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ABSTRACT Generally, facial expressions could be classified into two categories: static facial expressions
and micro-expressions. There are many promising applications of facial expression recognition, such as pain
detection, lie detection, and babysitting. Traditional convolutional neural network (CNN)-based methods
suffer from two critical problems when they are adopted to recognize micro-expressions. First, they are
usually dependent on very deep architectures that overfit on small datasets. However, reliable expressions are
relatively difficult to collect and relevant datasets are usually relatively small. Second, for micro-expressions,
these methods usually neglect the temporal redundancy of micro-expressions which could be utilized to
reduce the temporal complexity. In this paper, we propose a shallow CNN (SHCNN) architecture with only
three layers to classify static expressions andmicro-expressions simultaneously without big training datasets.
To better explain the functionality of our SHCNN architecture, we improve the saliency maps by introducing
a shrinkage factor after studying the vanishing gradient problem of existing saliency maps. Experiments are
conducted on five open datasets: FER2013, FERPlus, CASME, CASME II, and SAMM. To the best of our
knowledge, by comparing with other methods offering source code (or pseudo code), we believe that our
method would be the best on FERPlus, CASME, and CASME II and competitive on FER2013 and SAMM.

INDEX TERMS Facial expression, CNN, saliency analysis.

I. INTRODUCTION
Inferring unspoken meaning from facial cues is a human
instinct. Scientists conduct extensive researches on expres-
sion recognition in many fields such as acoustic, natu-
ral language processing, neuroscience and computer vision.
Facial expression recognition is the most popular among
them since vision is the most basic human sense. Since
Picard [1] proposed affective computing, recognizing expres-
sions by machine has been a frontier research topic.
Micro-expressions only last for 1/25 to 1/5 second and their
movements are subtle, therefore recognizing them is more
challenging than recognizing static facial expressions.

In the literature, micro-expression recognition is imple-
mented in a great variety of approaches [2]. These
approaches are usually categorized into three groups,
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i.e., statistical [3], [4] approaches, deep learning
approaches [5] and Apex frame based approaches [6]–[8]:
Statistical approaches attempt to combine traditional

machine learning methods (e.g., SVM, random forest) and
image processing methods (e.g., LBP, HOG, HOOF [9]).
They first extract the handcraft features of expressions, then
use statistical classifiers to classify these handcraft features.
However, with the success of deep learning, their perfor-
mances are no longer the best (Table 6, 7, 8).
Deep Learning based approaches use deep architectures

to learn intrinsic features of expressions. Unfortunately,
high-resolution expressions are very difficult to collect,
therefore the relevant datasets are relatively small com-
pared to large high-resolution datasets like ImageNet [10]
and UCF-101 [11]. The deep architectures might over-
fit on these datasets that are relatively small. Some
approaches employ spatiotemporal architectures, such as
3D convolution [12], [13] and CNN-LSTM architecture [5].
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FIGURE 1. Comparison of three kinds of optical flow. (a) and (b) are two frames selected from CASME II. The differences between
them are hard to recognize. (c) LK optical flow, (d) TV-L1 optical flow and (e)(f) flownet2 are used to visualize the differences. The
left-down corner highlights the micro-expression despite that the movement is very subtle.

These spatiotemporal architectures are somehow inspired
by video action recognition. However, they do not take
full advantage of a characteristic of micro-expressions (but
not a characteristic for video actions): the micro-expression
clips are usually short and have much temporal redundancy,
i.e., the frames do not vary too much from each other. For
example, if a person is smiling in one frame, then the person is
very likely to smile in the nearby frames. By taking advantage
of temporal redundancy, we could simplify the neural net-
works to better fit on fewer samples. For example, the Tempo-
ral InterpolationModel (TIM) [14] is used to reduce the video
frames, and even some researches only use Apex frames.
The datasets in action recognition, e.g., UCF-101 [11] and
HMDB51 [15]–[17], are usually large. Therefore, spatiotem-
poral architectures are successful in the field of action recog-
nition. Due to the limited size of expression datasets, these
architectures may not work well on expression recognition.
In addition, spatiotemporal architectures use massive param-
eters to fit the temporal relationships in micro-expressions.
However, temporal relationships inmicro-expressions are rel-
atively simple. Expressions contained in consecutive frames
are highly similar. Therefore intuitively, we should design a
shallower network with lower temporal complexity.
Apex frame based approaches notice the temporal redun-

dancy. Li et al. [6] and Zhang et al. [7] only use frames near
apex frames for training. However, these approaches face a
problem. The training samples are few even using all frames.
If we only use apex frames (or frames near them) and discard
other frames, much useful information is given up.

