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ABSTRACT Visibility affects all forms of traffic: roads, sailing, and aviation. Visibility prediction is
meaningful in guiding production and life. Different from weather prediction, which relies solely on
atmosphere factors, the factors that affect meteorological visibility are more complicated, such as the air
pollution caused by factory exhaust emission. However, the current prediction of visibility is mostly based on
the numerical prediction method similar to the weather prediction. We proposed a method using multimodal
fusion to build a weather visibility prediction system in this paper. An advanced numerical prediction model
and a method for emission detection were used to build a multimodal fusion visibility prediction system.
We used the most advanced regression algorithm, XGBoost, and LightGBM, to train the fusion model for
numerical prediction. Through the estimation of factory emission by the traditional detector in the satellite
image, we propose to add the result of estimation based on Landsat-8 satellite images to assist the prediction.
By testing our numerical model in atmosphere data of various meteorological observation stations in
Beijing–Tianjin–Hebei region from 2002 to 2018, our numerical prediction model turns out to be more
accurate than other existing methods, and after fusing with emission detection method, the accuracy of our
visibility prediction system has been further improved.

INDEX TERMS Visibility prediction, emission estimation, numerical prediction, satellite image.

I. INTRODUCTION
Vsibility is the farthest distance that a person with normal
vision can recognize a target from the background. Visibil-
ity information is essential in air quality monitoring which
needs to accurate real-time observations of visibility. Severe
reduction of visibility often results in great inconveniences
to our production and life, and even major traffic accidents.
Thus, it is of great significance to establish an accurate
forecast visibility system. To satisfy the needs for accurately
measuring visibility, many models have emerged to solve the
problem [1]. The works in [2], [3] indicated that the applica-
tion on real-time data can generalize on the predicted data.
So it is reasonable to use the real-time data to research the
correlation between visibility and possible causes. Thus we
focus on exploring a viable solution to build a highly accurate
visibility prediction system.

Traditional methods [4], [5] of visibility prediction focus
on the correlation between meteorological factors and
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visibility, the construction of the traditional forecasting
system relies on meteorological knowledge and subjective
experience [6]–[8]. With the rise of machine learning, many
visibility prediction schemes using machine learning have
been proposed in recent years [2], [3], [9], [10]. These meth-
ods use a large number of meteorological data to search
the latent relation between the input and visibility, and then
applied it to visibility prediction.

The data used in the current works are limited to
the meteorological field, and some spatial and temporal
information have difficulties in characterizing by numer-
ical data, resulting in the less accurate performance of
the model.

Because of the aforementioned deficiency, we propose
some strategies to improve the representation of the meteo-
rological data. Feature engineering and model fusion based
on distribution have been introduced to improve the model of
numerical visibility prediction.

Through observation of such fact, by the mandatory tem-
porary closure of factory exhaust emissions, NOx and VOCs
were reduced by 202 and 493 tons respectively by stopping
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or limiting the major industries during APEC, and the local
contribution of these measures to the decline in PM2.5 during
the meeting was 17.5 percentage. Therefore, the correlation
between exhaust emissions and visibility prediction can be
proved by the fact. However, due to incomplete statistics
on factories, the prediction of weather visibility cannot be
entirely dependent on the estimation of factory emissions.

It is natural to think of fusing the information of the factory
emissionwith numerical prediction of visibility. Such thought
was popularly used as the multimodal fusion.

Many of the providers of multimodal data are associ-
ated with high impact commercial, social, biomedical, envi-
ronmental, and military applications, and thus motivate the
development of new and efficient analytical methodologies.
It utilizes the complementarity between multimodal states to
remove the redundancy between modalities to improve the
performance of themodel. Since satellite imagery as a rapidly
evolving technology can intuitively and accurately reflect the
real situation of the ground. Although the available satellite
image is the real-time data, by further introducing satellite
images’ deduction we can also obtain the predicted images
to implement the visibility prediction system. By taking into
account the spatial correlation between factory emissions
and visibility, satellite images can be used to estimate the
emissions of the studied region. Thus, the factories’ emission
information has been introduced in our model as the second
modal information to assist the prediction of the visibility.
As a result, a visibility prediction scheme based on multi-
modal learning consisted of numerical prediction results and
the estimation of satellite image-based exhaust emission has
been proposed.

