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ABSTRACT Identification of circRNA-disease associations provides insight into the mechanism that circR-
NAs cause diseases.Wet experimental identification of circRNA-disease associations is time-consuming and
labor-intensive, and thus developing computational methods for the circRNA-disease association prediction
is an urgent task. In this paper, we propose a linear neighborhood label propagation method to predict
circRNA-disease associations, named CD-LNLP. First, CD-LNLP uses association profiles based on known
associations to calculate circRNA-circRNA similarities and disease-disease similarities. Next, CD-LNLP
implements the label propagation based on the circRNA-circRNA similarity-based graph and the disease-
disease similarity-based graph respectively to predict circRNA-disease associations. Finally, we combine
the outputs from circRNA-circRNA similarity-based graphmodel and disease-disease similarity-based graph
model to produce the results. In the experiments, CD-LNLP achieves impressive performancewith the AUPR
score of 0.4487 and the AUC score of 0.9007 and outperforms outstanding baseline methods (collaborative
filter method, KATZ, nonnegative matrix factorization method, and resource allocation method) and the
state-of-the-art method MRLDC. The case studies show that CD-LNLP identifies novel circRNA-disease
associations, which are validated by up-to-date circRNA-disease databases and literature respectively.
In conclusion, CD-LNLP is a promising method for predicting circRNA-disease associations.

INDEX TERMS CircRNA-disease associations, association profiles, linear neighborhood similarity, label
propagation.

I. INTRODUCTION
Circular RNA (circRNA) is a novel type of endogenous non-
coding RNAs (ncRNA) [1]. Different from the linear RNAs,
circRNAs are generated by back splicing or lariat introns.
Thus, they don’t have 5’ and 3’ ends which reflect start and
stop of the RNA polymerase on the DNA template [2]–[5].

The first circRNA was discovered in a study of RNA
viruses [6] in 1976. Due to the structural specificity,
unknown function and low abundance of circRNAs, cir-
cRNAs were initially assumed as artefacts or mis-splicing
products. Thus circRNAs did not attract much atten-
tion [2]. In recent years, more and more circRNAs have
been identified in thousands of living organisms, includ-
ing archaea, plants and animals [5], [7]–[9]. At the same
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time, researchers have studied circRNAs to obtain their
knowledge [10], [11]. To date, circRNAs have been dis-
covered to be expressed in different tissues and implicated
in many cellular processes [5], [12], including cell prolif-
eration, invasion, and apoptosis [13], [14]. CircRNAs play
critical roles in biological processes including transcription,
mRNA splicing [15], [16], RNA decay and translation [17].
The misregulation of circRNAs may cause abnormal cellular
functions and growth defects, and several circRNAs have
been reported to be associated with human diseases. For
example, Circ-FBXW7 is reduced in glioblastoma clinical
samples compared with their paired tumor-adjacent tis-
sues, and circ-FBXW7 expression is also positively asso-
ciated with glioblastoma patients overall survival [18].
CircPVT1 is significantly up-regulated in the osteosarcoma
tissues, and circPVT1may be a biomarker for the diagnosis of
osteosarcoma [19]. Hsa_circ_0081001 is reported correlated

83474
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-5221-2628
https://orcid.org/0000-0002-5991-9252


W. Zhang et al.: Predicting CircRNA-Disease Associations Through Linear Neighborhood Label Propagation Method

with poor prognosis, and its expression level may dynami-
cally monitor the condition changes of osteosarcoma [20].
Has_circ_001569 is highly expressed in cell proliferation and
invasion of colorectal cancer compared with non-cancerous
samples [21]. Has_circ_0054633 is found to be upregulated
in the peripheral blood of patients with type 2 diabetes, and
it can be used as a candidate biomarker for the diagnosis for
pre-diabetes and type 2 diabetes [22]. Clearly, exploring the
circRNA-disease associations can contribute to deciphering
the cellular behaviors underlying diseases.

