
Received May 2, 2019, accepted May 28, 2019, date of publication June 5, 2019, date of current version June 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920916

Implementation of Univariate Paradigm for
Streamflow Simulation Using Hybrid
Data-Driven Model: Case Study in
Tropical Region
ZAHER MUNDHER YASEEN 1, WAN HANNA MELINI WAN MOHTAR2,
AMEEN MOHAMMED SALIH AMEEN3, ISA EBTEHAJ4,
SITI FATIN MOHD RAZALI2, HOSSEIN BONAKDARI 4,
SINAN Q SALIH5,6, NADHIR AL-ANSARI7, AND
SHAMSUDDIN SHAHID1
1School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia
2Sustainable and Smart Township Research Centre (SUTRA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor
43600, Malaysia
3Department of Water Resources, University of Baghdad, Baghdad, Iraq
4Department of Civil Engineering, Razi University, Kermanshah 97146, Iran
5Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
6Computer Science Department, College of Computer Science and Information Technology, University of Anbar, Ramadi, Iraq
7Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Lulea, Sweden

Corresponding author: Zaher Mundher Yaseen (myzaher@utm.my)

This work was supported by the Professional Development Research University (PDRU) under Grant Q.J130000.21A2.04E47.

ABSTRACT The performance of the bio-inspired adaptive neuro-fuzzy inference system (ANFIS) models
are proposed for forecasting highly non-linear streamflow of Pahang River, located in a tropical climatic
region of Peninsular Malaysia. Three different bio-inspired optimization algorithms namely particle swarm
optimization (PSO), genetic algorithm (GA), and differential evolution (DE) were individually used to tune
the membership function of ANFIS model in order to improve the capability of streamflow forecasting. Dif-
ferent combination of antecedent streamflow was used to develop the forecasting models. The performance
of the models was evaluated using a number of metrics including mean absolute error (MAE), root mean
square error (RMSE), coefficient of determination (R2), and Willmott’s Index (WI) statistics. The results
revealed that increasing number of inputs has a positive impact on the forecasting ability of both ANFIS and
hybrid ANFIS models. The comparison of the performance of three optimization methods indicated PSO
improved the capability of ANFIS model (RMSE = 7.96; MAE = 2.34; R2 = 0.998 and WI = 0.994)
more compared to GA and DE in forecasting streamflow. The uncertainty band of ANFIS-PSO forecast was
also found the lowest (±0.217), which indicates that ANFIS-PSO model can be used for reliable forecasting
of highly stochastic river flow in tropical environment.

INDEX TERMS Streamflow forecasting, fuzzy logic, evolutionary algorithm, uncertainty analysis, tropical
environment.

I. INTRODUCTION
Streamflow forecasting is one of the essential concerns for
hydrologists and engineers for the planning and management
of water resources and for designing water resources projects.
Short-term and long-term streamflow forecasting can provide
a valuable information on the possibility of designing and
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managing water infrastructures and the availability of water
resources [1]–[3]. Therefore, a wide variety of methods has
been developed and successfully implemented for forecasting
river flow. Streamflow forecasting can be categorized into
four categories: conceptual, metric, physical-based, and data-
driven models [4]. Conceptual models evaluate hydrological
processes i.e. precipitation, water storage, evaporation, rain-
fall runoff, evapotranspiration using simple equations. How-
ever, the major drawback of these models is the difficulties
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in calibration of the results due to involvement of many
variables in the equation [5]. Metric models use the gathered
hydrological data such as rainfall as its basic input. While
the physical-based models employ water-balance equations
based on the law of energy conservation for modelling
streamflow. Lastly, the data-driven models establish rela-
tionship between input and output variables for forecasting
streamflow. The data-driven models do not need catchment
physical information and able to forecast streamflow with
limited amount and incomplete data [5]. Therefore, such
models have been widely used for forecasting streamflow in
recent years.

Linear regression is traditionally used for the development
of data-driven models. The capability of linear regression-
based models is very limited to forecast non-linear pattern of
streamflow. To overcome this difficulty, data-driven models
based on soft computing (SC) techniques have been vastly
developed in last three decades [5]–[9]. In recent years, there
has been massive attention of exploring and developing new
innovative SC methods that can mimic and capture highly
complicated streamflow pattern [10]. This is owing to their
feasibility on capturing the complexity of stochastic prob-
lems such as nonlinearity, nonstationary and redundancy [11].
A large number of data-driven models using SC techniques
such as artificial neural network (ANN), fuzzy logic, adaptive
network-based fussy interface system, genetic programming,
and swarm intelligence methods have been proposed for
forecasting streamflow [12]. However, the forecasting abil-
ity of the models in terms of accuracies are often debat-
able [13], [14]. This is because of the non-linear pattern of
streamflow which limits the ability of the aforementioned
models.

