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ABSTRACT In this paper, a downlink cooperative channel estimation scheme is proposed for the three-
dimensional massive multiple inputs multiple outputs (3D-mMIMO) system operating in the frequency
division duplexing (FDD)mode. In the proposed cooperative scheme, users have to cooperate with each other
via device-to-device (D2D) communication protocol to jointly exploit the sparsity structure property of the
channel. Motivated by the sparsity property of the mMIMO channel in the angle-time domain, a parametric
feedback scheme is proposed, where the feedback overhead is decreased by sending a limited version of
the estimated coefficients rather than all the coefficients back to the BS. Then, a compressive sensing (CS)
algorithm is proposed, which we named weighted fast iterative shrinkage thresholding (WFISTA). In the
WFISTA, we first introduce new weights and threshold function to the original FISTA to enhance its
sparsity-undersampling trade-off in the single measurement vector (SMV) case, then we extend the proposed
WFISTA to the case of multiple measurement vector (MMV) problem by adopting ReMBo (reduce MMV
and boost) strategy. The proposed WFISTA has the ability to estimate the mMIMO system’s channel
coefficients by exploiting the joint sparsity structure through cooperation among users’ equipment (UEs).
Complexity analysis and the probability of decreasing the feedback overhead are provided for the proposed
cooperative estimation scheme. The simulation results verify the efficiency of the proposed cooperative
algorithm scheme compared to several joint channel estimations.

INDEX TERMS Channel estimation, device to device (D2D) communication, compressive sensing, fast
iterative shrinkage thresholding algorithm (FISTA), massive multiple input multiple output (mMIMO),
multiple measurement vectors (MMV), frequency division duplexing (FDD).

I. INTRODUCTION
Future wireless communication network must overcome the
challenges of current cellular networks such as support-
ing very high data rates with low latency and improving
the energy efficiency. To meet these towering requirements,
employing a huge number of antennas at the base sta-
tion (BS) side that serves a large number of multiple antenna
users contributing to massive multiple inputs multiple out-
puts (mMIMO) system is considered as a decisive solution
[1], [2]. However, the required minimum spacing between
antennas and the confined space at the BS are considered as a

The associate editor coordinating the review of this manuscript and
approving it for publication was Luyu Zhao.

stumbling block towards increasing the number of antennas at
the BS. For the BS, to support these huge number of antennas,
various antenna arrays structures were proposed in the liter-
ature [1]. Among these different structures, a uniform planar
array (UPA) is considered to be convenient configuration to
accommodate a large number of antennas in a small bounded
area. MassiveMIMO (mMIMO) systems with UPAs have the
attribute of controlling the transmitted beam in both vertical
and horizontal directions, so it is known as 3D-mMIMO [3].

On the other hand, realizing the gains of the mMIMO
is restricted by the availability of the channel state infor-
mation (CSI) at both sides [2]. However, over the available
frequency or time resources, acquiring precise CSI with a
plausible number of pilot symbols and feedback overhead
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is turned into a challenging problem with the deployment
of mMIMO [1]. Although the channel reciprocity property
of the time division duplex (TDD) mode is considered as a
suitable solution for the CSI feedback overhead, challenges
such as pilot contamination affect the practical application
of TDD [4]. In contrast, symmetric traffic with low-latency
communication can be achieved by deploying the frequency
division duplexing (FDD) mode. However, the tremendous
CSI feedback overhead must be carefully considered.

A. EXISTING RESEARCH WORKS
Benefiting from the sparsity property of the mMIMO chan-
nels in some spatial domains, compressive sensing (CS) [5]
emerges as a valuable tool that can provide high channel
estimation performance with a reasonable pilot and CSI
feedback overhead in FDD mode. Based on this idea, two
main schemes are proposed in the literature to reduce the
feedback overhead in the FDD transmission mode. In the first
scheme, each user’s equipment (UE) receives the downlink
pilot and estimates its channel separately. Then, they feed a
compressed version from the estimated channel back to the
BS. This scheme is studied in different literature works, e.g.
[6], [7], where different CS recovery algorithms are proposed
as structured subspace pursuit in [6], and split Bregman in
[7]. These CS algorithms are proposed to recover single
measurement vector (SMV) channels, so they are called SMV
CS algorithms. On the other hand, the second scheme is called
distributed CS estimation [8]–[10]. The distributed scheme
proposes to estimate the channel at BS instead of estimating
it individually at each UE. In this case, each UE sends its
received pilots back to the BS, which tackles the role of recov-
ering the channels. This scheme can benefit from the inter-
channel correlation between the adjacent UEs to efficiently
estimate the joint coefficients between them and to decrease
the feedback. In that case, The SMV CS algorithms must
be adopted to recover multiple measurement vectors (MMV)
channels, where multiple vectors are jointly recovered taking
into account the existing of joint coefficient due to inter-
channel correlation. Different joint MMV recovery algo-
rithms have been proposed for the distributed schemes as
alternative direction of multiplier (ADM) [8], joint orthog-
onal matching pursuit (J-OMP) [9], and sparsity adaptive
matching pursuit (SAMP) [10]. However, the distributed
scheme is not suitable for the applications that need CSI at
theUE side such as interferencemanagement techniques, also
the feedback overhead is still quite large. In the last few years,
device to device communication (D2D) technology became
a reality [11]. Now, billions of devices are connected with
different protocols, and this trend will sustain its exponential
increase. At the same time, UEs are now embedded with
powerful processors and huge storage capability. As a result,
the decentralization is considered as an appropriate way to
deal with such tremendous communication traffic. In line
with this trend, we incorporate D2D communication as an
enabling tool for exchanging the CSI information.