In recent years, a lot of databases about circRNAs have
also been developed to further study the function mecha-
nism of circRNAs, such as CircBase [23], CircRNADb [24],
PlantcircBase [8], PlantCircNet [25], ExoRBase [26], Cir-
cNet [27], TSTD [28], SomamiR 2.0 database [29] and
CSCD [30]. In addition, there are several databases for
circRNA-disease associations, including Circ2Disease [31],
circRNADisease [32] and CircR2Disease [33]. Inspired by
these data sources, we think it is necessary to develop compu-
tational methods for the circRNA-disease association predic-
tion. Lei et al. [34] proposed a computational path weighted
method PWCDA by integrating diseases’ functional simi-
larities and circRNAs’ semantic similarities. Yan et al. [35]
developed a method called DWNN-RLS to predict circRNA-
disease associations based on Regularized Least Squares
of Kronecker product kernel. Fan et al. [36] constructed
a heterogeneous network by employing the circRNA and
disease expression profiles, and then developed a computa-
tional model based on KATZ measure called KATZHCDA.
Xiao et al. [37] developed a weighted low-rank approxi-
mation optimization algorithm with dual-manifold regular-
izations for predicting disease-associated circRNAs, named
MRLDC. These methods mainly utilize either circRNA fea-
tures or disease features, and known associations to predict
novel circRNA-disease associations. However, circRNA fea-
tures and disease features are not always available. Thus,
those methods can’t work when information is incomplete.

In this paper, we propose a linear neighborhood label
propagation method to predict circRNA-disease associations,
named CD-LNLP. First, CD-LNLP uses association profiles
based on known associations to calculate circRNA-circRNA
similarities and disease-disease similarities. Next, CD-LNLP
implements the label propagation based on the circRNA-
circRNA similarity-based graph and the disease-disease
similarity-based graph respectively to predict circRNA-
disease associations. Finally, we combine the outputs from
circRNA-circRNA similarity-based graphmodel and disease-
disease similarity-based graph model to produce the results.
In the experiments, CD-LNLP achieves impressive perfor-
mance with an AUPR of 0.4487 and an AUC of 0.9007,
and outperforms outstanding baseline methods (collabora-
tive filter method, KATZ, nonnegative matrix factorization
method and resource allocation method) and the state-of-the-
art method MRLDC. The case studies show that CD-LNLP
identifies novel circRNA-disease associations, which are
validated by up-to-date circRNA-disease databases and

TABLE 1. Details of datasets.

literature respectively. In conclusion, CD-LNLP is promising
for predicting circRNA-disease associations.

II. MATERIALS AND METHODS
A. DATASETS
Recently, researchers collected data about circRNA-
disease associations, and constructed databases, including
Circ2Disease, circRNADisease and CircR2Disease.

Circ2Disease [31] is a database that manually curated
experiment-supported human circRNAs and provides associ-
ations between circRNAs and human diseases. This database
totally contains 273 associations between 237 circRNAs and
54 human diseases that had been recorded in the existing
literature of PubMed prior to 1 November 2017. In addition,
Circ2Disease also integrated experimentally verified miR-
NAs and miRNA targets from several databases, such as
HMDD v2.0, OncomiRDB, miRTarBase, etc. CircRNADis-
ease [32] is a manually curated database of experimentally
supported circRNA and disease associations, which con-
tains 354 high confident experimentally supported circRNA-
disease associations between 330 circRNAs and 48 dis-
eases that had been recorded in PubMed database before
November 2017 from the National Center for Biotechnol-
ogy Information. CircR2Disease [33] contains 661 circRNAs
annotated with 725 relations to 100 diseases, which
were manually curated from existing literature prior to
31 March 2018.

All these circRNA-disease databases contributed to the
study on the roles of circRNAs in diseases. We use two
datasets to evaluate the performance of our proposed method
CD-LNLP. First, we collect a total of 354 experimentally veri-
fied associations between 330 circRNAs and 48 diseases from
circRNADisease database, and then we remove duplicate
associations and associations related to other species except
human, and eventually retain 331 associations between
312 circRNAs and 40 diseases for humans. We name the
dataset as Dataset1 and we notice the same dataset was used
by Xiao et al. [37]. Second, we collect circRNA-disease
associations from CircR2Disease, and obtain 650 associa-
tions between 603 circRNAs and 88 diseases after removing
duplicated associations.We name the dataset as Dataset2. The
statistics of the two datasets are shown in Table 1.