The ANN is the most popular SC-based method employed
for streamflow forecasting due its capability to solve diverse
complex problems [15]–[17]. The assignment of weights to
the neurons for optimum performance of ANN is the major
challenge in ANN-based forecasting model. The weights are
controlled by both the internal tuning parameters of network
learning algorithm and its architecture. In addition, the use of
multiple layers with many nodes as hidden layer results an
extremely complex system. The learning rates and the num-
ber of memory taps also significantly impact the performance
of ANN model.

Besides ANN, the fuzzy logic (FL) which uses the con-
cept of uncertainty is another SC-based technique that has
been received much attention for modeling hydrological phe-
nomena in last three decades [18], [19]. Similar to ANN,
the FL has several shortcomings such as decision on suit-
able variables. To overcome the drawbacks of ANN and FL,
adaptive neuro-fuzzy inference system (ANFIS) which is a
combination of ANN and FL is introduced. ANFIS is a class
of adaptive multi-layer feedforward networks that use fuzzy
logic in performing different functions or criteria for better
outcomes and intelligence [20]. It utilizes parallel computa-
tion where the learning ability is obtained from ANN and the
problem-solving ability based on if-then rules is gained from

fuzzy logic. Therefore, the advantages of ANN and FL can
be utilized in ANFIS while the shortcomings of the individual
methods can be overcome at the same time. ANFIS can fulfill
approximation function and follow rules efficiently almost
similar to human intuition [21] and thus, leads to higher accu-
racy in prediction [22]. The implementation of neuro-fuzzy
concept can positively solve the non-linear characteristics and
the associated uncertainties [23].

The major algorithms used for training ANFIS are back-
propagation (BP), hybrid of BP and least square (BP-LS).
A number of studies have been conducted to evaluate the
performance of the training algorithms to determine the best
ANFIS model for streamflow forecasting [24], [25]. The
most remarkable shortcomings of these algorithms are trap-
ping in the local optima during the learning process and
very slow convergence [26], [27]. Newly developed intel-
ligence algorithms such as nature inspired algorithms like
particle swarm optimization, genetic algorithm, differential
evolution etc. have been used in the recent years for the
optimization of ANFIS parameters to improve its forecast-
ing ability [28], [29]. The integration of evolutionary opti-
mization algorithms with artificial intelligence (AI) models
has showed outstanding performance in regression prob-
lems [30]–[33]. Thus, research focusing on identification of
best optimization algorithm to be used with AI in order to
achieve the most accurate and effective streamflow forecast-
ing has gained much attention in recent years. PSO, GA and
DE algorithms have been found to optimize ANFIS model
effectively where the local minima and dimension problems
are positively solved [34].

The main objective of the present study is to explore the
feasibility of newly developed robust hybridized intelligence
models, ANFIS integrated with three optimization algo-
rithms, i.e. particle swarm optimization (ANFIS-PSO),
genetic algorithm (ANFIS-GA) and differential evolution
algorithm (ANFIS-DE) for forecasting monthly streamflow
based on univariate modeling paradigm where only the
antecedent streamflow data is used to build the predictive
model. The performance of such hybrid models in forecasting
streamflow in tropical environment has not been investi-
gated yet. The models developed in the present study were
used for forecasting highly stochastic streamflow of Pahang
River located in the central region of Peninsular Malaysia.
The streamflow of Pahang River is influenced by highly vari-
able rainfall dominated by two monsoons. Besides, the heavy
convective rainfall during inter-monsoonal periods has made
the streamflowof the river highly complex. The PahangRiver,
the longest river in Peninsular Malaysia often experiences
floods due to extreme rainfall during northwest monsoon
(November-March). Reliable forecasting of streamflow of
Pahang River is therefore very important for Malaysia.

II. CASE STUDY
The Pahang River lies between the latitude 2◦48′45′′ -
3◦40′24′′N and longitude 101◦16′31′′ - 103◦29′34′′E
(Figure 1). The total length of the river is 460 km which
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FIGURE 1. Location of Pahang River in the map of Peninsular Malaysia.