B. MOTIVATION AND CONTRIBUTION
Motivated by the critical importance of channel estimation
and feedback challenges, and since the decrease in the CSI
feedback overhead proposed in the previous literature is still
not enough, in addition to the unavailability of CSI at the
UE sides in their proposal, we present the work in this paper
aiming at improving the solution for these challenges.

Particularly, and in contrast to the existing FDD estimation
schemes, this paper proposes1 a cooperative channel esti-
mation and feedback scheme for the 3D-OFDM mMIMO
operating in FDDmode based on D2D communication proto-
cols. The main contribution of this paper can be summarized
as follows:
• We propose a cooperative channel estimation scheme
to utilize the sparsity property of the mMIMO channel.
In the proposed cooperative scheme, UEs within the
cell are clustered according to their relative distance and
a cluster head (CH) is chosen for each cluster. Then,
the channel estimation is done cooperatively amongUEs
in the same cluster using D2D protocol before feeding
the estimated channels’ coefficients back to the BS.

• We propose a parametric feedback scheme that benefits
from the joint sparsity property of the proposed coop-
erative channel estimation. In this scheme, the feedback
overhead is decreased by sending a limited version of
the estimated coefficients rather than all the coefficients
back to the BS.

• To exploit the sparsity property of the estimated
mMIMO channel, we propose a weighted fast iter-
ative shrinkage-thresholding algorithm (WFISTA) for
the cooperative channel estimation strategy, where
weighted terms are added to a recursive equation of
the estimated vector. Thus, unlike the conventional
FISTA, the WFISTA is able to enhance the sparsity-
undersampling trade-off by expanding the search space
based on mutation strategy of heuristic algorithms.

• We validate the channel estimation capability of the
proposed cooperative scheme in utilizing the sparsity
property of the mMIMO while reducing the required
complexity compared with the conventional schemes.
In addition, the complexity analysis and the probability
of decreasing the feedback overhead are provided for the
proposed cooperative estimation scheme.

C. PAPER ORGANIZATION AND NOTATION
The rest of the paper is organized as follows: Section II
introduces the system transmission model, assumptions, and
the channel sparsity representation of our proposed schemes.
Section III discusses the proposed cooperative channel
estimation and parametric feedback schemes. Section IV
presents the problem formulation of the CS model, the pro-
posed WFISTA algorithm for joint channel estimation, and
the complexity analysis of the proposed algorithm. The prob-

1The material in this paper was presented in part at the 2017 Personal,
Indoor, and Mobile Radio Communications (PIMRC) [12].
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ability that the proposed cooperative scheme can decrease
the feedback overhead is discussed in Section V, while
Section VI simulates the performance of the proposed tech-
nique. Section VII concludes the paper.
Notation: Variable, i.e. matrices and vectors are, respec-

tively, indicated with upper case and lower case bold let-
ters. The normal math font ‘X, x’ expresses matrices and
vectors in the frequency domain, respectively, while the cal-
ligraphic font ‘X ,x’ indicates the time domain matrices
and vectors. The Frobenius norm is represented by ‖ . ‖f ,
while the notation ‖X‖p,q = (

∑N
j=1

∥∥xj∥∥qp)1/q refers to
lp,q mixed norm. Transpose, conjugate transpose, cardinality,
and pseudo-inverse operators are represented, respectively,
by the notations ( . )T , ( . )H , | . |, and ( . )†. The operator
supp(x) estimates the non-zero indices of vector x. The nota-
tion Blkdiag[X,Y ,Z] refers to a matrix assembled using the
matrices X,Y ,Z stacked along its diagonal, while the trans-
pose of multiple matrices [X,Y ,Z]T = [X;Y ;Z] convert the
matrices,X,Y ,Z, from the concatenation over a row vector to
concatenation over a column vector. The sub-matrices X |�,
and X |� are assembled, respectively, from the � indices set
of rows and columns. The notation A(j, :) denotes the jth row
of the matrix A. The Kronecker product, real number field,
and the complex number field are denoted by

⊗
, R, and C

respectively. Ix denotes the x× x identity matrix.

II. SYSTEM MODEL AND CHANNEL SPARSITY
REPRESENTATION
As shown in Fig.1, the proposed system model considers a
single cell of a 3D multi-user mMIMO system. The BS is
equipped with a UPA of NBS antennas distributed across Nro
rows and Nco columns, where NBS = Nco × Nro. Accord-
ing to the proposed cooperative scheme, the UEs within the
cell are clustered into Nc cluster depending on their relative
distance; each cluster has M UEs of K antennas distributed

FIGURE 1. The system transmission model for the proposed cooperative
channel estimation scheme.

in a ULA configuration, where Nc × M × K = Nu < NBS .
This paper proposes a cooperative channel estimation scheme
for the systems operate in FDD mode, where the BS sends
pilot symbols to UEs in the downlink phase, then the UEs
within the cluster cooperate to jointly estimate the channel
and feedback the estimated coefficients to the BS.