B. PROBLEM DESCRIPTION
Given a set of circRNAs R = {R1,R2, . . . ,Rm} and a set
of diseases D = {D1,D2, . . . ,Dn}, known circRNA-disease
associations can be formulated as a bipartite network, which
regards circRNAs, diseases as nodes and regards associa-
tions as edges. The bipartite network is represented by an
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adjacency matrix A. A(i, j) = 1, if there is an association
between circRNA Ri and disease Dj; otherwise, A (i, j) = 0.
This work is to predict undiscovered circRNA-disease asso-
ciations between these circRNAs and diseases.

Here, we introduce the association profiles of circRNAs
and diseases for the sake of the following content. The asso-
ciation profile of a circRNA is a binary vector describing
the presence or absence of association with every disease
in the network. The association profile of circRNA Ri is
the ith row of the circRNA-disease adjacency matrix A, i.e.
A (i, :). Similarly, the association profile of the disease Dj is
the jth column of the circRNA-disease adjacency matrix A,
i.e. A (:, j).

C. LINEAR NEIGHBORHOOD SIMILARITY
After represented by association profiles, two circRNAs (dis-
eases) can be taken as data points in the feature spaces, and
there are several popular similaritymeasures for pairwise data
points, i.e. Jaccard similarity, cosine similarity and Gaussian
similarity. In our previous works, we presented the linear
neighborhood similarity (LNS) measure to calculate similar-
ity between two data points, and successfully applied it to lots
of bioinformatics tasks [38]–[40], and results demonstrated
that LNS can achieve superior performances compared with
other similarity measures. Therefore, we adopt LNS to calcu-
late circRNA-circRNA similarity based on their association
profiles.

The calculation of association profile similarity is briefly
introduced as follows. We take circRNAs as data points
in the association space according to their association pro-
files, denoted by Xi, i = 1, 2, . . . ,m. Each circRNA can
be represented as a vector (i.e. ‘‘association profile’’) in
the association space, which corresponds to a row of the
observed association matrix A. We calculate the Euclid dis-
tances between circRNAs’ association profiles, and define K
nearest neighbors ofXi asN (Xi).We present the optimization
problem as the following objective function:

min
w

1
2
‖A− (C �W )A‖

2

F
+
µ

2

n∑
i=1

∥∥(C �W )i·∥∥21
s.t. (C �W ) e = e, W ≥ 0 (1)

where� is the Hadamard product; ‖·‖F is the Frobenius norm
of matrix; ‖·‖1 is the 1-norm of vector. (C �W )i· is the ith
row of C �W , and e is a n × 1 vector with all values equal
to 1. C ∈ Rn×n is an indicator matrix. cij = 1 if xj ∈ N (Xi);
otherwise, cij = 0. By considering n rows at the same time,∑n

i=1

∥∥(C �W )i·∥∥21 in (1) can be rewritten as ‖(C �W ) e‖22.
As discussed in [41], W reflects the intrinsic structure of

known associations. To calculate W in (1), we introduce the
Lagrange function :

L =
1
2
‖A− (C �W )A‖

2

F
+
µ

2
‖(C �W ) e‖22

− λT ((C �W ) e− e)− tr (8W ) (2)

where tr is the trace of a matrix and8 is Lagrange multiplier.
Differentiating L with respect to W :

∇WL = C �
(
(C �W )AAT + µ (C �W ) eeT − AAT

− λeT
)
−8T (3)

According to the complementary slackness condition,
8ijWij = 0, and we have:

Cij
(
(C �W )AAT+µ (C �W ) eeT−AAT−λeT

)
ij
Wij=0

(4)

Thus, we obtain the update rule for W :

Wij =

Wij

(
AAT + λeeT

)
ij(

(C �W )AAT + µ (C �W ) eeT
)
ij

i 6= j

0 i= j

(5)

where λ is the regularization coefficient. We set λ to 1 for
simplicity.

Thus, we can obtain a similarity matrix WCap ∈ Rm×m for
m circRNAs. Similarly, we can obtain the association profiles
of diseases, and calculate pairwise similarities between n
diseases denoted by a similarity matrix.