In this paper, the proposed method contributes to improv-
ing the numerical prediction by using the strategies to
augment the feature of meteorological data, we name the sys-
tem as MFVP (Multimodal Fusing for Visibility Prediction).
Innovatively, by introducing the multimodal information of
the estimation of factory emission based on satellite images,
the result of prediction turns out to surpass the state of the art
methods’ result.

II. RELATED WORK
The algorithm we used for numerical prediction is based on
model fusion. For a given numerical dataset of meteorol-
ogy, MFVP firstly perform feature augmentation and fea-
ture selection on it, then use model fusion method to build
predictor for visibility prediction after feature engineering.
Besides, joint training were also been used for some specific
meteorological station.

A. NUMERICAL PREDICTION OF VISIBILITY
Machine learning methods have been applied to numeri-
cal visibility prediction in recent years and some of them
achieved good results. Current methods which use the result
of the prediction to forecasting the weather are mentioned in
the following.

One of these used methods is the regression algorithm. For
example, [2] proposes a visibility forecasting system using
the support vector machine algorithm (SVM) for Beijing
Airport Expressway; [3] uses the support vector machine
algorithm (SVM) to achieve short-term (0-12 hours) temper-
ature forecasting, which is similar to visibility forecast, and
compares the SVM scheme with the artificial neural network
scheme; In [4], a logistic regression algorithm was used to
establish a visibility prediction system for the Vienna airport
in the cold season. Another method like in [9], the author
proposes several Bayesian-based probabilistic visibility fore-
casting schemes. Except for regression algorithms, the neural
network [11] also been used for numerical prediction. [5]
builds a visibility forecasting system forUrumqi International
Airport with deep neural networks(DNNs). And in consider-
ing that low visibility forecasts are of more significance, [12]
proposes the Risk Neural Network, which focuses more on
forecasting of low visibility. [13] uses DNN to build vis-
ibility forecasting system for 39 terminal aerodrome fore-
cast stations in the northwest United States and compared
their methods with logistic regression and model output
statistics (MOS) derived from the Aviation Model/Global
Forecast System. Furthermore, in considering that visibility
forecasts are largely time-series dependent, [14], [15] pro-
posed a visibility prediction system using Long-short term
memory algorithm(LSTM).Moreover, some methods using
multiple models for prediction also appeared, for example,
several artificial neural networks are used to fuse the informa-
tion of data to build a day-ahead electricity price prediction
system in [16]; Some researches are done in [17] to value the
performance of seven model selection criteria based on linear
regression models with unknown noise variance.

As mentioned above, most visibility prediction systems
based on machine learning algorithm using only meteorolog-
ical numerical data. However, there are many other factors
related to visibility haven’t been considered yet.

B. MULTIMODAL FUSION
Information about a phenomenon or a system of interest can
be obtained from different types of instruments, measure-
ment techniques and other sources. It is rare that a single
modality can provides comprehensive information to pre-
dict the tendency of the development of natural processes
and environments [18]–[20]. The available access to multiple
data enable the foundations of modern data fusion and the
presentation of the multimodal. [21] proposed a multimodal
stacked DPN (MM-SDPN), which consists of two-stage
SDPNs, to fuse and learn highly feature representation from
MRI (Magnetic Resonance Imaging) and PET (Positron
Emission Computed Tomography) for AD (Alzheimer’s dis-
ease) diagnosis; [22] proposed to take multimodal data as
input of encoder, and acquire an affinity matrix correspond-
ing to the data points in the self-expressive layer, and use
decoder to reconstruct the input data, the DSC (Distributed
Control System) network use reconstruction and the input
data as training data to fuse the spatial information; [23]
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proposed hierarchical-alike multimodal grounded composi-
tional semantics learning to model the inherent correlations
between two modalities of collaboratively grounded seman-
tics. As the aforementioned work illustrated, excellent per-
formance is achieved by fusing the multimodal information.
Theoretically, as two major modalities, the information of
natural element and human beings’ activities should improve
the performance of the model, because the reason of the air
quality degradation contains many elements including natural
element and human beings’ social activities.