FIGURE 2. Streamflow time series of Pahang River at a station 3527410.

covers a catchment area of approximately 27,000 km2.
The streamflow of Pahang River is highly variable and
stochastic [35]. This is owing to the fact that the climate
of the catchment is characterized by high monsoon rainfall
which causes a high fluctuation in the flow. The motivation of
the development of an intelligent forecasting system for this
specific river lies on the necessity of flood forecasting and
estimation of water availability. The streamflow of Pahang
river measured at a station (ID 3527410), located in the
most downstream (Lubok Paku) of the river was used in
the present study. Monthly streamflow data for the period
2000-2014 was collected from the Department of Irrigation
and Drainage (DID), Malaysia. Flood is a common phe-
nomenon in Pahang River basin. It experienced 18 major
floods during 2006-2014 which caused extensive damage
to properties and inconvenience to the local community.
In December 2007, a large flood in Pahang River basin
caused an inundation depth of about 2.0 m in Pekan and
some other major towns of Termerloh and Maran districts
[36]. About US$ 86 Million was estimated as the total flood
damage. Forecasting river flow at monthly scale can indicate
the possibility of occurrence of floods which in turn can help
in flood management and mitigation of its impacts on society
and economy. The streamflow time series of Pahang River is
presented in Figure 2.

III. METHODOLOGY
A. ANFIS MODELLING THEORY
Themain concept of neuro-fuzzy system is amodeling frame-
work to overcome the impediments in both neural network
and fuzzy logic [37]. Therefore, ANFIS has been found well

FIGURE 3. Auto-correlation function (ACF) of the raw streamflow time
series.

TABLE 1. Different input combinations of antecedent data considered for
the development of streamflow forecasting models.

TABLE 2. The initial values of the GA, DE and PSO optimization
algorithms used in the present study.

suited for identification of nonlinearity and non-stationary in
time series [12]. The membership functions (MFs) of ANFIS
network is tuned using ANN [38] which incorporate non-
linear MFs and subsequently result in considerable lessening
in implementation cost. Predominantly, Takagi-Sugeno-Kang
fuzzy inference system (FIS) is used in ANFIS, owing to its
simplicity and requirement of less rules for model training.
The details of ANFIS can be found in [38].

B. PARTICLE SWARM OPTIMIZATION (PSO)
The PSO is an evolutionary population-based optimization
algorithm. In PSO optimization algorithm, the particles’
position is changed through the optimization process in
a defined multi-dimensional exploration area so that each
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TABLE 3. Statistical performance of ANFIS, ANFIS-DE, ANFIS-GA, and ANFIS-PSO models for different input combinations estimated using RMSE,
MAE, R2, and WI during training phase.

particle could be selected as the optimum solution candi-
date [38]. Empirical observations showed good performance
of PSO in optimization [39]. Thus, it has been broadly utilized
in complex nonlinear optimization issues [40], [41]. The
training process in PSO is started by definition of the initial
particle swarm, P (k), so in hyperspace, the position of each
particle (xis (k)) (Pi ∈ P (k)), is k = 0 [42]. Next, the fitness
function (F) is assessed for all particle by the position of each
particle (xi(k)).

if F (xi(k)) < pbest i then

{
pbest i = F (xi(k))
xpbest = xi(k)

(1)

where pbest is the best position achieved by particle i known
as personal best.

The foremost particle efficiency of each individual is then
appraised in the following form:

if F (xi(k)) < gbest i then

{
gbest i = F (xi(k))
xgbest = xi(k)

(2)

where gbestis the global best; the best position obtained by
all population.

Next, the velocity vector of each individual is altered as
follows:

vi (k) = wvi (k − 1)+ r1C1(xpbest i − xi (k))

+ r2C2(xgbest i − xi (k)) (3)

where r is selected randomly through training, C1 and C2 are
two user-defined constants and w is known as weight param-
eter. The best result can be accomplished when the sum of
these two parameters is not more than 4 [42].

Precise determination of the user-defined parameters
results an adjustment between the global and local swarm

performance, which diminishes the iteration number. The
weight parameter (w) is computed in the following form [43]:

w = wmax −
wmax − wmin
itermax

.iter (4)

where wmin and wmax are the initial and final weights, respec-
tively; itermax represents maximum iteration and iter the
iteration number.

Finally, every particle is transformed to its new position as
follows:

xi (k) = xi (k − 1)+ vi (k) (5)

C. GENETIC ALGORITHM (GA)
The GA is an evolutionary population-based stochastic opti-
mization technique that has been effectively utilized for solv-
ing different optimization issues. GA is proficient in solving
nonlinear, stochastic and non-differentiable problems which
cannot solve well using gradient-based methods [44]. In con-
ventional optimization approaches, each point is produced
utilizing deterministic calculations in each epoch and point
sequence in order to achieve the optimum solution. On the
other hand, the population points for each epoch are produced
haphazardly inGA and themost excellent population have the
best solution [45].

