
SPECIAL SECTION ON INTELLIGENT AND COGNITIVE
TECHNIQUES FOR INTERNET OF THINGS

Received May 3, 2019, accepted May 28, 2019, date of publication June 5, 2019, date of current version June 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920929

Deep Learning-Constructed Joint
Transmission-Recognition for
Internet of Things
CHIA-HAN LEE , (Member, IEEE), JIA-WEI LIN, PO-HAO CHEN, AND YU-CHIEH CHANG
Institute of Communications Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

Corresponding author: Chia-Han Lee (chiahan@nctu.edu.tw)

This work was supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST-107-2221-E-009-035-MY2.

ABSTRACT The widely deployed Internet-of-Things (IoT) devices provide intelligent services with its
cognition capability. Since the IoT data are usually transmitted to the server for recognition (e.g., image
classification) due to low computational capability and limited power supply, achieving recognition accuracy
under limited bandwidth and noisy channel of wireless networks is a crucial but challenging task. In this
paper, we propose a deep learning-constructed joint transmission-recognition scheme for the IoT devices to
effectively transmit data wirelessly to the server for recognition, jointly considering transmission bandwidth,
transmission reliability, complexity, and recognition accuracy. Compared with other schemes that may be
deployed on the IoT devices, i.e., a scheme based on JPEG compression and two compressed sensing-
based schemes, the proposed deep neural network-based scheme has much higher recognition accuracy
under various transmission scenarios at all signal-to-noise ratios (SNRs). In particular, the proposed scheme
maintains good performance at the very low SNR. Moreover, the complexity of the proposed scheme is low,
making it suitable for IoT applications. Finally, a transfer learning-based training method is proposed to
effectively mitigate the computing burden and reduce the overhead of online training.

INDEX TERMS Internet of things (IoT), recognition, transmission, joint source-channel coding, deep
learning, deep neural networks, transfer learning, JPEG, compressed sensing.

I. INTRODUCTION
The need for connected device to provide seamless, intelli-
gent services has aroused the prosperity of Internet of things
(IoT) [1]–[3]. From industry, business, to consumer electron-
ics, IoT has found applications that may profoundly change
human life, improve manufacturing reliability, promote busi-
ness sales, and make our daily life more convenient [4]–[8].
The intelligence of an IoT device relies on its ability to
perform sensing of the outside world and connect to other
devices. Therefore, recognition (e.g., image classification)
and communication are the two most critical elements of IoT.
As IoT devices have limited computational capability and
are expected to consume minimum power (due to the lim-
ited power availability and the difficulty of frequent battery
change), they may not be powerful enough to process some
complex recognition tasks locally and timely. Instead, they
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have to transmit the data they sense to either a centralized
server or an edge server, and rely on the server’s powerful
computational capability to accomplish recognition. After
performing recognition, the recognition result may be sent
back to the IoT device. Since the number of IoT devices
is large and the IoT devices are diverse, the IoT devices
are often connected wirelessly. Therefore, how to efficiently
transmit data over wireless networks to the server for accurate
recognition is crucial.

Tremendous research efforts have been made for efficient
data transmission over wireless networks, and in the last few
years we have witnessed significant improvement in recog-
nition accuracy thanks to the development of deep learn-
ing [9]. However, little research has focused on how to design
efficient data transmission schemes with recognition accu-
racy being the major design criterion. When designing IoT
systems, not only do we have to minimize the transmission
bandwidth and power consumption, but also the recognition
accuracy has to be maximized. Transmitting the entire sensed
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data would be ideal for recognition, but it requires large
transmission bandwidth and consumes significant power.
On the other hand, compressing data before transmission
saves bandwidth and power, but the recognition accuracy
may be sacrificed. In addition, extra care is needed for IoT
devices due to their low power, low computational capabil-
ity nature. Although strong channel codes (also called error
correcting codes) allow efficient transmission over wireless
networks, their complexity refrains them from being suitable
for IoT devices. Similarly, advanced compression (i.e., source
coding) techniques can save transmission bandwidth but the
complexity may be high. Overall, the design for IoT recogni-
tion requires jointly considering the following four aspects:
data compression to save bandwidth and transmission power,
channel coding for wireless transmission, recognition accu-
racy, and IoT computational capability. Although compres-
sion and channel coding can be jointly designed, i.e., through
joint source-channel coding, how to design wireless networks
with the design metric of recognition accuracy (instead of
data transmission rate) is largely unexplored.

In this paper, we propose an advanced design to optimize
compression, communication, recognition, and computation
for IoT systems. Since the state-of-the-art recognition is
achieved by applying deep neural networks (DNNs) and it
has recently been shown that channel codes and joint source-
channel coding can also be realized by DNNs, our pro-
posed design is constructed by a DNN architecture. We show
in detail how to construct a DNN architecture that meets
the design criterion of joint transmission and recognition.
The performance of the proposed DNN-constructed joint
transmission-recognition scheme is compared to the tradi-
tional approaches, i.e., a JPEG-compressed scheme, com-
pressed sensing (CS) with reconstruction, and compressed
sensing with direct recognition, showing superior perfor-
mance. The proposed DNN-based architecture also has the
advantage of low computational complexity once trained.
Furthermore, a practical online training method, adopting
transfer learning, is proposed to mitigate the online training
burden and reduce overhead. We demonstrate that the perfor-
mance of the proposed transfer learning method approaches
the performance of the pure online training under the
proposed DNN-constructed joint transmission-recognition
architecture.

