm, illustrated in [7] and [19]–[21].

Coming here, it is theoretically sufficient to execute the
algorithm given by (14) and (15) to solve the classic optimal
control problem (1). However, compared with (13), it is easily
to know that the closed form solution to (11) is hard to
take, that is it could not solve the optimal control problem to
model (3) directly with iteration method (IM) given by (14)
and (15), in general. That is why our story in this paper begins.

In the following section, the effective schemes will be
designed to fix the problems this paper faces above.

IV. ADAPTIVE DYNAMIC PROGRAMMING APPROACH
TO THE NEW OPTIMAL CONTROL PROBLEM
Since generally it could not get the closed form solution
to (11), the numerical solution to it is instead considered.
To solve this nonlinear algebra equation, Newton gradient
descent should be a first-hand choice. That is

uki+1 = uki − α[∇Fuki ]
−1Fuki (21)

where α is a coefficient valued in (0; 1] and Fuki is gradient
given by the partial derivative of the left hand of (11) to uki.
Let α0 be the initial value and αe be the lower bound. In iter-
ation process, if

∥∥Fuki+1∥∥ ≤ ∥∥Fuki∥∥, then α should be halved,
until it reaches the lower bound αe. Specifically, see (22).

∇Fuki = 2R+

[
d2f1(uk )

du2k
+
d2g1(uk )

du2k
xk

]T
∂V (xk+1)
∂xk+1

∣∣uki
(22)

Unfortunately, Newton gradient method could not always
be guaranteed to converge. It strongly depends on the proper-
ties of Fuk in (11).
Theorem 2: If ∇Fuki is continuous and invertible, and

Fuki = 0 has a unique root in searching interval, then (21)
converges to the unique solution that satisfies (11).
Proof: See [31].
In engineering, if the convergence conditions requested by

Theorem 2 cannot be satisfied, then it could find the least
square solution of Fuk = 0. That is

u∗k = argmin
u

1
2
FTuk (u)Fuk (u) (23)
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FIGURE 2. Topology of the training process.

Let H (u) := 1
2F

T
uk (u)Fuk (u), we have ∇H (u) = JTGFuk (u),

where JG(u) means the Jocabian matrix of Fuk (u).
Then the iteration strategy of uk could be obtained by

Gradient Descent. That is

uki+1 = uki − αn∇H (uki) (24)

Remark 3: The Newton’s method looks powerful in con-
vergence rate in practice [32]. This is easy to intuitively
understand because this method require the information from
the derivative (or Jacobian), meaning the concerned function
must be continuous and differentiable, in addition the deriva-
tive (or Jacobian)must be invertible.More informationmeans
faster convergence speed and higher convergence accuracy.
This point is not hard to get. However, those conditions are
really restrictive in engineering. Sometimes even the conti-
nuity of the function cannot be guaranteed. Thus we rarely
consider more on Newton’s method practically unless our
problems show the perfect enough analytical properties.
Theorem 3: If αn is given as

αn =
(uki − uki−1)T [∇H (uki)−∇H (uki−1)]

(‖∇H (uki)−∇H (uki−1)‖)2
(25)

then the iteration (24) could be guaranteed to at least converge
to a local solution.
Proof: See [33].
Alternatively, in practice, the fixed point iteration method

could also be considered for simplicity, being free from the
calculation of gradient and its inverse, if possible.

Let Guk := Fuk + uk , following iteration algorithm in (26)
could be obtained.

uki+1 = Guki (26)

where i is the iteration steps.
Theorem 4: IfGuk is a contraction over uk , then the iteration

algorithm (26) could be guaranteed to converge with uk = u∗k ,
such that Fuk = 0.
Proof: This is by the Banach Fixed Point Theorem. For

detail, see [17].
In addition, in order to let x0 fully cover its definition

interval, meaning almost every points (every possible initial
state) in this interval could be taken into consideration in

training process, and let x0 uniformly randomly take its value
from its definition interval.

In execution, a randomly initialized state x0 is taken to
evolve the iteration between (26) and (15) to get optimal
control. If in the following iterations, it reaches the vicinity
of a state that have been visited before, then this loop should
be terminated and a new cycle is started again with a new
random initial state. This is just to avoid a cursed loop from
xk to xk+r = xk , after experiencing xk+1, xk+2, xk+3, . . . ,
xk+r . This phenomenon is possible since in this paper a
deterministic system (3) is concerned.

Overall, the whole topology of the training process is
illustrated in Fig. 2.

For detail, Algorithm 1 gives the full procedure of obtain-
ing the optimal solution to the system (3).