A. 3D MASSIVE MIMO SYSTEM TRANSMISSION
AND CHANNEL MODEL
An OFDM scheme with Ns orthogonal subcarriers is consid-
ered as a signaling mechanism for the frequency-selective
multi-user mMIMO system. Each orthogonal subcarrier is
treated as a flat block fading channel. Within the coherence
time, the received Np sequence of pilot symbols transmitted
from the BS over the jth subcarriers to the ith UE in the nth

cluster can be expressed as:

Y i,n(j) = H i,n(j)X(j)+W i,n(j), (1)

where X(j) ∈ CNBS×Np is the Np transmitted pilot symbols at
jth sub-carrier. H i,n(j) ∈ CK×NBS is the channel matrix at the
jth subcarrier from the BS to the ith UE in the nth cluster, while
wi,n(j) ∈ CK×Np is an additive white Gaussian noise (AWGN)
with zero mean and variance σ 2

n .
The K × NBS channel frequency response of ith UE in the

nth cluster, H i,n(j), can be modeled as in [13]:

H i,n(j) =
Nh∑
m=1

βmi,nVr (ψm
ri,n

)VT
t (ψm

ti,n
)e−j2πτ

m
i,nfj , (2)

where βmi,n and τmi,n are the mth path loss and the mth path
delay within the delay spread for the ith UE in the nth cluster,
respectively, while fj is the frequency of the jth subcarrier. The
Vt and Vr are, consecutively, the receive and the transmit
steering vectors. The receive steering vector Vr can be writ-
ten as in [13], [14]:

Vr (ψr ) =
1
√
K
[1, e−j2πψr , . . . , e−j2π (K−1)ψr ]T , (3)

where ψr =
dr
λ
sin(α), while α is the angle of arrival (AoA)

at UEs within the angle spread [−π/2, π/2], the symbol
λ is the wavelength of the carrier, and dr is the relative
displacement between any two neighboring antennas at UE.
As in [15], the transmit steering vector Vt is related to the
UPA configuration and can explicit as:

Vt (ψt ) = Vh(ψh)⊗ Vv(ψv) (4)

where Vh and Vv are the horizontal and the vertical steer-
ing vectors, respectively. The vectors Vh and Vv can be
expressed from [3], [16] as:

Vh(ψh) =
1
√
Nro

[1, e−j2πψh , . . . , e−j2π (Nro−1)ψh ]T (5)

Vv(ψv) =
1
√
Nco

[1, e−j2πψv , . . . , e−j2π (Nco−1)ψv ]T (6)
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whereψv =
dco
λ
cos(θ ),ψh =

dro
λ
sin(θ )cos(φ), while dco and

dro are the relative displacement between two neighboring
antennas in a column and a row at the BS side, respectively.
The angles φ ∈ [0, π] and θ ∈ [0, π/2] are, consecutively,
the azimuth and the elevation angles of departure (AoD)
from the BS to UEs. By stacking all subcarriers, the concate-
nated 3D-mMIMO channel for the ith UE in the nth cluster
can be rewritten as:

H i,n= [H i,n(1),H i,n(2), . . . ,H i,n(Ns)]T ∈ CKNs×NBS . (7)

B. SPARSITY REPRESENTATION OF THE CHANNEL
In the environment of poor scatterers, the angular domain is
considered a proper sparse representation for mMIMO chan-
nels [14], [17]. The angular domain decomposes the transmit-
ted signals into different beams across dedicated directions,
while the remaining directions turn into sparse. By deploying
the angular domain, the propagation environment is defined
with NBS transmit lobes and K receive lobes at each UE
constituting a beamforming pattern [14], [18]. The system
model expressed by equation (1) is represented in the angle-
frequency domain as:

Yai,n(j) = Ha
i,n(j)X

a(j)+Wa
i,n(j), (8)

where Ha
i,n(j) = UH

r H i,n(j)U t ∈ CK×NBS is the angle-
frequency domain channel that between the BS and the ith

UE at the nth cluster over the jth subcarrier, while the trans-
mitted and received angular domain pilot symbols over the jth

subcarrier, Xa(j) and Yai,n(j), can be expressed as UH
t X(j) ∈

CNBS×Np , and UH
r Y i,n(j) ∈ CK×Np , respectively. Wa

i,n(j) =
UH
r W i,n(j) ∈ CK×Np is the received AWGN. The unitary

matrices Ur ∈ CK×K , and U t ∈ CNBS×NBS are the angular
domain transformation basis at UEs and BS respectively.

The layout of the UPA equipped at the BS estimates the
entire values U t . From [3], U t can be formulated as:

UT
t =Rh ⊗Rv, (9)

where the vertical and the horizontal transformation matrices
Rv ∈ CNco×Nco and Rh ∈ CNro×Nro , respectively, can be
expressed from [13], [14] as follows:

Rv = [Vv(0),Vv(
1
Nco

), . . . ,Vv(
Nco − 1
Nco

)] (10)

Rh = [Vh(0),Vh(
1
Nro

), . . . ,Vh(
Nro − 1
Nro

)] (11)

For the ULA antennas at UEs’ side, the received basis Ur
can be an inverse discrete Fourier transform (IDFT) matrix
[14]. By accumulating all subcarriers, the concatenated angu-
lar domain channel for the 3D mMIMO can be rewritten as:

Ha
i,n= [H

a
i,n(1),H

a
i,n(2), . . . ,H

a
i,n(Ns)]

T
∈ CKNs×NBS . (12)

Although the angular domain is a proper sparse domain
for the mMIMO channel, a deep sparse representation for
the frequency-selective channels can be obtained by further

describing the angular domain channels in the time domain
which constitute the so-called angle-time domain [6]. In the
case of limited influential scatterers, the channel delay spread
is usually larger than the sampling interval that has a bigger
influence on most of the channel coefficients driving them to
be almost zero. The channel in the time domain can thus be
turned into a sparse tapped delay line (TDL) [19]. From [13],
[20], the stacked angle-time domain channel over Nh taps,
Ha

i,n, can expressed from the concatenated angle-frequency
domain, Ha

i,n, as:

Ha
i,n = FNuHa

i,n, (13)

where FNu = FNs×Nh ⊗ INu is the concatenated matrix of
the truncated Fourier matrix FNs×Nh as in [18], and Ha

i,n =

[Ha
i,n(1), . . . ,H

a
i,n(Nh)]

T
∈ CKNh×NBS , while Ha

i,n(m) ∈
CK×NBS is the angle-time domain channel at the mth tap for
the ith UE in the nth cluster.
The number of channel coefficients that need to be esti-

mated is decreased from NsNBSNu to NsNsp by describing the
channel in the angle domain only, where Nsp << NBSNu
is the number of angle domain’s non-zero bins. However,
the number of unknowns Ns can be decreased to Nq, where
Nq << Ns is the number of non-zero taps in the time
domain. Thus, exploiting the angle-time as a sparsifying
domain reduces the number of the channel coefficients that
need to be estimated to NqNsp.