C. SATELLITE IMAGES
The multimodal information can be provided by the satel-
lite images since many applications of satellite images
illustrated that usage of satellite image can assist the
prediction [24]. The introduction of satellite image fits the
thought of multimodal fusion by which excellent results has
achieved.

As an innovative contribution, the estimation based on
satellite images provides another modal to the multimodal
fusion to assist the prediction of the visibility. Satellite images
are digital images which contain massive information, those
images are taken by a satellite vehicle through some sensors
which perceive the specific wavelength of the light [25]. The
advanced features of satellite images allow timely delivery of
high-quality image data, high agility, and high accuracy for
demanding operations [26], [27].

With the development of the satellite sensors, the lat-
est generation of meteorological satellites can provide
more frequent images with improved spatial resolution.
Due to the authenticity and operability of satellite images,
the demand for high-resolution satellite images has steadily
increased [28]. The general application of satellite images is
detections of vegetation, climatic disaster and the texture of
the earth’s surface.

Satellite image can be divided into three categories by
resolution: low resolution, medium resolution and high res-
olution. Low-resolution satellite image is mainly used for
global detection of climatic disaster and region climatic
characteristics: [29], [30] proposed to use the satellite image
to detect the center of tropical cyclone and the distribution
of rainfall cloud cluster; [31]–[33] proposed the algorithm to
detect the smoke without the disturbance of the thin cloud.

The short-wave infrared band is used in the sensor of the
medium resolution satellite image. The infrared band is sen-
sitive to the target with high temperature. Thus, the medium
resolution satellite image is mainly used to detect the fire poin
and volvano. [34], [35] proposed the algorithm to detect the
fire point with the low false positive rate.

With higher accuracy, the high resolution satellite image
contains more precise information to detect the target with
smaller sizes, such as buildings and ships [36], [37].

By analyzing the data characteristics of the medium res-
olution satellite image of Landsat-8 satellite, the traditional
detection operator is introduced to estimate the emission of
factories as the second modal information.

FIGURE 1. The distribution of meteorological monitoring stations.

TABLE 1. The 19 meteorological factors produced by every station.

III. APPROACH
The approach proposed in this paper has two sub-modules.
The numerical module proposes strategies to augment the
meteorological features and improve the performance of
the model. The strategies including adding the history data,
selecting the feature, to determine whether to jointly train the
features based on the distribution of meteorological stations.
The output of the numerical prediction inputs as the first
modal information.

Moreover, the estimation of the factory emission is intro-
duced as the second modal information to assist the predic-
tion of visibility. Instead of using the original image, some

74778 VOLUME 7, 2019



C. Zhang et al.: Weather Visibility Prediction Based on Multimodal Fusion

preprocessing operations are proposed to highlight the target
regions. The images after preprocessing are taken as the input
to detect the location of the factory emissions and estimate the
emission to shape the second modal information.

By fusing the output of the numerical prediction and the
estimation, the final output turns out to better fit the real
observation. The details of the approach are presented in the
following.

IV. VISIBILIY PREDICTION BASED ON NUMERICAL
METEOROLOGICAL FEATURES
Currently, most visibility prediction system is based on
numerical meteorological data, and the construction of the
visibility forecasting system mainly relies on relevant mete-
orological knowledge and experiences. Thus, it may cause
the ignorance of some key information. Machine learning is
proposed to complete the backbone of the numerical predic-
tion system, including feature screening and predictive model
learning.

Considering that the current machine learning algorithm
model is relatively complete, so our work in the numerical
prediction part mainly focuses on feature engineering and
model fusion. The predicted meteorological data generated
by each station every day for the next day is studied to predict
the visibility of the next day. In the feature engineering part,
instead of using traditional methods based on meteorologi-
cal knowledge and subjective experience to screen features,
more reliable machine learning methods are introduced to
select appropriate features. In the part of model construction,
a single machine learning algorithm is no longer to meet
the demand, the model fusion strategy is introduced to fuse
the prediction results of multiple algorithms. The detail of
the numerical prediction method will be presented in this
chapter.