To address the insufficient performance issue in statistical
methods, overfitting issue in deep learning approaches and
missing information issue in apex frame based approaches,
we propose a shallow CNN named SHCNN. Firstly, instead
of using temporal architectures, we use TV-L1 optical
flow [18], [19] (Fig. 1), which is fast and accurate, to extract
the temporal features. Since TV-L1 is enough to achieve good
results, we give up FlowNet2 [20] in our experiments since
it is slow and difficult to be integrated into our architec-
ture. For each video with n frames, we calculate the optical
flow between the first frame and the last n-1 frames and
get n-1 optical flow images. Then we use SHCNN to clas-
sify each optical flow image and finally employ the voting
strategy to decide the final category of the video. Moreover,
since SHCNN does not include spatiotemporal architecture,

FIGURE 2. General pipeline of static expression/micro-expression
classification. The two tasks(static expression recognition and
micro-expression recognition) share SHCNN architecture but have
different weights. The saliency map is used to visualize the functionality
of the proposed SHCNN.

it could also be used for static expression analysis (Fig. 2).
One might ask why SHCNN classifies optical flow images
instead of classifying video frames directly. That is because
micro-expressions are embodied in movements. Our main
contributions are follows:

• Wepropose to use a shallow network (SHCNN) that alle-
viates the overfitting issue for datasets that are relatively
small.

• We propose a simple but practical pipeline (Fig. 2)
without deep spatiotemporal architectures. The pipeline
could take full advantage of temporal redundancy in
micro-expressions.

• We study the vanishing gradient problem of the original
saliency map [21]. Moreover, we improve the saliency
map by introducing a shrinkage factor to better visualize
SHCNN.

• Experiments on five public datasets (FER2013,
FERPlus, CASME, CASME II, SAMM) show that our
method performs favorably against the state-of-the-art.
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FIGURE 3. Saliency maps of objects and expressions. (a) Dog and its saliency map (taken from [21]). (b) Crack
and its saliency map (our method). (c) Saliency map of facial expression (marked by green points, taken from
FER2013 [32]).

II. RELATED WORK
A. STATIC EXPRESSION RECOGNITION
Before 2012 when Alexnet [22] achieved huge success on
ImageNet [10], handcraft features and SVM were widely
used to classify expressions. For example, [23]–[26] used
Local Binary Pattern (LBP) to extract features. After 2012,
with stronger GPUs and larger datasets, CNNs were widely
used in expression recognition. Y.Tang listed the top in the
kaggle FER2013 competition, he used a simple neural net-
work to extract features of static images and SVM hinge loss
for classification, indicating that neural network is able to
do better without handcraft features [27]. In 2016, Barsoum
et al. [28] proposed four training strategies on FERPlus, get-
ting ∼85% accuracy and showing that noisy label problem
was critical for FER tasks. Yang et al. [29] used original
images and LBP features as two kinds of features and pro-
posed a double channel CNN to classify them. A geometric
model (DFSN) was proposed in [30] to preprocess the facial
features and the preprocessing method helped to increase the
recognition accuracy.

B. MICRO-EXPRESSION RECOGNITION
We briefly review the representative researches for the three
approaches mentioned in the Introduction:

(a) Statistical approaches: Li et al. [3] used LBP and
HOOF to extract features, TIM to reduce temporal complex-
ity and SVM for classification.

(b) Deep Learning approaches: Khor et al. [5] proposed
ELRCN architecture. ELRCN used CNN to extract spa-
tial features and LSTM to learn the temporal relation-
ship between these spatial features. They finally got 50.0%

F1-score on CASME II database. Wang et al. [13] pro-
posed a method based on two-stream 3D CNN pretrained on
macro-expression datasets.

