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ABSTRACT In this paper, in order to reduce the burden of caring for individuals who are bedridden,
we present a method of reasoning about the objects and actions that could satisfy their physiological
needs. First, we introduce a method of representing knowledge about everyday objects in terms of their
properties and functions. Based on this representation, we then propose a desire-driven reasoning approach
that bridges the gap between physiological desires and robot actions. This can also deal with issues caused
by uncontrolled domains, including incomplete knowledge and dynamic environments. Finally, we evaluate
the proposed method by applying our newly developed KUT-PCR personal care robot to real household
scenarios.

INDEX TERMS Personal care robot, knowledge representation, physiological need, reasoning.

I. INTRODUCTION
Caregivers who look after people that are bedridden, due to
aging, illness, or an accident, need not only physical strength
but also a proper understanding of their patients’ physiolog-
ical needs. Professional caregivers are required to carry out
such tasks in nursing homes and hospitals, while visiting
caregivers are needed in individuals’ homes [1]. However,
in order to deal with the nursing shortage [2]–[4] and improve
care efficiency, a small number of caregivers are unable to
focus on specific care recipients but instead must check in on
them periodically.

This means that, currently, patients who are bedridden
sometimes have no-one to take care of their needs while
caregivers are unavailable. If we could develop personal care
robots capable of carrying out simple care tasks (such as
delivering goods), the burden on caregivers would reduce
dramatically. Such robots would hopefully make patients’
lives more comfortable by, for example, delivering drinks
or adjusting the temperature and lighting while human care-
givers are unavailable.

Several types of robots have been developed to provide
this kind of care. For instance, there are robots that can pro-
vide mechanical assistance to caregivers or care recipients: a
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nursing-care assistance robot called RIBA [5] is able to trans-
port a patient between their bed and a wheelchair; exoskele-
tons can amplify the strength of caregivers [6]; and transfer
robots from TOYOTA can carry out tasks when operated
locally by a caregiver. In recent years, non-contact robots
have also been developed that can carry objects or open and
close curtains, such as TOYOTA’s HSR [7].

Since the first type of robot operates directly on patients
who are bedridden, caregivers who understand their opera-
tions must also be present. By contrast, since robots of the
latter type do not make direct contact with patients, caregivers
are not required to be present. However, these robots must
still be given clear commands, such as ‘‘fetch a bottle of tea’’
or ‘‘set the room temperature to 25 degrees,’’ and patients
may struggle to remember whether there is any tea in the
refrigerator or decide what exact temperature they want to set
for the room. Patients generally find it much easier to express
their physiological needs, such as hunger, thirst, being too hot
or cold, needing brighter or dimmer light, or wanting fresh air.
If personal care robots could understand such physiological
needs and take appropriate actions to satisfy them, a higher
intelligence level would have been reached, and these robots
could eventually contribute in real caring scenarios.

For personal care robots to perform actions that satisfy
given physiological needs when caregivers or home helpers
are unavailable, they must at least have the following
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functions: (i) estimate their own location and those of the tar-
get objects; (ii) reach the desired destination while avoiding
obstacles; (iii) recognize the presence and state of objects;
(iv) manipulate objects; (v) identify patients’ physiologi-
cal needs; and (vi) reason about the objects and operations
required to satisfy these physiological needs.

Functions (i) and (ii) have long been fundamental to
research into autonomous mobile robots. In recent years,
simultaneous localization and mapping (SLAM) [8] proved
to be highly successful and has been applied in vari-
ous fields [9], [10]. Function (iv) is critical for industrial
robots, for which several different mechanical designs have
been proposed, along with methods of controlling the end
effectors [11]. Great progress has also been made toward
function (iii), including the development of image sensors
(high-speed industrial cameras [12] and depth cameras [13])
and advanced algorithms (deep learning [14]). In particu-
lar, dramatic advances have been made by combining work
on functions (iii) and (iv), as demonstrated by multiple
global competitions, such as the DARPA Robotics Challenge
(DRC) [15] and the Amazon Picking Challenge (APC) [16].

These techniques can also be applied to personal care
robots. For instance, given the command to serve a bottle of
water, HSR can pick up the bottle and serve it to the care
recipient [7], while Dora [17] can navigate between rooms
to search for a book given its name. Such achievements have
gained much attention in robotics research and shown con-
vincing results. However, to the best of our knowledge, there
has been little discussion on how to recognize physiological
needs (such as thirst) and infer how they can be satisfied by
particular objects or actions.