In this work, we propose that the relative distance between
any two adjacent antennas at UE’s, dr , is small such that
the distance between the first and last antennas at UE,
dmax = K × dr , is less than c/(10BW ). Thus, the CIR
taps are non-resolvable since the paths’ times of arrivals
at the antennas of each UE are quite close which con-
stituting the so-called space invariant antenna array (SIA)
structure. For the SIA structure of ith UE, the dominant
taps of the CIR for all K antennas have the same indices
set �ti : 0 < �ti << Nh. Consequently, the angle-time
domain channel has a sparsity structure of the following two
properties:
• Property 1 (individual local supports): As the K antenna
elements of each UE are adjacent to each other, they
practically experience the same scatterers. Therefore,
for all the K antennas of a certain UE, their angular
domain channels share the same location for the angular
domain bins and have equivalent sparsity pattern of S
non-zero coefficients with distinct values; this leads to
what is called the multiple measurement vectors (MMV)
structure. For the ith UE in the nth cluster, there is a local
supports set �Ai,n : 0 < |�Ai,n | = S << NBSNq and
such that:

supp(ha
1,i,n
|�ti

) = · · · = supp(ha
K ,i,n
|�ti

) = �Ai,n ,

(14)

where ha
k,i,n
∈ C1×NBSNh is the angle-time domain

channel vector between the BS and the k th antenna
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element of the ith UE in the nth cluster, and �Ai,n ={
�Ai,n (1), �Ai,n (2), . . . , �Ai,n (Nh)

}
, where �Ai,n (m) is

the individual local support for the ith UE at the mth tap.
• Property 2 (shared common supports): Although the
UEs inside the cluster experience various sparsity pat-
terns, there is a cross-channel correlation among UEs
in the same cluster, especially when they are physically
near to each other [9]. And thus, there are Sc joint indices
that are commonly shared among all UEs within the
cluster, that are termed as shared common supports.
Within the nth cluster, there exists a common indices set
�AC,n : �AC,n ⊂ �Ai,n and |�AC,n | = Sc such that:

M⋂
i=1

�Ai,n = �AC,n (15)

III. PROPOSED COOPERATIVE CHANNEL ESTIMATION
SCHEME AND PARAMETRIC FEEDBACK
In this section, we propose a cooperative channel estimation
scheme to improve the channel estimation performance and
decrease the feedback of mMIMO system by exploiting the
two property of angle-time domain channels. In the proposed
cooperative channel estimation scheme, the UEs within the
cell are clustered, and a cluster head (CH) is chosen as shown
in Fig.1. To ensure the existence of the joint sparsity structure,
the clusters are formed according to the relative distance
between UEs. Also we assume that the CH is predetermined.
The transmitted pilot signals X(j) are observed distributively
at each UE and sent via D2D communication to the CH (red-
dashed lines) who initiates the estimation process.2 Using the
WFISTA algorithm proposed in the following section, the CH
can exploit the common indices �AC,n and feed them back
to the UEs of the corresponding cluster using D2D signaling
(blue-solid lines). Using these estimated common indices,
each UE can easily estimate the rest of its individual channel
coefficients by applying a second step of WFISTA algorithm.
One advantage of the proposing cooperative estimation is its
ability to decrease the feedback overhead by feeding back
a limited version of the estimated coefficients ‘parametric
feedback’ rather than sending all the coefficients back as
conventional FDD mode. In the proposed parametric feed-
back scheme, we can feed only the individual coefficients of
the sparse angle-time channel matrix, Ha

i,n, and their corre-
sponding indices back to the BS. The proposed cooperative
estimation and parametric feedback scheme are summarized
in Table 1.
Using the proposed parametric feedback scheme,

the feedback overhead per UE can be reduced from
µKSLog(NBS ), in the distributed CS feedback schemes, to
K (S + (S − Sc)/K ) in the proposed cooperative scheme,
which gives us the opportunity to install more antennas at the
BS side as shown in Fig.2(a). Besides, it is also worth noting

2In this work, we assume that the D2D channel links between the UEs in
the same clusters and the CH are known, and the received pilots of all UEs
in the cluster are perfectly detected at the CH.

TABLE 1. Proposed cooperative estimation and parametric feedback
scheme.