A. RELATED WORK
Although there have been a few works on joint transmission-
recognition, those are mainly for automatic speech recog-
nition over wireless networks [10]–[12]. Moreover, their
approaches are based on feature extraction with separate
channel coding, without considering joint design. On the
other hand, there have been a lot of research on image/video
transmission over wireless networks with joint design of
compression and channel coding, but their target is to restore
images/videos instead of performing recognition. Note that
for recognition involving images or videos, researches have
focused more on compression, without considering joint

design with channel coding [13]–[15]. This is due to the
difficulty of considering all design factors simultaneously.

Neural network-based channel decoders have been pro-
posed in the 1990’s [16]–[21]. However, the performance
of these decoders was not competitive enough due to the
difficulty of training DNNs. With the recent advance in deep
learning, nowadays we can construct neural networks that
are deep and have excellent performance. Therefore, in the
last couple years a few deep learning-based channel decoders
have been proposed [22]–[30]. However, we have not seen
DNNs being applied to solving the joint transmission-
recognition problem considered in this paper. Note that a
deep learning-based joint source-channel coding scheme for
image transmission was proposed [31], but their performance
metric is image distortion, instead of recognition accuracy
considered in this paper. Deep learning-based joint source-
channel coding has also been proposed for transmitting
texts [32], [33], but again the performance metric is different
from this paper.

Deep learning has recently been applied to IoT sys-
tems [34]–[39], but none of them applies deep learning
for solving the joint transmission-recognition problem as in
this paper. Advanced communications schemes for IoT have
also been discussed recently [40]–[43], but their approaches
are different from ours. In particular, recognition accuracy
is not their design criterion. In addition, computation and
energy saving issues of IoT devices have recently been inves-
tigated [44]–[46], but their approaches are very different
from ours.

B. ORGANIZATION
The rest of the paper is organized as follows. In Sec. II, system
model is introduced, and in Sec. III, traditional approaches
are discussed. Then, a DNN-constructed joint transmission-
recognition architecture is proposed in Sec. IV and compared
with various traditional methods in Sec. V. Furthermore,
a practical transfer training method is proposed in Sec. VI.
Finally, this paper is concluded in Sec. VII.

II. SYSTEM MODEL
We consider the scenario that an IoT device transmits data
wirelessly to the server to perform recognition. Before trans-
mission, the IoT device may perform data compression
(i.e., source coding) and/or channel coding. Whether to adopt
compression or channel coding and how to realize compres-
sion/channel coding depends on the transmitter architecture,
as will be discussed later. The IoT device maintains a direct,
point-to-point wireless link to the server. For the wireless
channel, both the additive white Gaussian noise (AWGN)
model and the Rayleigh fading channel are considered. At the
receiver (i.e., the server), depending on the source coding
and channel coding schemes adopted at the transmitter, cor-
responding decoding schemes are performed.

Note that although in this paper we only consider a single
IoT device, the overall improvement in the transmission-
recognition performance of an IoT network containing
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multiple IoT devices is expected to be significant given the
improvement in the transmission-recognition performance of
individual IoT device.

III. TRADITIONAL APPROACH
In this section, we discuss traditional approaches that may
serve as solutions to the considered problem.

An intuitive way of solving the joint transmission-
recognition problem is to compress the data (in a lossy or loss-
less way), apply channel codes, and then transmit the coded
data. The received data is decoded, decompressed, and then
recognized (e.g., classified). The overall procedure is shown
in Fig. 1(a). Note that other physical layer and data link
layer functions may be implemented but ignored here since
they are not the focus of this paper. The main concern about
this approach is complexity, which refrains IoT devices from
using the state-of-the-art techniques for compressing and
transmitting data.

Another approach is using joint source-channel coding,
which theoretically outperforms separate source coding and
channel coding. In this approach, data goes through joint
source-channel encoding, wireless channel, joint source-
channel decoding, and then recognized, as shown in Fig. 1(b).
This approach may be impractical due to not only the com-
plexity concerns but also the difficulty of deriving optimal
joint source-channel coding.

FIGURE 1. Different approaches of realizing recognition over wireless
networks. (a) Separate source coding and channel coding. (b) Joint
sourch-channel coding. (c) Feature extraction-based approach.
(d) Proposed joint transmission-recognition.

Another concern is that our goal is to perform recog-
nition, instead of simply transmitting data with minimum
distortion. It is actually the most efficient if data can be
compressed to the minimum level such that recognition is
barely accomplished. In this way, minimumwireless resource

is required for data transmission. However, it is generally
difficult to mathematically or systematically derive the rela-
tionship between compression and recognition since the
mechanism of the state-of-the-art recognition, which is usu-
ally done by deep learning, is largely unknown. A possible
solution is to extract the features that may be useful for
recognition and simply transmit the features for recognition.
However, determining the minimum set of features that are
useful for recognition is not an easy task at all; otherwise the
feature-based recognition methods would have been success-
ful and the DNN-based recognition approach is not required.
In this approach, the features of the data are extracted, channel
coded, transmitted, channel decoded, and finally recognized,
as shown in Fig. 1(c). With the difficulty of deriving the rela-
tionship between feature extraction and recognition, further
joint design with channel coding with the traditional method
seems hopeless.