D. LABEL PROPAGATION
After we calculate circRNA-circRNA similarity and disease-
disease similarity, we use a label propagation process [41] to
predict unobserved circRNA-disease associations.

First, we construct a directed graph which uses circRNAs
as nodes and use WCap(i, j) as the weight of edge linking
circRNA Ri to circRNA Rj. The known circRNA-disease
associations are considered as labels, which are propagated
in the circRNA similarity graph. In each step, the labels of
nodes are updated by absorbing label information from their
neighborhoods with a rate of α and retaining their initial
labels with a rate of 1−α. Let Y ti = {y

t
1i, y

t
2i, . . . , y

t
ni} denote

predicted association scores of the ith disease at time t , where
ytji measures the propensities of disease Di being associated
with circRNA Rj. When t = 0, Y 0

i is the association profile
of disease Di. The propagation process can be written as:

Y t+1i = αWY ti + (1− α)Y
0
i (6)

It can be inferred that:

lim
t→∞

Y ti = lim
t→∞

(αW )t−1 Y 0
i + (1− α)

∑t−1

i=0
(αW )i Y 0

i

= (1− α) (I − αW )−1 Y 0
i (7)

Then, Y ti will converge to:

Yi = (1− α) (I − αW )−1 Y 0
i (8)

where Yi is the final circRNA-disease association scores. Tak-
ing all diseases at the same time, let Y t = {Y t1,Y

t
2, . . . ,Y

t
n},

we can write above process in matrix form as:

Y = (1− α) (I − αW )−1 Y 0 (9)
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FIGURE 1. The influence of parameters on CD-LNLP (a) Effect of parameter α and β when ρ was set 1.0. (b) The influence of ρ.

The predicted matrix based on the circRNA similarity graph
is denoted by YcircRNA. In the same manner, we built the label
propagation model based on the disease similarity graph,
and the predicted matrix is denoted by Ydisease. We assign
different weights to each prediction model and calculate the
final integrated scores as follows:

Yintergration = ρYcircRNA + (1− ρ)Ydisease (10)

where ρ is the trade-off (weight) between circRNA-based
prediction and disease-based prediction.

III. EXPERIMENTS AND RESUTLS
A. EVALUATION METRICS
We adopt leave-one-out cross-validation (LOOCV) to evalu-
ate the performance of prediction models. In LOOCV, each
circRNA-disease pair is left out in turn as the testing sample,
and other circRNA-disease pairs are used as the training set.
In each fold, we construct prediction models based on the
training set and then score the testing one. We repeat the
training process and testing process until we have prediction
scores for all pairs.

In addition, we adopt several evaluation metrics to
evaluate performances of prediction models, i.e. the area
under receiver-operating characteristic curve (AUC), the area
under precision-recall curve (AUPR), sensitivity (SEN),
specificity (SPEC), precision (PRE), accuracy (ACC) and
F-measure (F1). The area under receiver-operating character-
istic curve (AUC) is to evaluate the prediction performance
of a model by considering the true positive rate and the
false positive rate over different thresholds. The area under
precision-recall curve (AUPR) considers the recall and preci-
sion over different thresholds. Since known circRNA-disease
associations are much fewer than unknown circRNA-disease
associations, we adopt AUPR as the primary metric. The
experiments are conducted on Dataset1 in python 3.6 under
macOS.

B. PARAMETER SETTINGS
CD-LNLP has three parameters: α, K and ρ. α is the
possibility of receiving label information from neighbors,
K is the number of neighbors, and ρ is the trade-off
(weight) for circRNAs. In our experiments, we consid-
ered the combinations of following values for different
parameters: {0.1, 0.2, 0.3, . . . , 0.9} for α, {10%, 20%,
30%, . . . , 90%} of the number of overall data points for K
and {0.0, 0.1, 0.2, 0.3, . . . , 0.9, 1.0} for ρ. Here, we denote
the proportion for K as β. Then we considered all com-
binations of different parameter values to build CD-LNLP
models, and implemented LOOCV on Dataset1 to evaluate
the influence of parameters on CD-LNLP.