FIGURE 2. Illustration of the typical maximum number of UEs that can be
served at different number of BS’s antennas NBS (a) for the proposed
cooperative scheme versus distributed and conventional schemes,
and (b) for the proposed cooperative scheme at different number of
antennas per UEs K .

that the decreasing percentage in the feedback overhead
becomes more noticeable as the number of the common
supports Sc or the number of antennas per UE K increase
as shown in Fig.2(b). In particular, for the case of Nu = 20
and K = 1, i.e. number of UEs is equal to 20, we can install
NBS = 200 antennas at the BS. However, for the case of
Nu = 20 and K = 2, i.e., number of UEs is equal to 100,
we can install NBS = 300 antennas at the BS.
Our proposed cooperative channel estimation and feedback

schemes are applicable to any channel model that has a
sparse representation that contains jointly non-zero indices
between UEs’ channels like the 3D-MIMO channel in the
angle-time domain as explained in Sect. II. However, for
the proposed schemes, to be deployed in the mMIMO cel-
lular system, a MMV-CS algorithm is needed to exploit the
common and individual indices. In the following section,
we will explain the CS model formulation for the estimation
at the CH and the other UEs in the cluster and how we
can solve the formulated model with the proposed WFISTA
algorithm.
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IV. PROBLEM FORMULATION AND PROPOSED WFISTA
ALGORITHM
A. PROBLEM FORMULATION
According to the proposed cooperative channel estimation
scheme, the CH will exploit the common indices, while the
other UEs within the cluster, will exploit the rest of individual
indices and the channel coefficients. Thus, we have two
different CS model, i.e., at the CH and the other UEs in the
cluster.

1) CS MODEL FORMULATION FOR CHANNEL ESTIMATION
AT THE CLUSTER HEAD (CH)
By assuming that the signals from the other UEs in the cluster
are perfectly received at the CH, the received signal over the
jth subcarrier at the CH from (M − 1) UEs in the cluster via
D2D communication in addition to the CH received signal
can be expressed in the standard form as:

Yn(j) = Hn(j)X(j)+Wn(j), (16)

where Yn(j) = [Y1,n(j),Y2,n(j), . . . ,YM ,n(j)]T ∈ CMK×Np

is the received Np pilot symbols for the combined M
UEs over the jth subcarrier at CH, and Hn(j) =

[H1,n(j),H2,n(j), . . . ,HM ,n(j)]T ∈ CMK×NBS is the M con-
catenated channel matrix, whileWn(j) ∈ CMK×Np is AWGN.
By considering the angle-time representation proposed in
sec (II-B) as the sparse transformation domain, the CS form
for the system transmissionmodel in (16) can be expressed as:

Ȳ
a
n = AH̄a

n + W̄
a
n, (17)

where Ȳn
a
= [ ¯Y1,n

a
, . . . , ¯YM ,n

a
] ∈ CNsNp×KM ,

is the stacked Ns transposed received signal concate-
nated over M UEs at the CH, whereas Ȳ

a
i,n =

[Ya
T

i,n(1), . . . ,Y
aT
i,n(Ns)]

T
∈ CNsNp×K . The channel matrix

H̄a
n isM stacked of the transposed angle-time channel, H̄a

i,n,
as H̄a

n = [H̄a
1,n, H̄

a
2,n, . . . , H̄

a
M ,n]CNBSNh×MK , and H̄a

i,n =

[HaT
i,n(1), . . . ,H

aT
i,n(Nh)]

T
∈ CNBSNh×K . The multiplication

of the measurement pilot matrix and the Fourier transforma-
tion basis can form the sensing matrix A as:

A = X̄
aFNBS , (18)

where X̄
a
= Blkdiag[XaT (1),XaT (2), . . . ,XaT (Ns)] ∈

CNsNp×NBS is the concatenated transmitted signal in the
angle-frequency domain over Ns subcarrier, while FNBS =

FNs×Nh ⊗ INBS is the stacked NBS truncated Fourier matrix
FNs×Nh . From [8], [9], exploiting the joint sparsity property
of theMMVchannel, H̄a

n, is associatedwith solving l1,2 norm
optimization problem as follow:

minimize H̄a
n

∥∥∥H̄a
n

∥∥∥
1,2
= (

K∑
k=1

M∑
i=1

∥∥∥h̄a

k,i,n

∥∥∥2
1
)1/2

subject to Ȳ
a
n = AH̄a

n, (19)

where h̄
a

k,i,n
is the column of the k th antenna of H̄a

i,n. The l1,2

mixed norm,
∥∥∥H̄a

n

∥∥∥
1,2

, can be interpreted as combination of

l1 and l2 norms. Thus, we can exploit their convexity feature.
In l1,2 mixed norm, the sparsity of each individual column in
H̄a

i,n is exploited using the l1-norm, while the joint sparsity
among columns is extracted by deploying l2-norm on the
resultant vector [21].

2) CS MODEL FORMULATION FOR CHANNEL ESTIMATION
AT INDIVIDUAL UES
The next step is estimating the remaining individual coef-
ficients separately at each UE after receiving the estimated
common supports indices from the CH. At each UE in the
nth cluster, the CS model for individually estimating the
sparse channels’ coefficients in the angle-time domain can
be extracted from the system model equation (1) as:

Ȳ
a
i,n = AH̄a

i,n + W̄
a
i,n, (20)

As in the case of estimation at the CH, the optimization
problem that exploit the joint sparsity of MMV structure can
be represented as follow:

minimize H̄a
i,n

∥∥∥H̄a
i,n

∥∥∥
1,2
= (

K∑
k=1

∥∥∥h̄a

k,i,n

∥∥∥2
1
)1/2

subject to Ȳ
a
i,n = AH̄a

i,n, (21)

B. PROPOSED WFISTA ALGORITHM
To exploit the common and individual indices from the
l1,2-norm optimization problems represented by equation
(19) and (21), a MMV-CS algorithm is needed. In this sub-
section, we propose WFISTA algorithm to utilize the joint
sparsity property of (19) and (21).

1) PROPOSED WFISTA ALGORITHM FOR SMV CASE
FISTA algorithm proposed in [22] is considered as a sort
of iterative shrinkage-thresholding algorithms (ISTA) with
better convergence rate and same computational complex-
ity. However, FISTA algorithm fails to trade-off between
the degree of sparsity and the undersampling reconstruction,
which we called sparsity-undersampling trade-off [23]. Some
works have been introduced to improve FISTA by reshap-
ing the l1-norm problem using a smoothing step as in [24].
However, the work in [24] has not considered the sparsity-
undersampling trade-off problem of FISTA.