A. DATA ANALYSIS AND PROCESSING
In this part, the data used for visibility prediction are
meteorological monitoring data frommore than 100meteoro-
logical stations in the Beijing-Tianjin-Hebei region, the dis-
tribution of meteorological monitoring stations is shown in
Figure 1. The meteorological data spanning about 15 years,
from 2002 to 2017, each meteorological monitoring station
generates data everyday, and each of which contains 19 mete-
orological factors recorded in that day. The 19meteorological
factors are given in Table 1.
It’s obvious that the visibility and meteorological charac-

teristics are not only spatially related, but also largely cor-
related with time shifts. Namely, the visibility is not only
related to the meteorological characteristics of the current
time but also related to the meteorological information in a
certain historical time. So we further added meteorological
information the day before for every single day. Thus we will
get 19× (1+ 1)= 38 meteorological factors for each station
every day.

It can be seen from Table 1 that there are many kinds
of meteorological factors. Through analysis, the influences

TABLE 2. The 10 factors selected according to the relevance ranking.

of all meteorological factors aren’t equal to each other,
and the correlation between each factor and visibility is
also different [?]. Therefore, we first sort the correlation
between meteorological factors (including historical meteo-
rological characteristics) and visibility. The results are shown
in Figure 2. We selected the top ten factors for training
according to the relevance ranking. The selected factors are
shown in Table 2.

B. ALGORITHM FOR NUMERICAL PREDICTION
The algorithm we used for numerical prediction is based on
model fusion. For a given numerical dataset of meteorology,
our method firstly performs feature augmentation and feature
selection on it, then use the model fusion method to build a
predictor for visibility prediction after feature engineering.
Besides, joint training was also used for some specific mete-
orological station.

1) MODEL FUSION
Most current numerical visibility prediction schemes use only
a single algorithm to train the model. [10] Considering the
performance of algorithms for different data may be different
either, two boosting tree algorithms, including Xgboost and
LightGBM, are used to train the model separately for each
site and perform model fusion.

Xgboost is integrated by many CART regression trees.
Compared with previous boosting tree algorithm, the intro-
duction of quadratic optimization make it possible to custom
loss function for XGBoost, and its supporting of parallel
computing has greatly increase the training speed.

LightGBM made further improvement base on XGBoost,
it can get better trees with smaller computation cost and can
avoid overfitting by using histogram algorithm and leaf-wise
tree growth algorithm with max depth limitation.

In the early state research we found that XGBoost and
LightGBM has different performance in different meteoro-
logical station, so model fusion was then introduced to our
numerical visibility prediction scheme.

2) JOINT TRAINING FOR MULTI-STATION
The low visibility situation requires more attention in general.
However, it is found through data analysis that there are
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FIGURE 2. Ranking of correlations between different features and visibility.

FIGURE 3. The location of Zhangjiakou station and Wanquan station.

too few low-visibility data samples in some stations. And
the absence of data samples leads to low accuracy for these
stations. The distribution of the stations with low-visibility
is dense, hence the joint train is proposed to improve the
performance ofmodels in these stations. Taking ZhangJiaKou
station and WanQuan station as an example, the location of
two stations is as shown in Figure 3 and the visibility distribu-
tion of these two stations can be seen in Figure 4. Visibility is
divided into three levels (0<V≤2, 2<V≤5, 5<V≤10, where
V represent the visibility), and the vertical axis value indicates
the number of samples in a certain range of visibility in an
area.Models obtained by training two stations separately both
get poor prediction accuracy, but by joint training, the mod-
els’ performance can surpass the former models.

FIGURE 4. The distribution of visibility data in Zhangjiakou and Wanquan
areas.

V. MULTIMODAL VISIBILITY PREDICTION
The emission of a large number of factories as a key factor
together with natural factors affects urban visibility. There-
fore, the estimation based on the satellite image is proposed
to extract the second modal information, together with the
first modal information to predict visibility.