Our previous studies on personal care robots presented
results related to functions (iii) and (v) [18], [19]. In this
work, we instead concentrate on function (vi) and propose a
method of reasoning about the objects and operations needed
to satisfy a given physiological need. In addition, we also
evaluate the proposed approach in real household scenarios.
Implementing function (vi), however, presents two main dif-
ficulties.

First, there is a range of possible options: since more than
one object or action may be able to satisfy a given need,
we need a reasoning method that can determine which one
to choose. For example, there may be several instances of
a particular object class in multiple locations (e.g., a house
can have two or more windows and doors) or a single action
may involve different states (e.g., an electrical switch can be
on or off). Second, operations can be uncertain; for example,
a robotmay reach the target location only to find that an object
does not exist or an action is impossible to perform.

The remainder of this paper is structured as follows. First,
we discuss related work in the field. Next, we give a brief
overview of the mechanical design and functions of the robot
we have developed to care for patients who are bedridden
(KUT-PCR). Then, we propose a reasoning algorithm that
can, based on descriptions of everyday objects in terms of
their properties and functions, identify objects and actions

that will satisfy the given physiological needs. After that,
we evaluate the proposed methods in real household scenar-
ios. Finally, we conclude the paper and discuss future work.

II. RELATED WORK
In recent years, developments in mechanical design [20],
actuator performance [21], and sensor properties [22] have
resulted in increasing numbers of robots being deployed in
various fields. Robots can now navigate complex environ-
ments [23], [24], interact with people [25], and manipulate
different types of objects [26]. However, in order for them to
perform such tasks more intelligently, further research into
knowledge representation and reasoning will be required.

Various approaches to this problem have been proposed,
all focusing on generating a series of robot actions given a
clear command such as ‘‘fetch a bottle of cola.’’ For such
human–robot interaction (HRI) tasks, the BC action language
can be used to formalize both sensing and physical actions,
enabling service robots to behave intelligently while deal-
ing with incomplete information, underspecified goals, and
dynamic changes [27].

Answer set programming (ASP), a declarative program-
ming paradigm, is suitable for representing and reasoning
with commonsense knowledge [28]. Partially observable
Markov decision processes (POMDPs) provide a principled
mathematical framework that enables autonomous robots to
solve motion-planning problems in uncertain and dynamic
environments [29]. ASP and POMDPs can also be combined
to automatically tailor sensor input processing and naviga-
tion methods for robots deployed in partial domains [30].
In addition, PDDL [31] is a domain definition language
for specifying deterministic planning domains and problems.
When combined with heuristic search methods, such as the
fast downward planning system [32], it can address many
planning or even control problems.

Researchers also attempted to build higher-level knowl-
edge systems that are not limited to one or two representations
but can instead handle different tasks by taking advantage
of different techniques. Integrating various methods (such
as probabilistic graphs, PDDL, or POMDP solvers) into one
framework can enable robots to plan in the face of uncertain
and incomplete information [17], and this idea has been
implemented in a mobile robot platform.

The ontology-based unified robot knowledge (OUR-K)
framework [33] has also been introduced for service robots,
and it includes both knowledge descriptions and associations.
Other researchers also discussed how to structure knowledge-
bases by combining different knowledge areas [34], going
on to propose the KNOWROB framework, which introduces
representational structures and a common vocabulary for rep-
resenting knowledge.

Although these frameworks have successfully addressed
problems in various fields, most researchers have concen-
trated on solving the problems caused by vague or incomplete
information when given task-oriented instructions; as far as
we are aware, few have considered situations where there
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FIGURE 1. Upper body (left) and mobile platform (right) of our KUT-PCR
personal care robot.

are no instructions in the first place. In scenarios involving
caring for patients who are bedridden, there is a gap between
their abstract physiological needs (e.g., ‘‘hunger’’) and the
corresponding instructions (e.g., ‘‘fetch a pack of biscuits’’).

III. PLATFORM
Our newly developed KUT-PCR personal care robot (Fig. 1)
is a mobile humanoid robot. Its humanoid upper body and
omnidirectional mobile platform enable it to be highly capa-
ble of both object manipulation and planar motion.