Unlike [24], this work proposes a weighted
FISTA (WFISTA)3 to enhance the estimation performance
and the sparsity-undersampling trade-off of original FISTA
for the case of single measurement vector CS problem. One
way to achieve this goal is to increase the search space and
avoiding the FISTA to fall into a local minimum. Thus, in our
proposed WFISTA, we adopt the following three modifica-
tions to the vector-updating step of the original FISTA.

3It is worth noting that our proposed WFISTA algorithm is completely
different from the works proposed in [24], in which the original FISTA is
applied to a smoothing l1 − l1 problem. Thus, algorithm proposed in [24]
has modified the objective function not the FISTA algorithm itself.

76288 VOLUME 7, 2019



A. Nasser et al.: FDD Cooperative Channel Estimation and Feedback for 3D Massive MIMO System

TABLE 2. Comparison between FISTA and proposed WFISTA
algorithms [12].

• To explore more in the search space, we propose to
adjust the vector-updating step to depend on two pre-
viously estimated vectors instead of only one previously
estimated vector in the original FISTA. Increasing the
search space by adopting more previously estimated
vectors is proposed based on the mutant strategies stud-
ied in some heuristic algorithms as in [25].

• Two weights have been added, W1 and W2, such that
a weighted sum of the two previous estimated vectors
is subtracted from the current estimated one instead of
the direct subtraction of one previous estimated vector
in original FISTA. Adding weights gives the proposed
WFISTA algorithm the capability of tracking the fast
change in the values of the vector coefficients [26].
To prevent our algorithm from falling into a local min-
imum point, the weights are adapted every iteration
according to the inverse of the previously estimated
vector.

• A soft thresholding function ητ is applied to the modi-
fied term inspiring from the approximate message pass-
ing algorithm proposed in [23]. The threshold function
regularizes the value of the modified crucial term and
obliges the minimized function to descend to a mini-
mization point during the iterative process.

For the case of estimating the channel of each antenna indi-
vidually, the objective function can be written as:

F =
∥∥∥ȳak,i,n − Ah̄a

k,i,n

∥∥∥2
2
+ λ

∥∥∥h̄a
k,i,n

∥∥∥
1

(22)

where ȳak,i,n is the column of the k th antenna of Ȳ
a
i,n. The

proposed WFISTA algorithm to estimate h̄
a
k,i,n compared

to original FISTA is demonstrated in Table 2, where ητ is a
soft thresholding operator with τ threshold value, and λ is a
regularization multiplier.

From Fig. 3(a), the enhancement in the proposed WFISTA
performance upon original FISTA, in terms of the mean

FIGURE 3. Proposed WFISTA vs. original FISTA for a channel vector, ha
i ,

of length 800 coefficients, where (a) MSE vs. SNR for S = 70, and
Nm = 400, (b) MSE vs. number of measurements ‘Nm’ for SNR = 20dB,
and S = 70, and (c) MSE vs. sparsity level ‘S’ for SNR = 20 dB, and
Nm = 400.

square error (MSE) [27] between the estimated and the actual
channel coefficients, becomes more obvious at higher values
of SNRs. Moreover, the WFISTA shows superior perfor-
mance for different number of measurements, Nm = NsNp,
in Fig. 3(b). In general, the estimation performance becomes
worse as the number of non-zeros elements, S, increased as
shown in Fig. 3(c). However, the instability in the original
FISTA curve in Fig. 3(c) proves its sparsity-undersampling
trade-off problem.

On the other hand, the improved performance of pro-
posed WFISTA over original FISTA comes at the expense
of increasing the required memory storage as we need
to store two previously estimated vectors rather than one.
Also, as the proposed WFISTA explores more in the
search space, it requires more iteration to converge com-
pared to original FISTA. Thus, there is a trade-off relation-
ship between the estimation accuracy improvement and the
convergence speed.

2) PROPOSED WFISTA ALGORITHM FOR MMV CASE
Both FISTA and the proposed WFISTA have the ability to
recover only an individual vector from its measurements
solving the SMV CS problem. However, in the proposed

VOLUME 7, 2019 76289



A. Nasser et al.: FDD Cooperative Channel Estimation and Feedback for 3D Massive MIMO System

cooperative estimation scheme, utilizing the property of
joint sparsity structure between the antennas of each UE or
between different UEs in the cluster represented by l1,2 mixed
norm optimization problems (19) and (21) needs the SMV
algorithms to be extended to the MMV case. In addition,
the l1,2 mixed norm is a semi-definite or a second order
programming which is computationally costly to be solved
by utilizing existing standard algorithms [21].

In this paper, ReMBo (reduce MMV and boost) strategy
is adopted to the proposed WFISTA to solve the MMV opti-
mization problems (19) and (21). ReMBo is a low complex
strategy in which the MMV problem can be turned into the
SMV case. Then, the proposed WFISTA algorithm can be
applied. By employing the following three steps, the MMV
problem can be solved using the proposed WFISTA.
• Step 1: Transforming the MMV problem to the SMV
problem of the same sparsity pattern by multiplying
the received pilot matrix by a random vector ‘‘z′′ as
yzn = Ȳ

a
n z in the case of estimation at the CH, and

yzi,n = Ȳ
a
i,n z in the case of estimation at the other UEs

in the cluster.
• Step 2: Finding the common and individual indices by
applyingWFISTA algorithm. The resultant vector, in the
case of CH and in the case of other UEs, preserves the
position of the joint indices of the original matrix as:

supp(hz
n) = supp(H̄a

n) = �AC,n (23a)

supp(hz
i,n) = supp(H̄a

i,n) = �Ai,n (23b)

• Step 3: Given the common and individual indices
exploited by the WFISTA and the received pilot matri-
ces Ȳ

a
i,n, the channel coefficients can be estimated by

employing LSE estimator individually at each UE on the
estimated indices only.