A. DATASET USED
The Landsat-8 OLI/TIRS C1 Level-1 image date set
used in our work is provided by Earth Explorer. The
Landsat-8 launched by NASA carries two sensors: OLI
(Operational land Imager, OLI) and TIRS (Thermal Infrared
Sensor, TIRS). Landsat-8 maintains the same spatial reso-
lution and spectral characteristics with Landsat 1-7. There
are 11 bands. The spatial resoltion of bands 1-7, 9-11 is
30 meters, and band 8 is 15 meters. Satellite Landsat-8 can
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FIGURE 5. Distribution of meteorological stations in the selected region.

achieve global coverage every 16 days. The OLI Land Imager
has 9 bands and the image width is 185 × 185 km. Com-
pared with ETM sensor on Landsat-7, OLI Land Imager has
made the following adjustments: (1). Band 5 has changed
to 0.845-0.885 µm, which excluding the influence of water
vapor absorption on 0.825 µm; (2). Band 8 ’s panchromatic
band is narrower, so the vegetation and no-vegetation areas
can be better distinguished; (3). Two new bands are intro-
duced. Band 1, namely blue band (0.433-0.453µm) is mainly
applied on coastal zone observation, and band 9, namely
short-wave infrared band (1.360-1.390 µm) applied on cloud
detection. The thermal infrared band carried on Landsat-
8 is mainly used to collect heat loss in two thermal regions
of the earth in order to understand the water consumption
in the observed zones. The usage of Landsat-8 OLI/TIRS
C1 Level-1 with the 10-TIRS band (30m) is surface tem-
perature inversion, fire detection, soil moisture assessment,
night imaging. The band used is 10.60 - 11.19µm. The 10-
TIRS band is sensitive to the target with high temperature,
such as factory emission points and high temperature emis-
sions. The high temperature target presents as white spot on
satellite images. Therefore, the Landsat 8 OLI/TIRSC1 Level
satellite images with the 10-TIRS band are used to detect the
location of factory emission point and estimate the emission
range. The studied region is the northeast of Beijing. Located
in the North China Plain, with dense distribution of factories,
the region suffered haze for years. As shown in Figure 5,
the meteorological stations in the studied region are densely
distributed, and the estimated result can be reasonably dis-
tributed to the meteorological stations to fuse with the first
modal data.

B. ESTIMATION OF FACTORY EMISSION
1) HIGHLIGHTING TARGET REGIONS
The size of satellite images from Landsat-8 OLI/TIRS
C1 Level-1 with 10-TIRS is 7681 × 7801. The character-
istics of satellite images include the slope angle, the little
proportion of factory emission points, the easily confused
region of surrounding mountains. Considering the aforemen-
tioned characteristics, our work proposes a series of pro-
cesses of "input - image preprocess - the detection of factory

emission point - estimate target - output the estimation" for
satellite images.

After contour correction, the size of the satellite image is
6214 × 6551. Because of the little proportion of the target,
the grid segmentation is introduced in the preprocessing. The
sub-image of the original infrared image is obtained by 10×
10 grid segmentation. The satellite image to be detected is the
sub-image.

The statistical histogram of the satellite sub-image is
shown in Figure 6. As the image illustrated, it is hard to
distinguish the target region from the surrounding by the pixel
value. Therefore, the open operation is introduced to prepro-
cess the input image. According to the traditional image seg-
mentation method of preprocessing tumor image [38], [39],
an open operation can highlighting the possible abnormal
region in the image. As our experimental results presented,
the open operation can well distinguish the background with
the target region since those two regions both have high pixel
value in the image. After the open operation, the binarization
is implemented to segment the target from the background.
The image after preprocessing has a more obvious target
region and easier to be detected and estimated.

2) EMISSION DETECTION AND ESTIMATION
The output of the preprocessing is used as input in this part.
Given the acquisition cycle of satellite images is 16 days,
and without the label, the amount of data can be processed
is small. Thus, we propose an algorithm based on traditional
SURF detector for target detection and estimation for fac-
tory emissions. Since SURF (Speeded Up Robust Features,
SURF) constructs a pyramid of scale space in the process,
it can adapt to the scale translation of the target region
well. Compared to SIFT, SURF’s descriptor can well meet
the demand of our work since it contains the information
of the target’s diameter and location. Thus, the SURF is
introduced to detect and estimate the emission. The output of
SURF detection has a large number of overlapping regions.
The de-duplication is implemented to obtain the region with
the largest coverage. The data analysis indicates that the
difference between the target region and the surrounding
can be determined by the pixel value and texture. With the
fixed range of threshold, part of the candidate region will
be removed. For the left candidate target region, the Sobel
is used to detect the texture of the candidate region. The
candidate region with a smooth texture is the target region
as shown in Figure 6. Since the 10× 10 grid segmentation is
applied in the preprocessing, the emissions can be assigned
into the meteorological station in the corresponding grids as
the second modal information.