Note that image and video transmission over wireless sys-
tems has long been a hot research topic. However, the goal of
these researches is to transmit images/videos wirelessly with
minimum image/video distortion under specified rate (the
so-called rate-distortion criterion). Instead, our goal is to
accomplish the recognition task (i.e., achieving some recog-
nition accuracy) using the minimum wireless resource.
Also note that unequal error protection (UEP) is an effec-
tive approach but is usually more expensive to implement.
Moreover, it is unknown how to optimally combine UEPwith
recognition. Thus, UEP is not considered in this paper.

IV. PROPOSED DNN-CONSTRUCTED JOINT
TRANSMISSION-RECOGNITION
Different from the traditional approaches mentioned earlier,
we propose a joint design of source coding, channel coding,
and recognition, with the constraint of moderate complexity.

A. METHODOLOGY
In this paper, we focus on the pattern recognition tasks
that are difficult to solve, such as image recognition, such
that advanced pattern recognition methods are required to
achieve good performance. The state-of-the-art recognition
is achieved by DNNs [47]–[52]. One advantage of the
DNN-constructed architecture over traditional machine
learning methods is that the DNNs automatically extract
features after training, while traditional machine learning
methods usually rely on manual feature extraction. Thus,
a well-trained DNN can be used as a feature extractor.

An efficient and high-performance transmission scheme
with the target of recognition is more likely to be achieved
with designing the transmission scheme and the recognition
scheme jointly. Since the state-of-the-art schemes for recog-
nition are implemented by DNNs, the joint transmission-
recognition would be the most efficient with an all-DNN
architecture. With the breakthrough of implementing channel
codes by DNNs, the joint design of compression (feature
extraction), channel coding, and recognition becomes pos-
sible with an architecture constructed entirely by DNNs.
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FIGURE 2. Proposed method for constructing a DNN for joint transmission-recognition.

FIGURE 3. ResNet-CIFAR-10: Recognizer implemented by ResNet. (a) ResNet sub-block. (b) ResNet-CIFAR-10.

The DNN-constructed approach also offers other advantages
such as low computational complexity [53], meeting the com-
puting requirement of IoT devices.

The proposed DNN-constructed approach is illustrated
in Fig. 1(d), showing that joint feature extraction and channel
coding (using DNNs) is performed at the IoT device before
data transmission, and the received data is jointly decoded
and recognized (using DNNs) at the server. To our best
knowledge, this is the first time that compression (feature
extraction), channel coding, and recognition (e.g., classifi-
cation) are jointly designed under the framework of deep
learning.

The question is what DNN architecture should be used
at the transmitter (the IoT device) and at the receiver (the
server), respectively. We propose the following steps to con-
struct a DNN for joint source-channel-recognition. The steps
are described in the following and summarized in Fig. 2.

FIGURE 4. DNN-Encoder for a (32, 16) Polar code.

The first step is to train a DNN for recognition (the upper part
of Fig. 2). The architecture, including width, depth, and type,
of the DNN is determined according to the target recognition
accuracy and affordable complexity. The trained DNN is
then split into two parts. The first part, which functions as a
feature extractor, becomes part of the source-channel encoder
at the transmitter, and the second part, which functions as
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FIGURE 5. Various DNN architectures to implement the channel decoder for a (32, 16) Polar code. (a) Dense network-based decoder. (b) CNN-based
decoder. (c) Res-Decoder.

a recognizer, becomes part of the decoder-recognizer at the
receiver. The idea behind this is that a well-trained DNN
should be able to extract features using the first few layers,
and the rest of the layers are for performing recognition.
The second step of the proposed method is to train an encoder
and a decoder considering the channel, as shown in the lower
part of Fig. 2. It is possible to directly, jointly train the encoder
and decoder, but the training might be difficult. Therefore,
we allow the encoder/decoder to mimic existing channel
codes by training the encoder and the decoder separately.
For example, the inputs and outputs of an existing channel
encoder are used for training a DNN encoder such that the
DNN encoder behaves like that channel encoder. Similarly,
the received signals after wireless channel are used for train-
ing the DNN decoder such that the DNN decoder behaves
like that channel decoder. After training, the encoder becomes
part of the joint source-channel encoder at the transmitter, and
the decoder becomes part of the joint decoder-recognizer at
the receiver.

Once the DNNs as compressor (feature extractor), encoder,
decoder, and recognizer are obtained, as shown in the middle
part of Fig. 2, we perform joint re-training for better per-
formance. Note that since the DNNs at the transmitter and
the receiver are jointly trained, this is the approach shown
in Fig. 1(d), different from the approach shown in Fig. 1(c).