Algorithm 1Algorithm of Obtaining the Optimal Solution to
the System (3)
Input: α0,αe;
Step 1: Choose the initial state. Randomly value x0 with

uniform distribution;
Step 2: Get the optimal control. Evolve the iteration

between (26) [or (24) or (21)] and (15);
Step 3:Train the BPNNs. Use the state-action pairs above

to sequentially train the action NN, and the states
and its evaluating values to train the critic NN;

Step 4: Update the system state. Use (3) to update
the system state;

Step 5: Algorithm Running Control. If two NNs
converged, then terminate; if the new system state
reaches the vicinity of visited states, then go to
Step 1; if the new system state reaches the
vicinity of zero, then go to Step 1;

Output: The critic NN and the action NN.

Remark 4: In Algorithm 1, which strategy of getting the
optimal control is preferential, (26), (24) or (21), should
depend on the specific formula pattern of model given by (3).
The detailed determinant conditions are given by Theorem 4,
3, and 2. That is, firstly, it should be checked whether the (26)
is applicable. If not, the feasibility of (21) should then be
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checked. If not again, (24) is finally used to obtain a least
square solution, since the Theorem 3 guarantees its local
convergence (in practice the local one is at times sufficient
enough). The reason why considering (26) before (21) is
that (21) requires an operation of matrix inverse, which is
regarded to be computationally hard. Besides, the inverse of
a matrix does not always exist.
Remark 5: In Algorithm 1, in order to determine whether

the updated system state is within the vicinity of a pre-reached
state, an interval that contains all the vicinities obtained
before could be constructed. Then for a new coming state,
it could be checked that whether it is covered by a sub-interval
emerged by vicinities.

V. EXPERIMENT AND ANALYSIS
In this section, an experiment of generating an optimal con-
trol of a general affinely pseudo-linearized nonlinear system
using the proposed Algorithm 1 is considered, in order to
inspect the effectiveness of the methodology in this paper.
There are two separate experiments. The first one is to val-
idate the rightness of the Theorem 1, that is, the derivative
of a first-order derivative continuous function could indeed
be given by (17). The second one is to generate an opti-
mal control of a general affinely pseudo-linearized nonlinear
system using the presented Algorithm 1, for inspecting the
effectiveness of the methodology in this paper.

A. SIMULATION VALIDATION TO THEOREM 1
In this subsection, the function f (x) = 1

10x · sin
2(x) is

considered to approximate its derivative by (17).
The experiment parameters is set as follows:
1) Let the used BP Networks be with the structure

of 1-15-1, meaning one input layer containing one neu-
ron, one hidden layer containing fifteen neurons, and
one output layer containing one neuron. Its mathemat-
ical pattern is given by (16), where l = 15.

2) The activation function is Tan-Sigmoid function given
in (16).

3) The expected termination control parameters desired in
training process is as maximum step L = 1000 and
convergence determinant (error threshold) ε′ = 10−5.

4) The initial learning rate is set as 0.01.
As a result, the approximations of both f (x) and its deriva-

tive is shown in Fig. 3 and Fig. 4, respectively.
In Fig. 4, the ground truth, namely the derivative of f (x),

could be given from its definition f (x) = 1
10x · sin

2(x), that is

df (x)
dx
=

1
5
x · sin(x) · cos(x)+

1
10
x · sin2(x) (27)

No wonder, both the Fig. 3 and the Fig. 4 support the
effectiveness of Theorem 1.

Notably, the proposed method is also powerful to address
the noised source data. Suppose the source data generated
by f (x) is contaminated by zero-mean normal noise with
standard deviation of 0.05. Then the approximations of both
f (x) and its derivative given by Theorem 1 are illustrated
in Fig. 5 and Fig. 6, respectively.

FIGURE 3. The NN approximation, given by (16), to f (x).

FIGURE 4. The NN approximation, given by (17), to the derivative of f (x).

FIGURE 5. The NN approximation, given by (16), to f (x) under noised
source data.

Fig. 5 and Fig. 6 show that the presented method is more
robust, meaning it could withstands the impact introduced by
unexpected noises. However, Fig. 6 still admits the existence
of noise could in some degree weaken the ideality of approx-
imation, compared to Fig. 4.

B. THE VALIDATION TO THE OPTIMAL CONTROL
GENERATING ALGORITHM
The following system showed in (28) is considered.

xk+1 = 1− e− sin(xk ) + x2k uk + sin(uk )+ euk xk (28)
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FIGURE 6. The NN approximation, given by (17), to the derivative of f (x)
under noised source data.

The reason why setting the system dynamics as this
because in engineering it is complex and general enough. The
surface of this function is multi-modal (multiple stationary
points, which leads to multiple equilibrium points) and really
steep in some directions (See also Fig. 7 and Fig. 8).

FIGURE 7. The state trajectory of the system (27).

FIGURE 8. The state trajectory of the system (27) without input.

The state trajectory of this system is illustrated in Fig. 7 and
if without input it is as in Fig. 8.

Obviously, from Fig. 8 it can be seen that the nominal
equilibrium point xk = 0 is not a unique one, meaning
this system is not globally stable. That means if exerted an
impulse by noise, the system would diverge from xk = 0.