VI. MULTIMODAL FUSION
The multimodal information is essential to introduce for
analyzing the complicated phenomenon like the atmospheric
visibility. The key factors contributed to the low atmospheric
visibility are diverse. As the innovative contribution, in this
chapter, the multimodal fusion is presented by combining the

VOLUME 7, 2019 74781



C. Zhang et al.: Weather Visibility Prediction Based on Multimodal Fusion

FIGURE 6. The result of image processing. (a) Overview of the study
region. (b) The study region after grding. (c) The histogram of study
region. (d) Diagram of corrosion operation. (e) Diagram of binary
operation. (f) Final result of image processing.

information of the numerical prediction and the estimation of
the factory emissions to further improve the performance of
the proposed system. The multimodal fusion proposed can be
illustrated as the following equation:

y = k1x21 + k2x̄2. (1)

In the equation, the y is the final result of the prediction
of the visibility., the x1 presents the output of the numerical
prediction of visibility and the x2 presents the estimation of
the factory emission. Given the fact that the emission at some
region will be low even with the low visibility. In this region,
the estimation is supposed to have a slight influence. With
such inference, the x̄2 presents the normalized estimation and
the influence of numerical prediction is relatively augmented
by the operation. To further augment the influence of numer-
ical prediction, the output of numerical prediction is squared
in the equation, as x21 . With such operation, the estimation of
the factory emission work as a residual factor to assist the
prediction of visibility. By application of linear regression
to the output of the numerical prediction and the estimation
of factory emissions, as the Figure 7 presented result of the
prediction fuses the two modal information to obtain more
accurate performance.

VII. EXPERIMENTS
A. EVALUATION CRITERIA
The level of visibility is divided into 6 levels from 0 to
5 based on the meteorological industry standard of the Peo-
ple’s Republic of China Considering that the high visibility
has little impact on our life, high attention is placed on the
forecast of weather with lower visibility. The low visibility
weather is re-divided into 4 levels, as Table 3 illustrated.
According to the Visibility forecasting grade and serving [40]
issued by the National Weather Service, this paper uses the
TS score to evaluate the forecast results. The TS score is
computed as:

TS =
na

na + nb + nc
. (2)

FIGURE 7. The result of linear regression for the proposed method.

TABLE 3. The rating of weather visibility observations.

where na is the number of correct predictions (When the fore-
casting visibility is ranked the same as the actual visibility,
the forecast is correct.), nb is the number of empty reports
(For a certain grading, when the forecast result is within the
grading while the actual value isn’t, then it is recorded as
an empty report.), nc is the number of missing reports(For
a certain grading, when the forecast result is not within the
grading while the actual value is, then it is recorded as a
missing report.).

In order to further evaluate the accuracy of the predicted
results, we also take the RMSE (Root Mean Square Error)
into account:

Erms =

√√√√ 1
N

N∑
i=1

(Pi − Ri)2. (3)

where N is the total number of samples that we predict, Pi is
the predicted result for i-th sample, Ri is the actual value for
i-th sample.

B. EVALUATION ANALYSIS
1) NUMERICAL DATA BASED PREDICTION
Firstly, we tested the accuracy of our method (model fusion
of XGBoost and LightGBM) for numerical data based
prediction and compared it with several existing numer-
ical prediction methods, including XGBoost, LightGBM,
SVM and ANN method. The meteorological data from
2002 to 2016 were used for training and meteorological
data of 2017 were used for testing. The experimental area is
as mentioned before. After feature engineering and feature
screening, we retained 10 meteorological factors. And we
use the same data processing method for each algorithm for
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FIGURE 8. The prediction results compared with truth. We took the last 100 days’ data
from meteorological observation station in Beijing for testing, figure (a), (b),
(c) compares the visibility predicted by SVM, XGBoost and our methods with truth
value respectively.

fairness. The scoring criteria are the TS scores and RMSE
described in section A. The result is shown in Table 4, and
taking the meteorological observation station in Beijing as
an example, we plot the true visibility value and prediction
results generated by several methods in Figure 8.