(c) Apex frame based approaches: Li et al. [6] used
frames near the apex frames for micro-expression recogni-
tion. To highlight expressions, they employed the Eulerian
method [31] to magnify the subtle changes. Their work is a
milestone for apex frame based methods. The main idea of
these approaches is reducing the temporal complexity and
enhancing the video movements.

C. SALIENCY MAPS
To visualize CNN, Simonyan et al. [21] proposed the saliency
map of CNNs. Its basic idea is to determine the effect of
each pixel to the classification of whole image I (HxW ).
Mathematically, if Si(1 ≤ i ≤ n) are n score functions (the
outputs after softmax), saliency map determines the effect of
each pixel by calculating the gradients of Si with respect to
I : gi := ∇ISi, and if gi is large at some pixel P, increasing
the intensity of P increases the probability that the image is
recognized as class i. If the image I is categorized as class j,
we define the pixels of I that have positive correlations with
the score function Sj as saliency pixels:

saliency pixels := {p ∈ I |
∂Sj
∂p
≥ 0}. (1)

Fig. 3(a) shows the saliency map of a dog [21] from the
ImageNet [10]. Fig. 3(b) shows that the saliency area of the
crack is very close to the actual place, therefore our saliency
map could be used for localization. Fig. 3(c) is a demo of the
saliency map on the face. Unlike the saliency area of objects,
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the attention points in the saliency map of expressions are
dispersed, but we notice that the saliency pixels mainly gather
around the man’s left eye, so we can infer that it is the left eye
that affects his expression (neutral) most.

III. PROPOSED METHOD
A. THE FACIAL EXPRESSION DATASETS
The proposed algorithm is tested on five public datasets:
FER2013 [32], FERPlus [28], CASME [33], [34],
CASME II [35] and SAMM [36]. The details of datasets are
listed below:

(1) FER2013. The FER2013 dataset consists of
35887 grayscale face images of size 48×48 collected from
the internet and used for kaggle challenge. Each image is
labeled with one of the seven kinds of expressions (angry,
disgust, fear, happy, sad, surprise and neutral) depending on
its item on the internet. Due to the unreliability of the Internet,
there are many noisy labels in this dataset [28]. It contains
three subsets: Training, PublicTest and PrivateTest, contain-
ing 28709, 3589, 3589 grayscale images respectively. We use
PrivateTest for validation and PublicTest for test.

(2)FERPlus. To solve the noisy label problem in FER2013,
Barsoum et al. [28] tagged the images again and used prob-
ability distribution instead of a unique tag to determine the
category of each image. For example, if 4 taggers think an
image is neutral while the other 6 taggers think it is disgust,
then the image is tagged as {neutral: 4, disgust: 6, others:
0} while one-hot encoding treats it as {disgust: 1, others: 0}.
Images and three sets are totally the same with FER2013, but
tags are different. We discard 520 images in the PublicTest
because they are labeled as ‘‘unclear’’.

(3) CASME. There are eight kinds of expressions in
CASME: tense, happiness, repression, surprise, disgust, fear,
contempt and sadness. There are 19 subjects, 189 videos in
the dataset. The distribution is: tense (69 videos), happiness
(9 videos), repression (38 videos), surprise (20 videos), dis-
gust (44 videos), fear (2 videos), contempt (1 video), sadness
(6 videos). We only use the first 5 classes because there are
few samples in the last 3 classes.

(4) CASME II. Seven kinds of expressions are included
in CASME II, they are happiness, others, disgust, repres-
sion, surprise, fear and sadness. There are 26 subjects,
255 videos and 16781 frames in the dataset. The distribution
is: happiness (32 videos, 2319 frames), others (99 videos,
6336 frames), disgust (63 videos, 4153 frames), repression
(27 videos, 2150 frames), surprise (25 videos, 1514 frames),
fear (2 videos, 66 frames), sadness (7 videos, 243 frames). For
the same reason, we only use the first 5 classes of CASME
II. We use LOSO (Leave One Subject Out) protocol in our
experiments on CASME and CASME II.

(5) SAMM. Compared with CASME and CASME II which
only consist of Chinese subjects, SAMM is a novel dataset
whose subjects are selected from a diverse range of age and
ethnicity. We classify the SAMM into three categories: Posi-
tive (Happiness), Negative (Anger, Fear, Disgust, Contempt)

FIGURE 4. SHCNN architecture.

and Surprise. These three categories contain 26, 92, 15 sam-
ples respectively, hence SAMM is an unbalanced database.