By applying these three steps, the proposed WFISTA can
recover any matrix of MMV structure from its compressed
measurements. Table 3 describes the three steps of the pro-
posed WFISTA algorithm to solve (19) at CH and (21) at
other UEs in the cluster for the proposed cooperative scheme,
which is referred as WFISTA-Coop.

3) PROPOSED WEIGHTS
To track the all possible sparsity pattern for the vectors hzt

n

and hzt
i,n, the weights W1 and W2 can be adapted every

iteration according to its previous solution hzt−1
n [28]. The

entire values of the diagonal of W1 are designed such that
small weights are assigned to the non-zero coefficients and
larger weights elsewhere as in [28]. This adaptation strategy
for the weights gives us the opportunity to explore more in the
available search space. However, to ensure that the variable
sequence of hzt

n and hzt
i,n will converge to a minimum point

the sum of the weights must equal to one. For the case of the
proposedWFISTA in the CH, in each iteration, the introduced

TABLE 3. The proposed WFISTA algorithm with cooperative scheme
(WFISTA-Coop).
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weights are adapting according to:

diag(W1) = min

(
ζ,

ρ∣∣hz
n

∣∣+ ε
)

(24)

W2 = I −W1 (25)

where ρ, ε > 0 are tuning parameters to provide stability and
to prohibit a zero value in the denominator, while 0 < ζ < 1
is an upper bound for the weights.

4) COMPLEXITY ANALYSIS
The overall computational complexity of the proposed
WFISTA algorithm either for SMV or MMV is the same as
the FISTA algorithm and is calculated as O(NhNBSNpNs).
The complexity computation comes from the matrix-vector
multiplication part in the objective function in (22) rather
than matrix multiplication or matrix inversion as the other
joint recovery algorithms. The complexity of the WFISTA
at the CH is still O(NhNBSNpNs). However, the WFISTA
complexity at other UEs in the cluster is reduced to
O(Nh(NBS − Sc)NpNs), as the length of the recovered vector
is reduced from NhNBS to Nh(NBS − Sc) due to the step of
estimating the common supports at the CH.

In contrast with other joint estimation algorithms [26],
[27], the proposed WFISTA is independent of either the
number of UEs per cluster M or the number of antenna per
UE K . However, the proposed WFISTA needs more mem-
ory storage than original FISTA. The bottleneck complexity
order of different joint algorithm in the case of solving the
optimization problem (19) is listed in Table 4.

V. ANALYSIS OF THE FEEDBACK DECREASING
PROBABILITY FOR THE PROPOSED COOPERATIVE
SCHEME
Although the probability of determining the common sup-
port indices is tightly related to the CSI estimation quality
[9], it also related to the feedback decreasing probability.
The higher probability recovery for the common support
indices, the higher feedback overhead decreasing probability.
In this section, we will analyze the decreasing in the feedback
probability in the case of applying the proposed cooperative
scheme. First, we suppose the following events:

TABLE 4. The complexity order of the joint estimation algorithms
for problem (19).

• 2df : is the event of decreasing in feedback.
• 2co: is the event of UEs cooperation.
• 2cs: is the event that the l th row of H̄a

n is a common
support for a given sparsity pattern.

• 2Ecs: is the event that the l th row of H̄a
n is estimated as

a common support row.
The probability of decreasing in the feedback given that

the UEs cooperate with each others is upper bounded by the
existence of common supports and the ability of estimating
these supports as:

Pr(2df | 2co) ≤ Pr(2cs)Pr(2Ecs) (26)

where Pr(2cs) is the probability that the l th row of H̄a
n is

common non-zero support and can be expressed as:

Pr(2cs) =
Sc
S

(27)

From the proposed algorithm in table 2 and equations (19)
and (21), a common non-zero row in the channel matrix
H̄a

n can be detected by comparing the Frobenius norm value

of this row
∥∥∥H̄a

n(l, :)
∥∥∥2
F

with a threshold. The squared of
the Frobenius norm can be considered as a chi-squared χ
distribution [9]. The chi-squared χ distribution with degree of
freedom 2κ , χ2κ , can be confined with Chernoff bounds as:

Pr(χ2κ < 2aκ) ≤ exp(−κ(−1+ a− ln a)) (28)

Suppose λi is the probability that the l th row of H̄a
n is

estimated as a common zero row, and using Chernoff bounds
in equation (28), λi can be upper bounded by:

Pr(χ2κ < 2aκ) = Pr(
∥∥∥H̄a

n(l, :)
∥∥∥2
F
< KMτ ) = λi

≤ exp(−
KM
2

(−1+τ−lnτ )), (29)

From equation (29), the probability that the l th row of H̄a
n

is estimated as a common non-zero support can be lower
bounded by:

Pr(
∥∥∥H̄a

n(l, :)
∥∥∥2
F
> KMτ ) = 1− λi

≥ 1−exp(−
KM
2

(−1+τ−ln τ )),

(30)

Hence, the probabilityPr(2df | 2co) is lower bounded by:

Pr(2df | 2co) ≥
Sc
S
(1− exp(−

KM
2

(−1+ τ − ln τ )))

(31)