2) EMISSION DETECTION AND ESTIMATION BASED ON
SATELLITE IMAGERY
Since the amount of Landsat 8 OLI/TIRS C1 Level-1 satellite
images with 10-TIRS is small, the traditional detection is
more suitable for the satellite images. The different detection
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TABLE 4. The rating of weather visibility observations experimental
results of each algorithm for numerical data based visibility prediction.
we focus on the results in visibility range of 0-10 km.

FIGURE 9. Fig(a)-(c) is the result of SobelCombine, SobelX, SobelY
detector; Fig(d)-(e) is the result of ScharX and ScharY detector; Fig(f) is
the result of Laplace detector; Fig(g) is the result of LBP detector; Fig(h) is
the result of SIFT detector; Fig(i) is the result of SURF detector.

algorithms are discussed in Figure 9. Through the analysis
of the images above, the conclusion can be made as follow-
ing: the Soble detector can detect the stripe-like geographic
features of Landsat 8 OLI/TIRS C1 Level-1 satellite images
with 10-TIRS brand; Schar detector is more sensitive to
geographic features, but cannot tell the difference between the
target and the surrounding; Laplace detector is not sensitive
to the features in the satellite images; LBP (Local Binary Pat-
tern, LBP) detector can highlight the texture of background
without telling the difference between the target with the
surroundings; SIFT (Scale-invariant feature transform, SIFT)
detector can accurately detect the location of the factory
emission points without the effectively estimable emission
range of the factory emission; SURF detector can success-
fully detect the factory emission point with accurate location
and the estimable emissions range. Through the detection and
the estimation, the result emission range is presented by the
number in the 10× 10 grids. With such design, the result can

TABLE 5. Results of comparative experiments.

be assigned to the corresponding meteorological stations to
assist the prediction of the visibility.

3) EMISSION DETECTION AND ESTIMATION BASED ON
SATELLITE IMAGERY
Multimodal fusing was proposed after getting results from
numerical prediction and emission detection. We further con-
ducted comparative experiments to test the effects of multi-
modal fusion.

a: DATA
The numerical data we used in this part was generated by
22 meteorological observation stations of the target region
mentioned before in 2018, they are structurally the same as
the data we used in the previous section. Numerical data
before 2018 was used for model training and data of 2018 was
used for the test. The satellite images used for emission
estimation also come from Landsat 8 OLI/TIRS C1 Level-
1 with 10-TIRS in 2018.

b: EXPERIMENTAL DETAILS
By fusing preliminary prediction results and emission esti-
mation results we make regression predictions as pro-
posed. To verify the effectiveness of our method, we com-
pared MFVP (Multimodal Fusion for Visibility Prediction)
with several numerical-data-only methods. Using root mean
square error(RMSE) of prediction results for evaluating,
the results are as shown in Table 5. According to the results
shows in Table 5, it can be seen that the RMSE of prediction
results generated byMFVP is significantly better than RMSE
of other numerical-data-only methods. That is to say, by fus-
ing multimodal information, the visibility prediction system
can be significantly improved.

VIII. CONCLUSION
Amultimodal fusionmethod for visibility predictionwas pro-
posed in this paper. It can be concluded from our experiments
that by fusing the numerical prediction with estimation of the
factory emission based on satellite images, the accuracy of
visibility prediction was significantly improved. As the fur-
ther inference, in addition to the emission of factories, other
factors that have an impact on visibility can also be intro-
duced bymultimodal fusionmethod to improve the prediction
system. Furthermore, problems that have something in com-
mon with visibility prediction, such as weather forecasting
and PM 2.5 prediction, can be solved better by introducing
multimodal fusion. There are also some disadvantages in
our MFVP (Multimodal Fusion for Visibility Prediction). For
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example, the emission detection requires the satellite images
have high resolution, however, it’s not easy to get high reso-
lution satellite images for a certain region, which may cause
lacking data for prediction using our system. There are still
many ways to solve this problem, such as introducing other
modality to replace satellite images. Furthermore, the factor
that taking into account was only the emission of factories in
this paper, more works can be done by taking more factors
into consideration in the future to further improve our visibil-
ity prediction system [41].
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