A. OMNIDIRECTIONAL MOBILE PLATFORM
Instead of having a lower body with legs, similar to ASIMO,
KUT-PCR relies on an omnidirectional platform for mobil-
ity (Fig. 1). The combined motion of four omnidirectional
wheels allows it to drive in any direction in a planar space and
rotate with a zero turning radius, thus enabling it to freely nav-
igate through narrow and uncontrolled environments (such as
household environments). A torso lift is also mounted on the
platform so that it can reach both objects on the floor and
those on a shelf by simply adjusting the lift height.

The platform is equipped with a range of sensors that
allow KUT-PCR to perceive its environment and operate
autonomously in unknown and dynamic environments. Two
laser rangefinders and six ultrasonic sensors enable it to
carry out tasks such as SLAM, obstacle avoidance, and path
planning. Four haptic sensors and four bumper switches also
provide additional safety measures to prevent collisions with
obstacles such as furniture or people.

B. HUMANOID UPPER BODY
KUT-PCR’s humanoid upper body (Fig. 1) is designed to
provide rich perception and manipulation capabilities. The
head has three degrees of freedom, namely roll, pitch, and
tilt. Each arm has seven degrees of freedom as well as an
end effector with one degree of freedom. Finally, the waist
has three degrees of freedom. This design allows the robot to
perform various kinds of tasks, including object manipulation
and HRI.

The robot’s upper body also includes a range of sen-
sors. It uses two RGB-depth (RGB-D) cameras, mounted on
the head and chest, to perceive its environment using RGB

FIGURE 2. KUT-PCR picking up a pack of biscuits from a desk.

images and point clouds. Force sensors attached to the wrists
provide information about the objects it holds, while micro-
phones and speakers allow natural language communication
and multimedia applications.

As Fig. 2 illustrates, to pick up an object, the robot uses
its RGB-D camera to estimate the object’s position and then
grasps it by coordinating the actuation of its mobile platform,
arms, waist, and torso.

IV. HOUSEHOLD ENVIRONMENT DESCRIPTION
Human caregivers can provide appropriate service because
they have two types of knowledge: commonsense knowledge
that describes how various objects could contribute to satisfy-
ing a need and instance knowledge that describes properties
of objects in the household environment, such as their loca-
tions and weights.

A. COMMONSENSE KNOWLEDGE
It is generally assumed that cognitive activities, such as rea-
soning and decision making, presuppose the existence of a
conceptual system in the person’s memory. For example,
a caregiver may give someone a bottle of tea if that person
feels thirsty because their understanding of ‘‘tea’’ includes the
idea that ‘‘tea can satisfy thirst.’’ For a robot to do likewise,
it would also need a thorough understanding of concepts
related to household environments, which we call common-
sense knowledge.

Table 1 gives ten desires and ten objects commonly seen
in personal care scenarios, listing the contribution of each
object to satisfying each desire on a scale from 0.0 to 1.0,
where 0.0 indicates that the object makes no contribution.
For instance, milk makes contributions of 0.6 and 0.3 to
satisfying thirst and hunger, respectively, while bread helps
more with hunger (0.9) and juice helps more with thirst (0.8).
Here, we only list some of the commonsense knowledge
Kc related to one individual who is bedridden; the detailed
values will vary between patients depending on their personal
preferences and may also change during the personal care
process.

In this study, we do not focus on the acquisition and
updating of commonsense knowledge so we consider Kc to
be fixed for a given patient.
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TABLE 1. Commonsense knowledge.

FIGURE 3. Instance knowledge for the objects in one room.

B. INSTANCE KNOWLEDGE
Unlike commonsense knowledge, instance knowledge is
dynamic, as it describes the objects’ properties; here, this
means their names, spatial properties, characteristics, and
electrical states.

1) NAME
An object’s name identifies its type.

2) SPATIAL PROPERTIES
The position of an object in the world can be defined
using three-dimensional coordinates (x, y, z). For example,
the positions of door d1 and window w1 could be represented
as (x_d1, y_d1, z_d1) and (x−w1, y−w1, z−w1), respectively
(Fig. 3). In addition, for objects such as doors, windows,
and refrigerators, the positions of their movable parts can
substantially affect their functional attributes.

Since there are various different types of mechanical
structures, we define a parameter ζ , called the ‘‘opening
degree,’’ to describe an object’s spatial state. For example,
the opening degree of a sliding window is described by
ζ = 2d

/
D, while ζ = θ

/
θm describes a push-pull door.

TABLE 2. Instance knowledge.