B. SHCNN ARCHITECTURE
The network architecture is shown in Fig. 4.

The n in Fig. 4 denotes the number of expression cate-
gories. For FER2013, n = 7, for FERPlus, n = 8, for
CASME and CASME II, n = 5, for SAMM, n = 3. The out-
put of softmax function is a tensor of shape (batchsize, n). For
each image I in a batch, there is an array S = [S1, S2, . . . , Sn]
indicating the likelihood estimation of the image I , we call S
the score functions of I and Si the score function of the i-th
category.

LeakyReLU [37] is used in the SHCNN to avoid ‘‘Dead
ReLU problem’’. We set coefficient α of LeakyReLU to 0.02.
We briefly explain the usage of LeakyReLU: using ReLU is
able to converge theoretically, but when we are working on
the FER2013 and FERPlus datasets, we find the loss defined
in Eq. 2 is stuck at about 1.80 and fails to fall even after
80 epochs. However, with LeakyReLU (α = 0.02), the loss
falls to 0.0004 and the network converges to a considerable
state. We also choose other coefficients of LeakyReLU, for
example, 0.2, 0.1, but the performance changes very slightly.
We could draw an empirical conclusion: as long as the
network could converge, the coefficient α does not matter
significantly. However, using ReLU instead of LeakyReLU
might cause the failure of convergence.

C. PREPROCESSING
We first convert all video frames into grayscale images. For
a video V and every frame F in V , if F is not the first
frame of V , we calculate the TV-L1 optical flow between the
first frame of V and F . The optical flow is firstly resized
into 112×112 and then transformed into an HSI image.
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FIGURE 5. Classification pipeline for static expressions.

The saturation component is set to 255 constantly, the hue
component and the intensity component represent argument
and magnitude of the motion vectors in the optical flow
respectively. Finally the HSI image is transformed into a RGB
image (like images in Fig. 1) which is used to train SHCNN.
As for static expressions, we crop the top left, top right, bot-

tom left, bottom right and middle 42×42 patches from each
image, and flip each patch horizontally. Therefore, 10 patches
are derived from one single original image. The preprocessing
pipeline for static expressions is illustrated in Fig. 5.

D. TRAINING
The loss L of SHCNN is defined as

L = −
1
N

N∑
i=1

n∑
j=1

pijlog Sij + λ
∑
w

||w||2, (2)

where N means the batch size, nmeans the number of classes
and λ is a l2-regularizer. pij denotes the probability that the
i-th image in the batch is in the j-th class. For FERPlus we
use the given probability tags and for other datasets we use
one-hot tags. We set the initial learning rate of Adam [38]
optimizer to 0.001 for both tasks. We set λ to 0.0003 and N to
100. We do a comparative study of the learning rate in Fig. 8.
When the learning rate is 0.001, the SHCNN converges faster
on FERPlus than 0.0001. As for micro-expressions, the dif-
ference of using learning rates of 0.001 and 0.0001 is very
slight. The difference is random (after running our codes sev-
eral times, sometimes 0.001 is slightly better and sometimes
0.0001 is slightly better), thus we could categorize the differ-
ence as a random error.We use Tensorflow and aGTX 1080Ti
to implement our algorithms. For source code, please look at
https://github.com/miaosiSari/Affective.

TABLE 1. Explanation of the four cases.

E. INFERENCE
For micro-expressions, we employ a voting method for clas-
sifying each video. We simply see which class is the major
class in the video. For example, a video has 3 frames, two of
them are judged as neutral and the third one is judged as sad,
then we judge the video as neutral. If there are exactly two
major classes, we simply use the class of the apex frame as
the class of the video. Fortunately there is always an evident
major class for each video in our experiment, so that dilemma
never happens in our evaluation.

As for static images, we employ a boosting method for
evaluation. For each test image P, let P1, P2, . . . , P10 be
10 derived images (Fig. 5) and Sij(1 ≤ i ≤ 10, 1 ≤ j ≤ n) be
the score functions after the softmax layer of the i-th derived
image of P. We determine the category of a test image P by:
class(P) = argmax

1≤j≤n

∑
1≤i≤10

Sij.