In detail, it also has equilibrium points at about xk = 3,
xk = 6.5, and xk = 9.5, etc.
As a demonstration, the impulse response of the system is

investigated, which is showed in Fig. 9.

FIGURE 9. The impulse response xk disturbed by noise (impulse signal
here).

It is easy to see that with the impulse input, the system
converges to a new equilibrium point xk = 3.2. Thus, the pur-
pose of the control is to drive this system again to its nominal
equilibrium point xk = 0.

To get the optimal control, the experiment scenarios is set
as follows:

1) Let the simulation time step is l =0.1s.
2) Let Q = R = 1

2 .
3) Let α0 = 1.0 and αe = 0.1.
4) Let the maximum step of the iteration between (24) and
5) (15) is L = 100 and the desired accuracy threshold to

terminate the iteration process is ε = 10−2.
6) Let all the used BP Networks be with the structure

of 1-8-1, meaning one input layer containing one neu-
ron, one hidden layer containing eight neurons, and one
output layer containing one neuron; Besides, the acti-
vation function is Tan-Sigmoid function; the expected
termination control parameters desired in training pro-
cess is as L ′ = 3000 (maximum step, that is, simulation
cycles) and ε′ = 10−2 (convergence determinant)
above; the initial learning rate is set as 0.2.

Note 1: It should be noted that if ε and ε′ is set too small,
the algorithmwould not converge, or converge in a really long
time.

In this case, (11) could have a detailed form

Fuk = uk + (x2k + cos(uk )+ euk · xk )
∂V ∗(xk+1)
∂xk+1

= 0 (29)

and its Jacobian is

JTG (uk ) = 1+ (− sin(uk )+ euk · xk )
∂V ∗(xk+1)
∂xk+1

= 0 (30)

After implementing the Algorithm 1, in which the iteration
is used between the (24) and (15), the approximated value
function could be obtained and given in Fig. 10, and its
derivative approximated by (20) in Fig. 11.

From Fig. 10, it can be seen in this experiment, the minimal
value of value function at xk = 0 (nominal equilibrium point)
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FIGURE 10. The value function against xk .

FIGURE 11. The derivative of the value function against xk .

is indeed gotten, which guarantees the state could be driven
to zero with proper input. However, the fluctuation in the
curve means this approximation to value function is not ideal.
Because in origin expectation, the local minima is not wanted.
Yet in practice, it is still applicable since insignificant errors
could be tolerable.

FIGURE 12. The impulse response xk with optimal control.

The new system impulse response and the optimal control
is also obtained and shown in Fig. 12 and Fig. 13, respectively.

It should be mentioned that the reason choosing the (24) to
get the optimal control is that it is somewhat hard to verify
the conditions required by Theorem 2 and Theorem 4 for this
complex system.

From Fig. 12, it can be found that with the optimal control,
the system state could be driven to the expected equilibrium
point after disturbing by unexpected inputs (generally existed
as noises).

FIGURE 13. The optimal control uk .

Note 2: In practice, the input signal is expected as contin-
uous as possible, meaning there is no sharp changes in the
curve of input. This is a common sense in control theory.
Because jerks in input signal require more energy (the instant
power is extremely large). Thus, in this experiment, it is
restricted that the input signal could change at most max
|1uk | = max |uk − uk−1| = 0.2 in each step after 1s
(namely when k ≥ 10). This is why in Fig. 13 there has
large changes in the input uk in the first 1 second, and after
the first 1 second, it has a smoother input. However, if the
restriction max |1uk | = 0.2 is set from beginning (namely
k ≥ 0), it may be at times fail to have an efficient input signal.
Because the limitation would destroy the convergence of the
control process.

VI. CONCLUSION AND DISCUSSION
In this paper the optimal control problem for a more general
affinely linearized nonlinear system is studied. Specifically
the corresponding discrete time optimal control generating
algorithm is derived. And for the fact that the system is
evolving in a continuous state space, the Neural Networks
schemes are proposed to recover the underlying continuous
patterns of value function and optimal control generating
function, together with the approximation method of the
derivative of one continuously differentiable function using
NN. Simulations show that the presented methods could
provide an optimal control sequence to the designed optimal
control problem so that the disturbed state could be driven
to its equilibrium point. Besides, the state critic network and
action generating network could be trained online, meaning
the dimensional curse problem (introduced by the continuous
state space and action space) could be addressed with the
proposed scheme. However, it should also be mentioned the
solution this paper studies is not a universal one, for some
systems it cannot provide an optimal even feasible optimal
control. Thus, in future, we will studies the specific applica-
tion conditions of the proposed algorithm (especially the con-
vergence conditions of the proposed numerical methods), and
design more stable and robust algorithms for those systems
we expect to handle. Mainly, we should study the stability
criteria of the system (3), and the robust control technics for
this newly raised problem. The difficulty of robust control is
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to re-design the optimal condition (7) so that it could take into
consideration the disturbances and uncertainties.
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