The specific algorithms used for perception and to calcu-
late ζ are delegated to the robot controller, and only ζ is
stored in the spatial description. Thus, the spatial proper-
ties of the window in Fig. 3 are completely described by
Ps = {(x, y, z) , ζ } = {(0.0, 3.0, 4.0) , 0.7}.

3) CHARACTERISTICS
An object’s characteristics describe its physical proper-
ties, namely its weight, volume, and state. For example,
a bottle of milk may be defined as Pc = {w, v, s} =
{2.5, 0.3, ‘‘Liquid ′′}.

4) ELECTRICAL STATE
An appliance may have multiple different functional states,
which can dramatically affect its operation; we capture this
in the electrical state ϑ . For example, an air-conditioner is
described by ϑ ∈ {OFF,Heating,Cooling,Ventilation} and
size (ϑ) = 1, meaning that it has four operational states but
can only be in one of them at any given time.

Table 2 lists all the instance knowledge about the objects
in the room shown in Fig. 3.

Now that we have defined both commonsense and instance
knowledge, we can introduce the complete description for an
object O. Since commonsense knowledge is used to describe
the functions of an object class, each instance inherits the
commonsense knowledge of its class. Specifically, an object
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FIGURE 4. Example of initializing a knowledgebase.

FIGURE 5. Updating the knowledgebase.

O can be described as

O = (n,K ,Ps,Pc,Pe) , (1)

where n is the object’s name. Here K is the commonsense
knowledge retrieved from Kc based on n, namely

K = Kc (n) = {C0, . . . ,Ck} , (2)

where C0, . . . ,Ck are the contributions to the k desire types.
In addition, Ps, Pc, and Pe represent the object’s spatial

properties, characteristics, and electrical state, respectively:

Ps = {(x, y, z) , ζ }, (3)

Pc = {w, v, s}, (4)

Pe = {ϑ}. (5)

C. KNOWLEDGE INTEGRATION
Now we have a way to describe objects in household envi-
ronments, the other fundamental challenge is how to build
and maintain a personal care knowledgebase involving the
objects in personal care scenarios. The robot should have a
certain degree of prior knowledge when initially activated
and then integrate new knowledge while interacting with the
environment. Knowledge integration is the task of identify-
ing how new and prior knowledge interact with each other

TABLE 3. Knowledgebase updating algorithm.

FIGURE 6. Flowchart for the desire-driven reasoning system.

and incorporating additional information into an existing
knowledgebase.

We divide the knowledge integration task into two basic
operations: initialization and updating.

1) INITIALIZING THE KNOWLEDGEBASE
The initialization step provides basic prior knowledge about
two types of objects: static and dynamic objects.

We define the knowledgebase asKB. Static objects, such as
doors and windows, are added directly to KB, while dynamic
objects, such as food and drinks whose quantities and loca-
tions are unknown, are initialized as dummy objects based on
commonsense understanding.

For example, in Fig. 4, each type of object maintains a
list of objects of that type in the current environment. Here,
the house is assumed to have two doors, three windows, and
one bed. The figure shows KB’s initial state; the locations of
the static objects are fixed and will not be further verified by
the robot system, while the initial dummy objects for juice,
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FIGURE 7. DDR module workflow.

TABLE 4. DDR algorithm.

TABLE 5. Object ranking algorithm.

bread, and biscuits (based on commonsense understanding)
will be verified and updated as the robot searches the envi-
ronment.

2) UPDATING THE KNOWLEDGEBASE
The update step proceeds based on the robot’s perceptions.
The result of a valid perception is denoted as P =

(
f ,KBp

)
,

where f describes the spatial field that the robot has perceived
and KBp is a small knowledgebase containing the objects
identified.

As Fig. 5 shows, for a given perception P =
(
f ,KBp

)
,

the objects in KB located within the perceived field f are
first fetched and then used to build a sub-knowledgebase
KBs. The intersection between KBs and KBp consists of the
objects verified by the perception P. Objects that are in KBs

FIGURE 8. Experimental domain, showing the rooms and static objects.

FIGURE 9. Photographs of the personal care domain, showing the
bedroom (left) and kitchen (right). The maps in the bottom-left corners
indicate the camera’s viewpoint.

FIGURE 10. Personal care scenario, showing the bedridden person and
personal care robot.

FIGURE 11. KUT-PCR’s route during Trial 1.

but not KBp should be deleted from KB, since they cannot be
identified in their recorded locations, while objects inKBp but
not KBs should be added to KB. Table 3 shows the algorithm
used to update the knowledgebase.