F. SALIENCY MAP
Themethod in [21] is important for CNN visualization. How-
ever we find it has vanishing gradient problem if the network
is trained quite well (some class function is extremely close
to 1). The score function Sj is computed by the softmax
function:

Sj :=
exp(oj)
n∑
i=1

exp(oi)
, (3)

where o1, o2, . . . , on are the outputs of the last Fully Con-
nected layer. The original saliency map

original saliency map := ∇ISj, (4)

computes the gradients of the score function Sj with respect
to the original image I . By chain rule:

∇ISj =
n∑

k=1

∂Sj
∂ok
∇Iok . (5)

Take l2-estimation on both sides of Eq. 5:

||∇ISj||2 ≤ (
n∑

k=1

∣∣∣∣ ∂Sj∂ok

∣∣∣∣) max
1≤k≤n

||∇Iok ||2. (6)

Through the definition of Sj, we get:

∂Sj
∂ok
=

{
Sj(1− Sj) j = k,
−SjSk j 6= k.

(7)

The problem is if the network works very well, the network
is likely to have very high belief on one class. Therefore there
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TABLE 2. Three numerical examples are given to illustrate the vanishing gradient problem.

TABLE 3. Results on FER2013.

FIGURE 6. Confusion matrix of FER2013.

likely exists a score function Sj that is extremely close to
1 and other score functions are close to 0 (for example, score
functions are [9.99e-01, 1.90e-07, 7.94e-10, 8.75e-05, 5.15e-
06, 4.31e-10, 1.96e-11, 2.76e-05] and the first score function
9.99e-01 is extremely close to 1). In that case ∂Sj

∂ok
is close

to 0 no matter Sj is close to 1 or close to 0 (four cases are
described in Table 1). The gradient ∇ISj would become very
small (sometimes less than 10−8) because ∂Sj

∂ok
vanishes for

every k (Eq. 6). Therefore, the saliency map would become
unclear (Fig. 13) and the computation becomes unreliable
due to the precision of float32. To tackle this problem, we

FIGURE 7. Confusion matrix of FERPlus.

introduce a shrinkage factor:

M := max
1≤j≤n

|oj|, (8)

and define:

Vj :=
exp(oj/M )
n∑
i=1

exp(oi/M )
. (9)

Our improved saliency map is defined as:

improved saliency map := ∇IVj. (10)

Similar to Eq. 1, the improved saliency pixels are defined
as:

improved saliency pixels := {p ∈ I |
∂Vj
∂p
≥ 0}. (11)

The partial derivative of Vj with respect to ok is:

∂Vj
∂ok
=


1
M
Vj(1− Vj) j = k,

−
1
M
VjVk j 6= k.

(12)

Determining the relationship of ∂Vj
∂ok

and ∂Sj
∂ok

quantitatively
could be very difficult, but we are able to explain the rela-
tionship qualitatively. | ∂Vj

∂ok
| is not required to be greater than

|
∂Sj
∂ok
|, but when some Sk (1 ≤ k ≤ n) is close to 1 and other Sk

are close to 0, using Vk for saliency map solves this problem,
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FIGURE 8. Training curves of FER2013 and FERPlus. SHCNN overfits on FER2013. However, compared with deeper models, SHCNN has higher
accuracy (Table 3). (a) Training curves of FER2013. (b) Training curves of FERPlus.

FIGURE 9. Training curves of all subjects from CASME and CASME II. (a) Training curves of CASME. (b) Training curves of CASME II.

that is because dividing these oj by M makes these Vj get
closer to each other and farther from 1, thus the product |VjVk |
becomesmuch bigger than |SjSk |. Althoughwe have to divide

−VjVk by M to get ∂Vj
∂ok

(Eq. 12), | ∂Vj
∂ok
| is still larger than

|
∂Sj
∂ok
|. We give 3 numerical examples in Table 2. For the first

example, the max score function, which is 9.98965779e−1,
is close to 1, therefore the gradients are very small, but they do
not vanish. For the second example, the max score function is
extremely close to 1, so the original saliency map is as small
as 1e−43 and they vanish. However, with our score functions
{Vi}, the improved saliency map does not vanish for the first
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TABLE 4. Training time and parameters of several networks (we use a
1080Ti and float32 data format). The parameters shown in this table are
much fewer than the ones trained on ImageNet since the latter use
224 × 224 images as input.