In computational experiments, CD-LNLP produced the
best AUPR value when α = 0.1, β = 0.9, and ρ = 1.0.
Then, we fixed the weight parameter ρ, and evaluated the
influence of parameters α and β, and the results are shown
in Fig. 1 (a). Clearly, α and β have a great impact in the
model. For any β, when α is greater than 0.7, the perfor-
mances fall rapidly. For any α, when β is greater than 0.5,
the performances don’t change too much. Further, we fixed
the parameters α = 0.1, and β = 0.9, and observed the
influence of the weight ρ. The different values for ρ and
AUPR values are shown in Fig. 1(b). Clearly, performances
of CD-LNLP will increase as ρ increases.

C. COMPARISON WITH OTHER METHODS
In order to demonstrate the superior performance of
CD-LNLP, we compared it with several baseline methods
and state-of-the-art circRNA-disease association prediction
methods. Here, we consider the baseline methods: collab-
orative filter (CF), KATZ, nonnegative matrix factorization
(NMF), resource allocation (RA).

Collaborative Filter (CF) is a classic method for recom-
mender system [42] and it has been adopted to solve a lot of
bioinformatics problems. CF calculates the prediction score
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between Ri and Dj as:

Ap (i, j) =

∑m
k=1,k 6=iWikA (k, j)∑m

k=1,k 6=iWik
(11)

where Wik is the similarity between circRNARi and circRNA
Rk . A is the association matrix between circRNAs and dis-
eases.m is the number of circRNAs as mentioned before.Wik
is the Gaussian association profile similarity [43] between
circRNAs.

KATZ model was initially used to predict associations
in a social network, and it has also been successfully used
to predict lncRNA-disease associations [44], disease-gene
associations [45], microbe-disease associations [46] as well
as miRNA-disease associations [47]. We constructed a het-
erogeneous network with the adjacency matrix:

A∗ =
[
WCg A
AT WDg

]
(12)

whereWCg is the circRNA Gaussian association profile simi-
larity matrix,WDg is the disease Gaussian association profile
similarity matrix, A is the association matrix and AT is the
transpose of A. We apply KATZ to the heterogeneous net-
work, and obtain a (m+ n)× (m+ n) matrix SKatz:

SKatz =
[
S11 S12
S21 S22

]
=
(
I − ηA∗

)−1
− I (13)

where η is a free parameter (i.e. the damping factor) con-
trolling the path weights, and we assign η = 0.005. The
submatrix S12 is the prediction matrix for circRNAs and
diseases.

Nonnegativematrix factorization (NMF) has also been suc-
cessfully applied to a lot of bioinformatics problems, such as
disease-miRNA prediction [48], microRNA-disease predic-
tion [49] and so on. NMF is to factorize the circRNA-disease
association matrix A into two low-rank feature matrices
X ∈ Rm×k and Y ∈ Rn×k , where k is the dimension of
the low-rank spaces. The prediction matrix for circRNAs and
diseases is calculated as Ap = XY T .

The resource allocation (RA) [50] method is a graph-
based inference method, which has successfully solved lots
of association prediction problems [51]–[54]. The prediction
score between circRNA Ri and disease Dj is

Ap (i, u) =
m∑
l=1

A (l, u)
K (Rl)

n∑
j=1

A (l, j) f0
(
Dj
)

K
(
Dj
) ,

j ∈ {1, 2, . . . , n} , l ∈ {1, 2, . . . ,m} (14)

where K (Rl) =
∑n

u=1 A(l, u), u ∈ {1, 2, . . . ,n} denotes the
number of the diseases that are associated with Rl , and
K
(
Dj
)
=
∑m

k=1 A(k, j), k ∈ {1, 2, . . . . ,m} represents the
number of the circRNAs that are associated with Dj.
To the best of our knowledge, several methods have

been proposed to predict circRNA-disease associations, i.e.
PWCDA [34], DWNN-RLS [35], KATZHCDA [36], and
MRLDC [37]. The first three methods all integrate multi-
data sources (e.g., circRNAs’ related gene targets, genes’

FIGURE 2. AUCs of different methods evaluated by LOOCV.

related annotation terms, expression profiles of circRNAs
and MeSH descriptions of diseases’ descriptors) to predict
circRNA-disease associations. However, those features about
circRNAs and diseases are not always available. The main
goal of our study is to infer new circRNA-disease associ-
ations based only on the circRNA-disease association net-
work. For this reason, we only replicate the MRLDCmethod,
which prioritizes disease-associated circRNAs only based on
the known associations and reports good performances, and
adopt MRLDC as a benchmark method for comparison.