An object o can be considered to belong to the knowledge-
base KB if there is an object ok in KB that is equal to o.
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FIGURE 12. Photographs taken at times t1 – t4 during Trial 1.

The definition of object equality is as follows:

IFok .name = o.name AND DIS (ok .Ps, o.Ps) < γ,

THEN o = ok ,

where the DIS function calculates the spatial distance
between the two objects and the threshold γ accounts for
factors such as localization and perception error.

V. DESIRE-DRIVEN REASONING
Desire-driven reasoning is defined as reasoning via a
sequence of steps with the aim of meeting given desires (in
this case of people who are bedridden).

A. DESIRE-DRIVEN REASONING SYSTEM
Fig. 6 shows a flowchart of the proposed desire-driven reason-
ing (DDR) system. First, the knowledgebaseKB is initialized,
as described in Section IV. When the robot is activated by a
particular patient desire d , this is passed to the DDR module.
This then reasons about suitable goals, considering d andKB.
The resulting goal is then sent to the planner, which generates
an action list for the robot to execute.

Two main loops define the robot’s behavior, including
execution, perception, and knowledge updating. The robot
controller executes a loop consisting of a motion execution
command followed by a perception query command. If noth-
ing is identified during a given iteration, the loop continues
until the action list is confirmed exhausted, indicating the
task is complete. If, during this process, the robot acquires a
valid perception (either recognizing objects or the locations of
objects inKB),KB is updated using the knowledge integration
method described in Section III, and a new action list is
calculated with the same d but the newly updated KB. Then,
the controller begins executing the newly generated action
list.

B. DESIRE-DRIVEN REASONING MODULE
The system’s core component is the DDR module, which
reasons as follows (Fig. 7): (i) fetch candidates from the
knowledgebase that can contribute to meeting the given need;

FIGURE 13. KUT-PCR’s route during Trial 2.

(ii) evaluate the candidates; (iii) select the highest-rated can-
didate as the goal.

Table 4 describes the DDR algorithm. First, the FIND
function fetches all objects that make contributions greater
than 0 to the given desire d from the knowledgebase KB.
Then, the EVALUATE function ranks the objects. Finally,
the SELECT function selects the highest-scoring object,
which is returned to the task planner as the goal for further
planning.

The key element of the EVALUATE function is the object
ranking method, which considers two aspects: the object’s
contribution to fulfilling the need and the operation cost.

Table 5 describes how the object ranks are calculated. First,
theFIND function retrieves the contributionRcontributionmade
by the object o to fulfilling the desire d from the common-
sense knowledgebase K . Next, the COST function calculates
the operation cost Rcost , based on the given desire and the
object’s characteristics, spatial properties, and electrical state.
Finally, the overall rank R is calculated as a weighted sum of
Rcontribution and Rcost . α and β are selected so that the impor-
tance of desire fulfilling contribution and task conduction cost
can be reflected.

The COST function depends on the object type, and the
detailed implementation requires knowledge of navigation
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FIGURE 14. Photographs taken at t1 – t5 during Trial 2.

and vision systems that is beyond the scope of this paper.
In short, it evaluates the transportation distance and the
manipulation complexity based on the robot and object states
and the given desire. The higher Rcost is, the more difficult
it is for the robot to meet the given desire with the specified
object.

VI. EXPERIMENTS
To evaluate our KUT-PCR personal care robot, we conducted
experiments in a real household domain. Here, the aim was
to evaluate whether the proposed DDR method could enable
the robot to carry out appropriate actions when given only a
person’s physiological needs.

A. EXPERIMENTAL SETUP
The experimental domain (Fig. 8) consisted of two rooms,
namely a bedroom and a kitchen. There were three static
objects: a bed (bedroom), dining table (kitchen), and refrig-
erator (kitchen). The two rooms were connected by a sliding
door. Fig. 9 shows photographs of the domain, taken from the
bedroom (left) and kitchen (right).

In addition, a patient who was bedridden lay on the bed,
and KUT-PCR was initially at position S (Fig. 10). When the
robot was activated by the patient’s desire, it began to perform
the operations generated by the proposed DDR system.

B. RESULTS
In order to validate different aspects of our proposed
reasoning system, we conducted three trials, each based
on the patient feeling hungry but with different object
configurations.

1) TRIAL 1
In the first scenario, the food and drinks were placed in
commonsense locations. Specifically, a loaf of bread and a
packet of biscuits were placed on the kitchen table, while
bottles of milk, juice, and cola were stored in the refrigerator.