TABLE 5. Results on FERPlus.

two examples. For the third example, the max score function
0.73105858 is still far from 1, so our method does not help a
lot in this case.

When we are visualizing the SHCNN on five datasets,
the vanishing gradient problem also exists. Sometimes the
SHCNN outputs very high belief on one class (the score
function S on that class is 0.999998 which is very close to 1),
thus the saliency map ∇IS vanishes. To improve it, we use
{Vj} defined in Eq. 9 and calculate ∇IV as the improved
saliency map instead of ∇IS. The comparisons with the
original saliency maps are listed in Fig. 13 and discussed in
Section IV-G.

IV. EVALUATION AND RESULTS
This section discusses the evaluation results on the five
benchmark datasets. We use accuracy as an evaluation met-
ric for static expressions. As for micro-expressions, due to
the limited samples and the unbalanced datasets, we use
F1-Score besides accuracy for evaluation. At last, to prove
the problem of the existing saliency map and the effective-
ness of the improved saliency map, we offer five examples
in Fig. 13 and discuss the correctness of the improved saliency
map in subsection IV-G. During evaluation, we mainly com-
pare our work with the researches which offer their source
codes or pseudo codes and use similar evaluation protocols
with us.

TABLE 6. Results on CASME. (LOSO, in the column’Task’, 0 represents
disgust, 1 represents surprise, 2 represents repression, 3 represents
tense, 4 represents happiness, *:Original paper uses all 8 classes of
CASME, so we reproduce it using the same 5 classes as we use. PNSO:
The paper classifies the expressions into positive, negative, surprise and
others. Our work gets 114 correct among the 180 videos.)

TABLE 7. Results on CASME II. (LOSO, *: Inferred from confusion matrix,
&: Original paper uses all 7 classes of CASME II, so we reproduce it using
only the same 5 classes as we use. Our work gets 175 correct among the
246 videos.)

A. RESULTS ON FER2013
Results on FER2013 are listed in Table 3. The number of
parameters and the inference time are shown in Table 4.
We compare SHCNN with several standard networks such as
VGG and some methods from newly published papers. As is
seen from Fig. 8(a), it takes about 80 epochs for our SHCNN
to reach the summit. The confusion matrix is listed in Fig. 6.

B. RESULTS ON FERPLUS
As for FERPlus, we mainly compare SHCNN with
classical networks and the four strategies proposed by
Barsoum et al. [28]. The DenseNet, which is the most com-
plicated model in Table 5, does not perform considerably
on FERPlus. That is possibly because too many parameters
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TABLE 8. Results on SAMM. LOSO: Leave One Subject Out. LOVO: Leave
One Video Out. CDE: Composite Database Evaluation.

TABLE 9. Confusion matrix of SAMM. SHCNN has a considerable
performance on SAMM, which is an unbalanced dataset.

cause severe overfitting on FERPlus. Fig. 8(b) illustrates the
training curve of FERPlus. When the initial training rate is
0.001, it reaches the summit (0.8654) in the 22nd epoch and
the training process finishes in 31 epochs. However when the
initial learning rate is 0.0001, the training process is longer
(37 epochs) and the best accuracy is lower (0.8537). The
confusion matrix is listed in Fig. 7.

C. RESULTS ON CASME
Table 6 shows that our method not only performs high
accuracy but also has the highest F1-Score, which means it
is able to deal with extremely unbalanced data. Although
DiSTLBP-IIP performs higher accuracy, it only involves four
classes while our method involves five classes. We have
trained our SHCNN 19 times because there are 19 subjects
in CASME and we use LOSO policy. We place training
curves of CASME in Fig. 9(a). The confusion matrix is listed
in Fig. 10.

D. RESULTS ON CASME II
The accuracy/F1-Score, training curves and confusion matrix
could be found in Table 7, Fig. 9(b), Fig. 11 respectively.
We can see from Table 7 that our method performs the best
both in accuracy and F1-Score.