Optimization procedure using GA consists of three major
steps. First, an initial population ofmth individual is randomly
created which is considered as the first generation. Next,
the performance of each of the mth individual is evaluated
based on fitness function value. Finally, offspring as a novel
generation is produced using fittest individual of the prior
generation. The optimization process is repeated until the
optimum solution is achieved.
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TABLE 4. Statistical performance of ANFIS, ANFIS-DE, ANFIS-GA and ANFIS-PSO models for different input combinations estimated using RMSE, MAE,
R2 and WI during testing phase.

TABLE 5. Relative error in forecasting of ANFIS, ANFIS-DE, ANFIS-GA and
ANFIS-PSO models for different input combination during model testing.

Offspring generation process comprises three essen-
tial steps: crossover, mutation and reproduction. In GA,
an individual is represented as gene sequence known as
chromosomes. The crossover and mutation are employed for
reproduction. In crossover, the genes related to parent chro-
mosome are altered, while in mutation genes in parent chro-
mosome are randomly modified. Both of these operators
have significant impact on optimization result. Defined oper-
ators in GA hop into obscure ranges within the look space
(mutation) and offer assistance in finding new solution space
(crossover) [46].

The evolutionary process in GA proceeds for different
generations until an end condition is satisfied. The best gene
is chosen based on the fitness function values and is reported
as the optimum solution of the problem.

D. DIFFERENTIAL OPTIMIZATION
Differential Evolution (DE) is an evolutionary population-
based optimization algorithm [47]. Use of differential muta-
tion makes the DE different from other evolutionary-based
algorithms. InDE, fixed vector numbers are created randomly
within n-dimensional space. To discover the different search
spaces in order to minimize fitness function, an evolutionary
process over time is required. To generatemutation factor (µ),
a mutation function (F : Iµ→ Iµ) is defined in the following
form:

−→vi =
−→ar1 + F

(
−→ar2 −

−→ar3
)

i = 1, 2, . . . , µ (6)

where r1, r2, r3 ∈ [1, 2, . . . , µ] are selected randomly, ai is
trial vector, F is the mutation factor and µ is the population
size. The mutation factor (F) is a constant positive value in
the range of [0 2]. Considering the larger values of population
size (µ), mutation factor (F) tends to enhance the global
search capacity of DE algorithm by discovering new search
space.

The vectors (−→vi = [−→v1i,
−→v2i, . . . . . . ,

−→vdi] are mutated using
crossover operator (CR : Iµ → Iµ) in DE to generate trial
vectors as follows:

a′ji =

{
vji if (randb (j) ≤ CR) or j = rnbr (i)
aji if (randb (j) ≤ CR) or j 6= rnbr (i)

j = 1, 2, . . . , 2 i = 1, 2, . . . , d (7)

where rnbr (i) ∈ 1, 2, . . . , d) is an index for random selec-
tion, CR is the crossover operator, randb (j) denotes random-
ized producer assessment in the range of [0, 1]. The CR is
employed to enhance the individuals’ variety in populations.
Similar to mutated vectors, large values of CR results in
enhancement in offspring vectors. Consequently, the conver-
gence speed of the DE algorithm is augmented.
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If cases CR = 0, children and parents’ vectors differ by
only one variable (Eq. 7). The costliest fitness function is
selected using selection operator to generate trial vector for
next generation.

if 8(
−→
a′i (g) < 8

(
−→ai (g)

)
, then −→ai (g+ 1) =

−→
a′i (g)

else −→ai (g+ 1) = −→ai (g+ 1) = −→ai (g) (8)

where g is the current generation.

E. MODELS DEVELOPMENT
Fourteen different combinations of antecedent streamflow
values were considered for the selection of best input com-
bination for the development of forecasting models. Usu-
ally, most recent antecedent values are more correlated with
the target streamflow [11], [12]. Therefore, consecutive two
antecedent values, t−1 and t−2 were considered as possible
input. Besides, 3-, 6- and 12-month antecedent values were
tested as possible input considering the seasonal variability
due to two monsoons and annual variability of streamflow.
Indeed, this was determined based on the statistical procedure
commonly used for time series forecasting such as autocorre-
lation function (ACF) as presented in Figure 3. The fourteen
input combinations of these five antecedent values are given
in Table 1. All the 14 input combinations (M1 to M14)
were used for the development of ANFIS and hybrid ANFIS
(ANFIS-DE, ANFIS-GA, and ANFIS-PSO)model. The opti-
mum values of the DE, GA, and PSO algorithms are given
in Table 2. The values of fixed parameters of ANFIS model
were considered as follows: the initial step size is 0.001, step
size decrease is 0.009, step size increase is 1.001 and the
number of the MF for each input is 6.