The robot was activated by the ‘‘hunger’’ desire at time t1.
At that time, the robot initialized its knowledgebase with the
static objects, namely the bed (Bed1), dining table (Table1),
and refrigerator (Refrigerator1), along with dummy objects

FIGURE 15. KUT-PCR’s route during Trial 3.

for the biscuits (Biscuit1), bread (Bread1), milk (Milk1), juice
(Juice1) and cola (Cola1).

Based on this information, the DDR algorithm ordered the
robot to serve Biscuit1 to the patient so KUT-PCR turned
and moved to the dining table, reaching it at t2. When the
robot perceived the food on the table, the knowledgebase
was updated. Since the presence of these objects agreed
with the initial commonsense knowledge, only the positions
of Biscuit1 and Bread1 were updated. After that, the robot
fetchedBiscuit1 and served it to the patient at t3, during which
time the planning module was paused. However, the moment
that the robot handed over Biscuit1, the knowledgebase was
updated to change the position of Biscuit1 to match that of
Bed1. Finally, at time t4, KUT-PCR returned to the standby
point. The route is shown in Fig. 11, while Fig. 12 shows
photographs taken at times t1-t4.
Here, the reasoning system worked as anticipated through-

out, without any unexpected situations.

2) TRIAL 2
In the second trial, no food was placed in the environment,
although the drinks were stored in the refrigerator as usual.
KUT-PCR’s initialization and reasoning processes were as
in Trial 1, and it again attempted to serve Biscuit1 to the
patient. However, when the robot arrived at the dining table
at t2, it did not perceive any objects on the table and thus
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FIGURE 16. Photographs taken at times t1 – t4 during Trial 3.

deleted the dummy objects Biscuit1 and Bread1 that were
initially located there. This triggered the reasoning process
again, and this time, the robot was instructed to serve the
bottle of milk (Milk1) from the refrigerator. The robot then
navigated to the refrigerator, picked up Milk1 at t3, and was
able to successfully deliver the milk to the patient at t4 before
returning to its standby position at t5. Fig. 13 and Fig. 14 show
the route and photographs taken at times t1–t5, respectively.

3) TRIAL 3
In the third trial, both the food and drinks were placed as in
Trial 1, but a new desk T2 was also placed in the bedroom,
with another packet of biscuits on it. As in Trials 1 and 2,
the robot initially began navigating toward the dining table.
However, on the way, it perceived the biscuits on the new
table at t2 and updated its knowledgebase with a new biscuit
instance Biscuit2 located at T2. This triggered the reasoning
process, leading the robot to select Biscuit2 as the target
object to serve due to it being spatially closer. The robot then
picked up Biscuit2 and served it to the patient at t3 before
returning to its standby position at t4. Fig. 15 and Fig. 16 show
the route and photographs taken at times t1-t4, respectively.
In summary, the first trial evaluated the DDR system when

nothing unexpected occurred, while the second challenged
it to deal with false instance knowledge, namely that an
object was not at its expected location. Finally, the third trial
tested whether the system could update itself to take advan-
tage of dynamic knowledge. The proposed method enabled
KUT-PCR to successfully complete all three trials.

VII. CONCLUSION
This paper dealt with a previously missing element in
enabling personal care robots to assist patients who are
bedridden with their everyday activities: (i) first, we put
forward a point of view that personal care robots can assist
patients similar to human caregivers, only if the robots can
reason based on human’s physiological desires rather than
requiring direct instructions; (ii) then, in order to provide the
knowledgebase required by the reasoning process, we intro-
duced a method of describing knowledge about the properties
and functions of everyday objects; (iii) finally, we presented a

DDR method that can identify beneficial objects considering
the knowledgebase and plan appropriate actions to fulfill the
given desire.

Experiments with our newly developed KUT-PCR per-
sonal care robot in a real household domain showed that the
proposed method was able to successfully complete a range
of trial scenarios.

In this paper, in order to focus on the main elements of
our approach, we have not discussed all possible conditions
(e.g., the condition thatmultiple requirements are presented at
once) and have made multiple assumptions (e.g., the knowl-
edgebase for a patient is assumed unchanged). In future work,
we plan to address more complex domains and consider
a wider range of potential issues. We hope that with our
personal care robot, bedridden people can live a more com-
fortable life, and the load of caregivers could be effectively
reduced.
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