B. DNN ARCHITECTURE
1) RECOGNIZER
Several DNN architectures have been proposed to achieve
outstanding recognition performance. Among them are

VGGNet [47], GoogLeNet [48], ResNet [49], Fractal-
Net [50], DenseNet [51], and CapsuleNet [52]. In this
paper we adopt the ResNet architecture [49] for recognition
(i.e., image classification) because it is one of the state-of-
the-art and is easy to set up and train. Moreover, the number
of parameters in ResNet is low compared to other architec-
tures, and thus the computation can be relatively low. The
adoption of the ResNet architecture is thus suitable for IoT
applications. Let us use the tuple (H ,W ,N ) to represent the
image height, the image width, and the number of feature
maps, respectively, of the 2D-convolution (Conv2D) layer
with kernel size 3. Firstly we build an (H ,W ,N ) ResNet
sub-block with two (H ,W ,N ) Conv2D layers repeated three
times, with skip connections, as shown in Fig. 3(a). Then,
a DNN is constructed with the first layer being a (32, 32, 16)
Conv2D layer, followed by a (32,32,16) ResNet sub-block,
a (16,16,32) ResNet sub-block, and a (8,8,64) ResNet sub-
block, as shown in Fig. 3(b). In all convolutional layers, ReLU
is used as activation function, and after each convolution
layer, batch normalization is adopted [49]. After the average
pooling layer, the softmax output is implemented by a dense
layer with 10 neurons.

The CIFAR-10 image dataset [54] is used for training. The
CIFAR-10 dataset, one of the most widely used datasets for
machine learning research, contains 60,000 32 × 32 color
images in 10 different classes, with 6,000 images in each
class. Since IoT devices usually deal with low resolution
images and are usually instructed to recognize only a few
classes of images due to relatively low computing power,
the CIFAR-10 dataset is well suited for IoT applications.
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Referencing the training setting in [49] with minor revision,
we use the cross-entropy loss function and the stochastic
gradient descent (SGD) with a mini-batch size of 128. The
learning rate starts from 0.01 and is divided by 10 at 80 and
120 epochs, respectively, with the training terminated after
160 epochs. The weight decay coefficient is set to 0.0001 and
the momentum parameter is chosen as 0.9. Batch normal-
ization is only used in the feature extraction part and no
dropout is used, following [49]. The data augmentation used
for training is the same as [49]: we pad 4 pixels at each side
of the image and then randomly crop 32×32 pixels from
the padded image or its horizontal flip. The overall model is
called ResNet-CIFAR-10 in this paper.

2) CHANNEL ENCODER
To construct a DNN architecture for the channel encoder,
we use 10 dense layers with each layer having 512 neurons,
as shown in Fig. 4. Dense networks are chosen to construct a
DNN-based channel encoder because this is themost straight-
forward way to construct a DNN. ReLU is used as activation
function, except at the output layer with 32 neurons where
the tanh activation function is chosen. To ensure that the
transmitted signal meets power constraint (i.e., ||x||22 ≤ P
with signal x, maximum power P, and L2 norm || · ||2),
a normalization layer is appended and the output from the
previous layer, r, is multiplied by

√
N
||r||2

, where N denotes the
number of neurons.

To construct a DNN to mimic a channel encoder, we use
the input-output map of a (32, 16) Polar code (with 16 infor-
mation bits as input and 32-bit codewords as output) to train
the DNN. Since the number of information bits is 16, there
are 216 = 65, 536 possible inputs. In each epoch, the model is
trained by all possible inputs in a random order, and the train-
ing takes 1500 epochs. The Adam optimizer with learning
rate 0.001 is used, and themini-batch size is 1024. No dropout
is adopted. During testing, the trained model is tested by
all possible inputs and we use hard decision at the output
to evaluate the accuracy. This model is able to reach 100%
accuracy of the (32, 16) Polar code after training, meaning
that the resulting DNN can be used to accurately generate all
codewords of the (32, 16) Polar code.

3) CHANNEL DECODER
Since the channel decoder is usually more complicated to
implement, we have tried various DNN architectures, includ-
ing a dense network-based decoder (Fig. 5(a)), a convolu-
tional neural network (CNN)-based decoder (Fig. 5(b)), and
the Res-Decoder (Fig. 5(c)). Some previous works on the
design of deep learning-based channel decoders utilize dense
networks and CNNs [24]–[26], [30], while ResNet is also
tried because it is built on top of CNNs and is a simple yet
powerful DNN architecture. Note that although LSTM has
been used in some papers to construct DNNs, we do not
consider using LSTM since the LSTM model is complex
and difficult to train (compared to ResNet), not suitable for

FIGURE 6. BER of various DNN implementations of channel decoders for
a (32, 16) Polar code. (a) AWGN channel. (b) Rayleigh fading channel.

IoT applications. The detail of the Res-Decoder is the fol-
lowing. Let us use the tuple (W ,N ) to represent the image
width and the number of feature maps, respectively, of the
1D-convolution (Conv1D) layer. The first two layers are a
(32, 4) Conv1D layer and a (32, 16) Conv1D layer. Then,
there are four (32, 16) Conv1D layers with skip connections,
one (32, 32) Conv1D layer, and four (32, 32) Conv1D layers
with skip connections. After reshaping, we use one dense
layer with 256 neurons and one dense layer with 64 neurons.
The output layer is a dense layer with 16 neurons. All dense
layers use the ReLU activation function.