All models are evaluated based on Dataset1 by using
LOOCV. As shown in Fig. 2, our method produces greater
AUC scores than othermethods. In addition, we also calculate
AUPRs and other metrics of different methods. As shown
in Table 2, our method achieves an AUPR score of 0.4487,
which is higher than AUPR scores of other methods under the
same condition. Furthermore, the results in Table 2 demon-
strate our method has good performances in terms of different
evaluation metrics.

D. INFLUENCE OF DATA RICHNESS
In our task, known circRNA-disease associations are the only
information source for model construction, and the num-
ber of known circRNA-disease associations, i.e., data rich-
ness, may influence performances of our method CD-LNLP.
Here, we randomly remove 5%, 10%, 15%, 20%, 25% and
30% known circRNA-disease associations from Dataset1,
and implement LOOCV to evaluate CD-LNLP models by
using datasets which have fewer associations.

As shown in Table 3, data richness greatly influences the
performances of CD-LNLP models. Removing known asso-
ciations can decrease the data richness, and the AUC score
and AUPR score of CD-LNLP model decrease. In general,
5% decrease of known associationsmay lead to around 19.6%
decrease of the AUPR score and 1.4% decrease of the AUC
score. Therefore, CD-LNLP predicts unobserved associations
when most associations are known.
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TABLE 2. Performances of different prediction methods evaluated by LOOCV.

TABLE 3. Performances of CD-LNLP model based on fewer associations.

E. CASE STUDIES
In order to test the performance of our method in predicting
new circRNA-disease associations, we use case studies to
examine the performances of our method. We use all the
experimentally verified associations as training samples and
use those unobserved circRNA-disease associations as can-
didate associations. For a specific disease, we rank those
candidate circRNAs based on their prediction scores.

As discussed in section II-A, associations in Dataset1 are
extracted from circRNADisease database, which was estab-
lished in November 2017. Dataset2 is obtained from
CircR2Disease established in March 2018 and contains
many newly discovered human circRNA-disease associa-
tions. Therefore, we predict novel circRNA-disease associ-
ations based on all known associations in Dataset1, and then
confirm our findings in Dataset2.

First, we build the CD-LNLP model and the MRLDC
model, the CF model, the KATZ model, the NMF model and
the RA model by using all associations in Dataset1, and then
check up on the predictions in Dataset2. We analyze the top
30 associated circRNA candidates for every disease predicted
by our method (CD-LNLP) and other methods, and demon-
strate the overall numbers of confirmed associations for all
methods in Fig. 3. Clearly, CD-LNLP successfully identifies
5 associations among top 30 predicted associations for all
diseases, and produce better results than compared methods:
MRLDC (1), CF (4), KATZ (2), NMF (1) andRA (2). Further,
we investigate into the correctly identified circRNA-disease
associations, and list the rank of these associations in the
predictions yielded by other methods in Table 4. We observe

FIGURE 3. Numbers of confirmed circRNA-disease associations for
different methods.

that predicted associations have low rank in the predictions
of other methods, and it indicates that our method can dis-
cover novel associations ignored by other methods. We have
observed from the results that NMF or RA produces the
scores of 0 for many circRNA-disease pairs. As discussed
in section II-A, Dataset1 contains 331 associations between
312 circRNAs and 40 diseases. The possible reason is that
the circRNA-disease network is much too sparse, and NMF
and RA lack capability of dealing with circRNAs or diseases
without any association.
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TABLE 4. Novel confirmed associations predicted by CD-LNLP for all diseases and their rank in the prediction of benchmark methods.

TABLE 5. Top 10 circRNA-disease associations predicted by CD-LNLP.

TABLE 6. Top 10 predictions for the disease ‘‘Glioma’’ and ‘‘Colorectal cancer’’.