E. RESULTS ON SAMM
The accuracy/F1-Score and the confusion matrix are placed
in Table. 8 and Table. 9 respectively. We successfully
reproduce the codes of ELRCN and STSTNet shared on
Github [39], [40]. ELRCN employs CNN-LSTM architec-
ture. STSTNet [41] employs 3D convolution. STRCN [42]
employs 3D convolution and face alignments. However,
we find that using SHCNN only without spatiotemporal
architectures is enough to get better results.

FIGURE 10. Confusion matrix of CASME.

FIGURE 11. Confusion matrix of CASME II.

F. IMPORTANCE OF OPTICAL FLOW
Since SHCNN classifies optical flow images instead of clas-
sifying frames directly (Fig. 2), the readers might ask: is
SHCNN able to classify the video frames directly instead of
the optical flow? The answer is NO. We set up two control
groups as follows:
• Group A: we use SHCNN to classify frames of
micro-expressions directly without pretrained weights
form static expressions.

• Group B: we classify frames directly instead of optical
flow images using the pretrained weights from FERPlus.

The results on three micro-expression datasets (CASME,
CASME II and SAMM) are presented in Table 10. Table 10
shows that classifying video frames directly would get unsat-
isfactory accuracies.

When we use the pretrained weights from FERPlus to
classify frames from micro-expressions, we find most frames
(∼ 95%), even some apex frames (Fig. 12), are recognized
as ‘‘neutral’’. The micro-expressions are embodied in move-
ments, therefore highlighting the movements by optical flow
is critically important.

G. DISCUSSIONS ON SALIENCY MAPS
Five examples of saliency maps are listed in Fig. 13. From
the first, second, fourth, fifth examples we could see that the
vanishing gradient problem exists in the original saliencymap
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TABLE 10. Classification accuracy (with/without optical flow). If we classify video frames directly without optical flow, the performance would be
unsatisfactory.

FIGURE 12. Apex frames of micro-expressions are sometimes recognized
as neutral when they are viewed as static expressions. (a) Apex frame(1).
(b) Apex frame(2).

FIGURE 13. Saliency maps of static expressions and optical flow images.
The original saliency map suffers the vanishing gradient problem and fails
to visualize the SHCNN correctly if one of score functions is close to 1.

(Eq. 4) when one of score functions is close to 1. The saliency
pixels also vanish in these four examples. With the improved
saliency map (Eq. 10), the vanishing gradient problem is
alleviated. Our method does not show much difference on the
third example, whose score functions Si are

1.1571884e−02
2.7973113e−09
6.7376145e−13
9.8825127e−01
1.4307184e−04
2.8094493e−05
1.3439661e−12
5.7942052e−06



FIGURE 14. Explanation of the third saliency map.

and max Si = S4 = 9.8825127e−01. It is because S4
is not very close to 1, so the vanishing gradient problem
does not hold in this case ( ∂S4

∂o1
= −1.1571884e−02 ∗

9.8825127e−01 = −0.01144). We conduct a simple adver-
sarial attack on the third image of Fig. 13. We decrease
the intensity of the improved saliency pixels (Eq. 11) by
20. Before decreasing, SHCNN judges the original image
as’sadness’ correctly. However, after decreasing the intensity
of saliency pixels, SHCNN treats the image as’anger’. The
adversarial example proves that the improved saliency pixels
indeed affect the classification (Fig. 14).

V. CONCLUSION
Motivated by the limited training samples and the tempo-
ral redundancy, we propose the SHCNN without deep tem-
poral architectures like LSTM and 3D convolution. Some
researches, like Apex frames based CNNs, indeed avoid
these architectures and achieve good results. However, they
also give up some training images and useful information,
hence intensify the ‘‘data hungry’’problem and impair the
performance. On the contrary, the SHCNN is able to take
full advantages of the training samples. Moreover, SHCNN
is simple and could be used for static expression recognition.

Extensive experiments on the five datasets (FER2013,
FERPlus, CASME, CASME II and SAMM) show that the
shallow architecture (SHCNN) is able to learn both static
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expressions and micro-expressions. Moreover, we study the
vanishing gradient problem of the original saliency map
proposed by Simonyan et al. [21] (Eq. 4) and propose an
improved saliency map (Eq. 10) to alleviate the problem.
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