The proposed Res-Decoder is trained at 4 dB signal-to-
noise ratio (SNR) and the cross-entropy loss function is
adopted. The input for this model is codewords with additive
noise and the label is the information bits corresponding to
that input. The training and test datasets are random samples
from the (32, 16) Polar code, and the numbers of samples in
each dataset are 106 and 107, respectively. The training runs
1200 epochs with mini-batch size 1024. In the convolution
layers, same padding is used to keep the block length the
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FIGURE 7. DNN-constructed joint transmission-recognition.

FIGURE 8. Loss vs. epoch during training the DNN-constructed joint
transmission-recognition. (a) AWGN channel. (b) Rayleigh fading channel.

same, and the kernel size is 5. The Adam optimizer with
learning rate of 0.001 is used, and no dropout is adopted. The
dense network-based decoder is trained at 8 dB SNR with
the training parameters the same as training the Res-Decoder.
The CNN-based decoder is trained at 4 dB SNR, and all

FIGURE 9. Recognition accuracy of the proposed DNN-constructed joint
transmission-recognition trained at different SNR, i.e., 1 dB, 10 dB,
and 25 dB. The case of training without considering channel (labeled
‘‘No channel’’) is also compared. (a) AWGN channel. (b) Rayleigh fading
channel.

training parameters are the same as training the Res-Decoder.
Note that trial and error is required when determining the best
training SNR.
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The bit error rate (BER) performances of the three con-
sidered decoders are compared in Fig. 6. We find that
the Res-Decoder outperforms both the dense network-based
decoder and the CNN-based decoder, and thus we utilize
the Res-Decoder in the proposed DNN-constructed joint
transmission-recognition architecture.

4) JOINT TRANSMISSION-RECOGNITION
To construct a DNN architecture for joint transmission-
recognition, we follow the proposed methodology described
in Sec. IV-A and Fig. 2. The ResNet-CIFAR-10 model
in Fig. 3 is split into two parts: the convolutional layers
and the average pooling layer (ResNet-CIFAR-10a in Fig. 3)
form a feature extractor (i.e., a source encoder) while the
dense layer (ResNet-CIFAR-10b in Fig. 3) becomes a rec-
ognizer. By concatenating the feature extractor and the chan-
nel encoder, a joint source-channel encoder is constructed.
Since the number of neurons in the last layer of the fea-
ture extractor and the first layer of the channel encoder has
to be matched, we connect the feature extractor (ResNet-
CIFAR-10a in Fig. 3) to four DNN-Encoder blocks (Fig. 4),
resulting in the joint source-channel-encoder architecture
as shown in the left part of Fig. 7. Then, by concatenat-
ing the channel decoder and the recognizer, a joint chan-
nel decoder-recognizer is constructed. Again, to match the
number of neurons, four Res-Decoder blocks (Fig. 5(c)) are
connected to the recognizer (ResNet-CIFAR-10b in Fig. 3),
resulting in the joint channel decoder-recognizer architecture
as shown in the right part of Fig. 7. The overall DNN-
constructed joint transmission-recognition architecture is
shown in Fig. 7.
To boost performance, the joint source-channel encoder

and the joint channel decoder-recognizer are jointly trained
along with the wireless channel. The model is trained at
various SNRs, including 1 dB, 10 dB, and 25 dB. The training
environment is the same as when we train ResNet-CIFAR-10
(described in Sec. IV-B.1), except that the network parame-
ters of ResNet-CIFAR-10 are used as initialization and then
the model is trained for 50 epochs, with the learning rate
started at 0.01 and then divided by 10 after half of the epochs.
An example of the loss vs. epoch during the training process,
for both the cases of AWGN channel and Rayleigh fading
channel, is shown in Fig. 8. As shown in Fig. 9, training at
1 dB SNR yields the best performance for the Rayleigh fading
channel and similar performance with training at 10 dB SNR
for the AWGN channel, and training without considering the
channel effect (labeled ‘‘No channel’’ in the figure) results in
the lowest recognition accuracy. It is also shown that training
along with channel is even more critical for the Rayleigh
fading channel. As further shown in Fig. 10, compared to the
model without incorporating channel coding (i.e., the model
having only ResNet-CIFAR-10a and ResNet-CIFAR-10b,
without DNN-Encoder1 and Res-Decoder), including
channel coding in the model (i.e., with DNN-Encoder1 and
Res-Decoder included) helps improving recognition accuracy
for both the AWGN channel and the Rayleigh fading channel,

FIGURE 10. Recognition accuracy of the proposed DNN-constructed joint
transmission-recognition, with and without bottleneck, and without
channel coding. The models are trained at 1 dB. (a) AWGN channel.
(b) Rayleigh fading channel.

with negligible accuracy loss at high SNR for the AWGN
channel.

Directly concatenating the feature extractor (source
encoder) with the channel encoders results in a DNN archi-
tecture that the width of the layer shrinks first and then gets
larger later. To remove this ‘‘bottleneck’’, the architecture
of the joint source-channel encoder is modified to the DNN
architecture shown in Fig. 11. The training environment is
the same as when we train the DNN architecture with bot-
tleneck. As shown in Fig. 10, the model without bottleneck
significantly outperforms both the one with bottleneck and
the model without channel coding at moderate to low SNR
regimes.