From equation (31), we conclude that Pr(2df | 2co)
increases as K and M increase. Therefore, in the proposed
cooperative estimation and feedback schemes, larger number
of antennas per UE K or larger number of UEs per cluster
M will result in a more decreasing in the feedback overhead.
Also, increasing the number of common support Sc compared
to the total sparsity level S will give the same result of
reducing the feedback overhead as referred in Sec III.
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VI. NUMERICAL RESULTS AND DISCUSSION
A. SIMULATION PARAMETERS
In terms of SNR, the degree of sparsity S, and the number
of pilots Np, the performance of the proposed FDD coop-
erative estimation scheme with WFISTA, which is referred
as WFISTA-Coop, is compared with various joint channel
estimation schemes. As we estimate the channel at UE side
that has a limited power source, we target in our comparison
low-complex fast convergence CS algorithms that do not
need prior information on the estimated channels. We com-
pare the proposed scheme with the following state-of-the-art
baselines:
– Conventional channel estimation: LSE in [17], [33] is

considered as a benchmark estimator
– Conventional CS channel estimation at UE side:

SS-MUSIC [34], M-OMP [35], AMP-MMV [31],
GGAMP-SBL [32], [36], and SPGL1 [27] are adopted
to individually recover H̄a

i,n by solving the optimization
problem (21) at each UE. Also, for fair comparison,
the proposed WFISTA without the cooperative scheme
is also applied to solve (21).

– Distributed CS channel estimation: J-OMP [9] is simu-
lated as an example of distributed algorithms where the
channel of all UEs are estimated at the BS taking into
account the common and individual supports.

To satisfy the restricted isometry property (RIP) of CS [5],
Gaussian distribution is used to produce the pilot matrix. The
sparsity level S refers to the S-nonzero rows in the channel
H̄a

i,n (Individual supports). Out of S individual supports, each
h̄
a
k,i,n has Sc common supports. The cell is divided into four

clusters, Nc = 4, each cluster has M = 20 UEs, while the
other common simulation parameters are NBS = 100, K = 2,
Nq = 5, Nh = 100. The normalized mean square error [37]
is applied to evaluate the performance of each estimator and
is defined as:

NMSE = 10log(

∥∥∥H i,n − Ĥ i,n

∥∥∥2
F∥∥H i,n

∥∥2
F

) (32)

B. SIMULATION RESULTS AND DISCUSSION
In compared with other algorithms, Fig.4 shows the estima-
tion performance of the proposed WFISTA with cooperative
estimation scheme, referred as WFISTA-Coop, in terms of
NMSE versus different values of SNR for S = 21, Sc = 15,
and Np = 45. Thanks to the introduced adapted weights and
the cooperative scheme, the proposedWFISTA andWFISTA-
Coop shows improved performance over either joint algo-
rithms or distributed algorithms.

In Fig.5, the performance of estimation is studied under
different lengths of pilot symbols, Np, for SNR=10, S = 21,
and Sc = 15. Estimating the channel depending on a history
of two previous estimated values rather than one improves the
estimation performance of bothWFISTA andWFISTA-Coop
even with a small number of transmitted pilots. However,
as the number of NP increases towards NC × M × K , all

FIGURE 4. The performance of the proposed WFISTA and WFISTA-Coop
versus state-of-the-art joint estimation algorithms in terms of NMSE at
several values of SNR for M = 40, K = 2, NBS = 100, Sc = 15, S = 21,
Sc = 15, Nc = 10, Np = 45, Nq = 5, and Nh = 100.

FIGURE 5. The performance of the proposed WFISTA and WFISTA-Coop
versus state-of-the-art joint estimation algorithms in terms of NMSE at
several lengths Np of pilot symbols for M = 40, K = 2, NBS = 100,
Sc = 15, S = 21, SNR = 10 dB, Nc = 10, Nq = 5, and Nh = 100.

algorithms act the same performance as the problem moves
from unsolved to solved problem.

Under different challenging sparsity levels S, Fig.6 shows
the performance in terms of NMSE for SNR=10, and
Np = 45. Thanks to the ability of WFISTA to exploit the
joint individual supports in addition to extracting the common
supports by proposing the cooperative scheme, the proposed
algorithm provides robust estimation performance over other
joint algorithms.

From the simulation figures, the proposed WFISTA algo-
rithm improves the channel estimation performance even
without the cooperative scheme. Although the proposed
cooperative scheme improves the estimation process and
reduces the feedback overhead, it needs more time than the
other techniques for channel estimate process due to the D2D
communication steps. Thus, a trade-off exists in the proposed
cooperative scheme between the required time for estimation
and the decreasing in the feedback overhead.
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FIGURE 6. The performance of the proposed WFISTA and WFISTA-Coop
versus state-of-the-art joint estimation algorithms in terms of NMSE at
several sparsity levels S for M = 40, K = 2, NBS = 100, Sc = 15, S = 21,
SNR = 10 dB, Nc = 10, Np = 45, Nq = 5, and Nh = 100.

VII. CONCLUSION
In this paper, a FDD cooperative channel estimation scheme
has been proposed for downlink 3D-OFDMmMIMO system
where UEs within the cell are clustered and via D2D commu-
nication they can cooperate to exploit the sparsity structure of
the channels. Also, WFISTA algorithm has been proposed to
exploit the channel sparsity structure of UEs within the clus-
ters. In WFISTA algorithm, the FISTA algorithm has been
extended to the MMV case using REMBO strategy, while
new adaptive weights are introduced to improve the overall
estimation performance. Complexity and probability analysis
also have been discussed, and the improved performance of
the proposed scheme over various joint channel estimation
techniques are validated by the simulation results.
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