Further, we build CD-LNLP model based on Dataset2 to
test its prediction ability for unseen data. All known
circRNA-disease associations on Dataset2 are used to
train the CD-LNLP model, and all other circRNA-disease

pairs are used as the candidate circRNA-disease associa-
tions for prediction. Since all circRNA-disease associations
have been used to build models, the predicted asso-
ciations should be validated by the publicly available
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literature. The top 10 predicted circRNA-disease asso-
ciations are listed in Table 5, and we can find evi-
dence to confirm two associations. For example, Through
CDR1as [55], excessive expression of miR-671-5p markedly
increases migration and proliferation rates in glioblastoma
multiforme cells. The expression of CDR1as is upregu-
lated in cholangiocarcinoma and might promote the car-
cinogenesis. In addition, the CDR1as expression could
be considered as an independent prognostic biomarker
for cholangiocarcinoma with acceptable sensitivity and
specificity [56].

Moreover, we select two diseases of wide interests: Glioma
and Colorectal cancer for analysis, and respectively pre-
dict circRNAs associated with them. A glioma is a type
of tumor that starts in the glial cells of the brain or the
spine [57]. Gliomas comprise about 30 percent of all brain
tumors and central nervous system tumors, and 80 percent
of all malignant brain tumors [58]. Colorectal cancer is one
of the most common malignant tumors. In 2012, there were
1.4 million new cases and 693,900 death cases of colorectal
cancer worldwide [59], and colorectal cancer is the third
leading cause of cancer death in the United States [60], [61].
Table 6 shows the top 10 predicted circRNAs associated with
the two diseases. In general, three circRNAs are proved to
be associated with glioma, and two circRNAs are proved to
be associated with colorectal cancer. For example, Cdr1-as
is identified as downstream miR-671-5p targets in human
glioblastoma multiforme, and expression of Cdr1-as signif-
icantly decreases in glioblastoma multiforme biopsies [62].
CircRNA circHIPK3 promotes glioma progression through
targeting miR-654 from IGF2BP3 and circHIPK3 might be
a potential target for glioma therapy [63]. Cir-ITCH is a
tumor-suppressor gene in glioma and may serve as a promis-
ing prognostic biomarker for glioma patients, and restora-
tion of Cir-ITCH expression could be a future direction
to develop a novel treatment strategy [64]. For colorectal
cancer, Circ-ZNF609 promotes migration of colorectal can-
cer by inhibiting Gli1 expression via microRNA-150 [59].
CircHIPK3 promotes colorectal cancer growth and metasta-
sis by sponging miR-7. Co-expressing miR-7 along with a
circHIPK3 inhibitor may be a promising treatment approach
for patients with colorectal cancer [65]. Although there
remain many predictions which have not been confirmed,
they may be proved by future studies.

IV. CONCLUSION
CD-LNLP is a novel method for predicting circRNA-disease
associations. The experimental results and case studies
demonstrate that CD-LNLP has the high-accuracy perfor-
mances and outperforms other state-of-the-art methods. The
good performances of CD-LNLP are mainly attributed to the
following factors. First, the application of linear neighbor
similarity (LNS) guarantees the basic effectiveness of our
proposed method. The LNS measure has shown good per-
formance in many aforementioned bioinformatics problems,
such as drug-disease association prediction [41], drug-disease

therapeutic function prediction [39], microRNA-disease
association prediction [66] and so on. Second, since not all
biological information about circRNAs and diseases is avail-
able, CD-LNLP only uses the known associations, which is
reliable.

However, there still exist some limitations in CD-LNLP.
First, the model only utilizes the known circRNA-disease
associations as prior information, and is not applicable to
new circRNAs or diseases without any known association.
If we have more associations between circRNAs and dis-
eases, the model CD-LNLPwould obtain better performance.
Second, circRNAs can function asmiRNA sponges or decays,
protein sponges or decoys. In this study, we only adopt the
linear neighbor similarity based on the circRNA-disease asso-
ciation network as circRNA similarity and disease similarity.
In the future, the similarity computation of circRNAs and
diseases could reasonably utilize more biological network
information, such as circRNA-miRNA associations, circRNA
sequence information and disease semantical information to
improve predictive performance.
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