V. COMPARISON WITH VARIOUS
TRANSMISSION-RECOGNITION APPROACHES
In this section, we compare the performance of the proposed
DNN-constructed joint transmission-recognition architecture
with three traditional schemes: a JPEG-compressed scheme
and two compressed sensing-based schemes.
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FIGURE 11. DNN-constructed joint transmission-recognition without bottleneck. (a) ResNet-CIFAR-10 without bottleneck. (b) DNN-Encoder2. (c) Overall
architecture.

A. JPEG-COMPRESSED SCHEME
The first scheme we compare utilizes JPEG, a commonly
used method of lossy compression for digital images, along
with channel coding. In the encoding stage of JPEG,
the image is converted from RGB to the YCbCr color space
and downsampled. Then, each component of (Y,Cb,Cr ) is
converted to frequency domain using the two-dimensional
type-II discrete cosine transform (DCT). Since human eyes
are insensitive to the variation of brightness in high frequency,
a quantization matrix is used to reduce the amount of infor-
mation in the high-frequency components. We encode the
images with the downsampling ratios 4 : 2 : 0 and medium
quality quantization.

After JPEG compression, the compressed data is channel
coded (if channel coding is applied) and then goes through
the wireless channel. Note that to ensure the format of JPEG
is maintained, the format markers are assumed to be intact
from the channel and only the data bits are corrupted. This
actually favors the JPEG-compressed scheme in performance
comparisons. At the receiver, the received bits are firstly
decoded by channel decoder (if channel coding is applied)
and then decoded by the JEPG decoder. To have a fair com-
parison, we use the same recognizer, i.e., ResNet-CIFAR-10,
for image recognition.

B. COMPRESSED SENSING WITH RECONSTRUCTION
The second scheme we compare is compressed sensing with
reconstruction (CS-R). Here the compressed sensing is per-
formed on digital data instead of at the time of sensing. Given
the data (e.g., an image) x and the sensingmatrixA, the output
of the compressed sensing is y = Ax. We adopt the sensing
matrix A = φ(Dn ⊗ Dm), where φ is the sampling matrix,
⊗ is the Kronecker product, and Dn = IDCT(In) with IDCT
being the inverse discrete cosine transform and In being the
identity matrix of size n [55]. The compressed data is channel
coded (if channel coding is applied) and then goes through
the wireless channel. At the receiver, the data is channel
decoded (if channel coding is applied) and then the convex
optimization library CVXPY is used for recovering x. After
reconstructing the image, the ResNet-CIFAR-10 recognizer
is used for image recognition.

C. COMPRESSED SENSING WITH DIRECT RECOGNITION
It is also possible to directly perform recognition with
the compressively sensed data without needing reconstruc-
tion [56], called compressed sensing with direct recognition
(CS-DR) in this paper. In this scheme, compressed sensing
converts x to y = 8x, where x is a vector with length n
and 8 is an m × n matrix with n > m. The compressed
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data is channel coded (if channel coding is applied) and then
transmitted through the wireless channel. At the receiver,
channel decoding is performed (if channel coding is applied)
and then 8 is applied to y to convert y to a proxy matrix
having the same size with x, where the proxymatrix x̄ = 8T y
is obtained by linear projection [56]. Then, the output of
the proxy matrix is sent to the recognizer. The ResNet, with
batch normalization after each convolution layer with kernel
size 1 and stride 2, is adopted as the recognizer.When training
the ResNet, we use the following data augmentation: after
performing per-pixel mean subtraction, 4 pixels are padded
on each side of the image, and a 32 × 32 crop is randomly
sampled from the padded image or its horizontal flip. The
training is done at 10 dB SNR, with momentum parameter
set as 0.9 and the weight decay coefficient as 0.0001. The
cross-entropy loss function is used.

D. PERFORMANCE UNDER ANALOG TRANSMISSION
To transmit data, we may use analog transmission or dig-
ital transmission. Here the analog transmission means that
the real-valued data is directly used to modulate the sig-
nal without going through the steps of quantization. On the
other hand, in digital transmission, the data values need to
be quantized and converted to bits before modulation and
transmission.

In analog transmission, the amplitude of the transmitted
signal is proportional to the data value, i.e., amplitude mod-
ulation (AM) is adopted, and channel is applied to the signal
modulated by the real-valued data. Thus, SNR is defined as
the average signal power to the noise variance.

To fairly compare various schemes, we have to make the
compression level of different schemes the same. Let γ be
the ratio of the number of output elements to the num-
ber of input elements, then the proposed DNN-constructed
joint transmission-recognition architecture has γ ≈ 0.0417.
Due to the constraint of each scheme, not every value of
γ is possible. Therefore, the sensing matrices of CS-R and
CS-DR are chosen such that γ = 0.04, and the parameters of
the JPEG-compressed scheme are chosen such that the closest
γ is γ ≈ 0.043.

Fig. 12 compares the performances of the pro-
posed DNN-constructed joint transmission-recognition, the
JPEG-compressed scheme, CS-R, and CS-DR under analog
transmission. Both the AWGN channel and the Rayleigh fad-
ing channel are considered. The proposed DNN-constructed
joint transmission-recognition yields much higher recogni-
tion accuracy than the JPEG-compressed scheme, CS-R,
and CS-DR, at all SNR, for both the AWGN channel and
the Rayleigh fading channel. Note that even at high SNR,
CS-R has low recognition accuracy. This is because γ

is very low (corresponding to high compression), refrain-
ing compressed sensing from reconstructing the original
images for recognition. For CS-DR, the recognition accu-
racy is higher than that of CS-R because the images do
not have to be reconstructed before performing recognition.
The JPEG-compressed scheme also has poor performance

FIGURE 12. Recognition accuracy under analog transmission. ‘‘JPEG’’ is
the JPEG-compressed scheme, ‘‘CS-DR’’ denotes compressed sensing with
direct recognition, and ‘‘CS-R’’ denotes compressed sensing with
reconstruction. Note the difference in the SNR range of the two figures.
(a) AWGN channel. (b) Rayleigh fading channel.

since even small changes in JPEG values (due to analog
transmission) may corrupt the JPEG structure, refraining it
from reconstructing the original image for recognition. We
also find that the advantage of the proposed scheme is more
significant under the Rayleigh fading channel than under the
AWGN channel.

E. PERFORMANCE UNDER DIGITAL TRANSMISSION
For digital transmission, real-valued data needs to be quan-
tized and converted to bits for transmission. In such way,
channel codes can be applied. Since IoT devices can
only afford low-end processing, we assume 8-bit quantiza-
tion. For the proposed DNN-constructed joint transmission-
recognition, uniform 8-bit quantization is adopted. For the
JPEG-compressed scheme and CS-R, since it happens that
the data values are in the range of 0 to 255, 8-bit quantization
can be directly applied. For CS-DR, as the values vary a lot,
a nonlinear 8-bit quantization needs to be applied.

Assume that binary phase shift keying (BPSK) is adopted
(note that extending to quadrature phase shift keying (QPSK)
is straightforward), and the wireless channel is applied to
the signals that are BPSK-modulated. Here we adopt a gen-
eral approach of modeling the wireless channel that allows
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FIGURE 13. Recognition accuracy under digital transmission. ‘‘JPEG’’ is
the JPEG-compressed scheme, ‘‘CS-DR’’ denotes compressed sensing with
direct recognition, ‘‘CS-R’’ denotes compressed sensing with
reconstruction, and ‘‘CC’’ means channel coding. Note the difference in
the SNR range of the two figures. (a) AWGN channel. (b) Rayleigh fading
channel.

incorporating any channel codes under various channels.
In this wireless model, the data bits are randomly flipped
according to the specified BER given a channel code and an
SNR. For example, if a channel code has BER 10−4 when the
SNR is 2 dB, then 0.01% of the data bits are randomly flipped.
Note that the SNR in digital transmission is defined as Eb/N0,
where Eb is energy per bit and N0 is the noise power spectral
density. On the other hand, if no channel coding is applied
(i.e., uncoded), the BER mapping according to the uncoded
BPSK is used. Since in practical transmission scrambling
is usually applied, the random flipping of data bits reflects
well the error that may be incurred during the transmission
over the wireless channel. In this way, we can simulate the
transmission with any channel codes. Since we choose the
same (or similar) compression level and all the schemes use 8-
bit quantization, they can be compared fairly. At the receiver,
the received bits need to be converted to values for later
processing. Note that for CS-DR, training does not include
the quantization part.

Fig. 13 compares the performance of the proposed
DNN-constructed joint transmission-recognition, the JPEG-
compressed scheme, CS-R, and CS-DR under digital
transmission. Both the AWGN channel and the Rayleigh

FIGURE 14. Comparison of complexity (in terms of runtime) of various
schemes. ‘‘JPEG’’ is the JPEG-compressed scheme, ‘‘CS-DR’’ denotes
compressed sensing with direct recognition, and ‘‘CS-R’’ denotes
compressed sensing with reconstruction. Note that the y-axis is in log
scale. (a) Analog transmission. (b) Digital transmission.

fading channel are considered, and both the coded version
and the uncoded version are compared. For the coded version,
we consider an LDPC code, with BER 0.2, 0.1, 5 × 10−2,
5× 10−3, and 1.5× 10−5 at SNR 0 dB, 0.5 dB, 1 dB, 1.5 dB,
and 2 dB, respectively, for the AWGN channel [57], and BER
5× 10−2, 1.2× 10−2, 5× 10−4, and 5× 10−6 at SNR 3 dB,
3.5 dB, 4 dB, and 4.5 dB, respectively, for the Rayleigh fading
channel [57]. Note that although channel codes for low SNR
is possible, low-SNR channel codes usually have very small
code rate, which is impractical for IoT applications, either due
to delay or complexity concerns. Also note that the proposed
scheme does not have a coded version since channel coding
has already been embedded during the construction of the
proposed DNN architecture. From Fig. 13 we see that the pro-
posed DNN-constructed joint transmission-recognition out-
performs, with large margin, the JPEG-compressed scheme,
CS-R, and CS-DR, at all SNR, either coded or uncoded,
for both the AWGN channel and the Rayleigh fading chan-
nel. CS-R performs poorly due to high compression, while
CS-DR has relatively better performance. The JPEG-
compressed scheme performs better than the compressed
sensing-based schemes at higher SNR, especially when chan-
nel coding is applied. However, all those schemes are much
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FIGURE 15. Comparison of iteration numbers with transfer learning
(upper figure) and with pure online training (lower figure). For transfer
learning, 7 classes are trained offline and then 10 classes are trained
online. For pure online training, 10 classes are used. (a) AWGN channel.
(b) Rayleigh fading channel.

worse than the proposed DNN-based scheme at all SNR.
Channel coding generally helps when SNR is large enough,
while at low SNR, the uncoded version performs better. This
is because at low SNR, the BER with channel coding and the
BER without channel coding are similar, but channel coding
requires transmittingmore bits. Similar to the scenario of ana-
log transmission, we find that the advantage of the proposed
scheme is more significant under the Rayleigh fading channel
than under the AWGN channel.

Note that since the SNRs of analog transmission and digital
transmission are defined in different ways, the performances
of the schemes using analog transmission and digital trans-
mission should not be compared directly.

F. COMPLEXITY
The complexity of the proposed DNN-constructed joint
transmission-recognition, the JPEG-compressed scheme,
CS-R, and CS-DR are compared in Fig. 14 in terms of
runtime. Note that the runtime is displayed in log scale in

FIGURE 16. Recognition accuracy with transfer learning. (a) AWGN
channel. (b) Rayleigh fading channel.

the figure. The desktop computer used for running the pro-
grams is equipped with Intel Core i7-8700 CPU@3.20GHz,
16G DRAM, and NVDIA GeForce GTX 1080Ti graph-
ics card. Under analog transmission, the proposed DNN-
constructed joint transmission-recognition scheme has much
smaller runtime, while under digital transmission, the pro-
posed scheme has moderate runtime. Note that since we use
the bit-flipping wireless channel model, the complexity due
to channel encoding and channel decoding, which usually
take significant amount of time, is not included. Therefore,
the runtime comparison actually significantly favors other
schemes (because the proposed scheme does not use extra
channel encoder and channel decoder). It should be noticed
that we do not include the training time for comparison since
for IoT applications, the training is likely to be executed only
once.

VI. TRANSFER LEARNING FOR REDUCING
TRAINING OVERHEAD
After an IoT device is installed, it starts the training pro-
cess. The IoT device collects data and then uses the data
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FIGURE 17. Comparison of iteration numbers with transfer learning
(upper figure) and with pure online training (lower figure) when the
scenes are different from the database. For transfer learning, 7 classes
are trained offline, and then different 3 classes are trained online. For
pure online training, 3 classes are used. (a) AWGN channel. (b) Rayleigh
fading channel.

for training. However, the computing power of IoT devices is
low and the training may consume significant power. To mit-
igate the training burden and reduce overhead, we propose
using transfer learning, described as follows. Before setup,
the IoT device is pre-trained offline (maybe in the factory),
using database and predefined channel model. However,
the scenario of the offline training can be different from the
practical scenario, i.e., the recognition scene may be different
from the database and/or the real channel can be different
from the channel model. Therefore, after the IoT device
is installed, new data is included for online training. With
the proposed pre-training and transfer learning, the online
learning can be done much faster, with marginal performance
loss.

Fig. 15 shows that if we offline train 7 classes (out of
the 10 classes) of images from the CIFAR-10 database and
then online train all 10 classes (i.e., with transfer learning),
the online training part needs much less iteration compared to

FIGURE 18. Recognition accuracy with transfer learning when the scenes
are different from the database. (a) AWGN channel. (b) Rayleigh fading
channel.

the pure online training with 10 classes. The online training
burden and the training overhead are thus reduced, and the
saving in training time is over two-third. Fig. 16 shows that
this transfer learning approach has almost the same recog-
nition accuracy with the pure online training. Fig. 16 fur-
ther shows that if we use fewer classes for offline training,
the recognition accuracy decreases but the gap to the perfor-
mance of the pure online training keeps small.

We also investigate the cases that the scenes are totally
different from the database. Fig. 17 shows that even the
scenes are different from the database (the 7 classes for offline
training and the 3 classes for online training are different),
the online training burden and overhead can be reduced to less
than one-third. It is, however, surprising that sometimes trans-
fer learning achieves higher accuracy than the pure online
training, as shown in Fig. 18. This can be explained as that
the offline training serves as pre-training and helps the online
training with a better initialization, thus resulting in higher
recognition accuracy.
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VII. CONCLUSIONS
In this paper we have proposed a DNN-constructed joint
transmission-recognition scheme for IoT devices to effec-
tively transmit data to server for recognition. We have illus-
trated the idea of how to construct the DNN, and then
compared the proposed DNN-constructed joint transmission-
recognition with the JPEG-compressed scheme, compressed
sensing with reconstruction, and compressed sensing with
direct recognition. When testing on the CIFAR-10 image
database, the proposed scheme significantly outperforms the
JPEG-compressed scheme and the compressed sensing-based
schemes under analog transmission and digital transmission
at all SNR, maintaining high recognition accuracy around
90% when the SNR is larger than −1 dB under analog trans-
mission and when Eb/N0 is larger than 1 dB under digital
transmission. Even at very low SNR, the recognition accuracy
is good enough. The complexity of the proposed scheme is
also shown to be low. Furthermore, a transfer learning-based
trainingmethod is proposed and shown to effectively mitigate
the computing burden and reduce overhead of online training
for IoT devices.
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