F. PERFORMANCE SKILL INDICATORS
To examine the prediction capability of the developed mod-
els, several statistical indicators were used which includes
mean absolute error (MAE), root mean square error (RMSE),
coefficient of determination (R2) and Willmott’s Index
(WI) [48]–[50]. Besides, the predictive capability of the mod-
els was examined using relative error (RE) [51], [52]. The
uncertainty in prediction of streamflow by different models
was also assessed for fair comparison of model performance.
For this purpose, the difference between predicted and tar-
get values were first calculated to estimate the prediction
error (PE):

ej = Pj − Tj (9)

The standard deviation (STD) and mean (MPE) of PE were
calculated as:

Se =

√∑n

j=1

(
ej − ē

)2
n− 1

and ē =
∑n

j=1
ej (10)

A positive (or negative) value of MPE illustrates the over-
estimation (or underestimation) by the prediction models.
Using Wilson score without continuity correction, a con-
fidence band was defined around the predict error values

FIGURE 4. Box plots showing the relative errors in streamflow prediction
of hybrid and classical ANFIS models for input structures (a) M12,
(b) M13, and (c) M14. The symbol ‘+’ indicates outliers in data.

for 95% confidence bound as ±1.96Se for the estimation of
uncertainty in prediction [53].

IV. MODELS IMPLEMENTATION AND ANALYSIS
The performance of the models during training for different
input combinations (Table 1) are presented in Table 3. The
table shows that model 14 produced the highest level of
accuracy in terms of RMSE (7.5 to 10.6 m3/s) and MAE
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FIGURE 5. The measured (Qm) and predicted (Qp) streamflow for (a) Model-M1, (b) Model-M5, (c) Model-M10, and (d) Model-M14. The solid black line
represents the line of agreement.

(3.26 to 6.03m3/s). The forecasting ability themodels, partic-
ularly for hybrid-ANFIS models improved significantly with
more inputs (M14). It is interesting to note that the RMSE and
MAE values were consistently decreased from M9 to M14
for all the predictive models. In general, the hybrid ANFIS
models showed lowest RMSE (7.5 – 7.8 m3/s) and MAE
(3.3-3.4 m3/s) for M14. High accuracy for larger input com-
binations was also supported by high R2 and WI values,
particularly for M14.

The performance of the models during testing phase is
presented in Table 4. Considering t−1 alone and with another
single antecedent values (M1 to M5), the lowest RMSE and
MAE were obtained for M3 which considered t − 3 as an
additional input with t−1. Comparison of three input models
(M6 to M8) where two inputs (t−1 and t−2) were common
showed higher impact of t − 12 in performance of all the
hybrid ANFIS models compared to inputs t−3 and t−6. The
only difference of M9 and M10 fromM6 was the use of t−6
and t−12 instead of t−2. The results revealed that the use of
t − 2 instead of t − 12 improved the accuracy of ANFIS-GA

and ANFIS-DEmodels by 10% in term of RMSE. TheMAE,
R2 and WI values for M10 (for all hybrid ANFIS models)
were found to improve compared to M6. Considering t − 3
instead of t − 2 in addition to t − 1 and t − 12 (M10 and M8,
respectively) caused significant increase in RMSE, MAE and
WI for all the hybrid ANFIS models. This indicates that t−3
as a seasonal lag is more important than t − 2.
Generally, a decreasing trend in RMSE and MAE was

observed fromM1 toM14 for all the hybridmodels. Predicted
streamflow values were foundmore accurate for 4-input com-
bination and it reached to the highest level of accuracy for
5-input combination (M14).

In general, M14 showed the lowest RMSE for ANFIS
(10.5), ANFIS-DE (8.4) and ANFIS-GA (7.9), whereas the
lowest RMSE (5.87 m3/s) for ANFIS-PSO was obtained for
M13. The lowest MAE and the highest R2 and WI were also
found consistently associated with M14 (MAE = 2.31 m3/s;
R2 = 0.999; WI = 0.994). The results indicate that all of
seasonal lags (i.e. t − 3, t − 6 and t − 12) have significant
effect on prediction of streamflow.
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FIGURE 6. Time series plots of measured (Qm) and predicted (Qp) streamflow for input structure M14 using (a) ANFIS, (b), ANFIS-DE, (c) ANFIS-GA
and (d) ANFIS-PSO models. The black and blue lines represent the measured and predicted streamflow, respectively.

To assert the results obtained above, the relative errors in
model predictions using different input combinations were
estimated and presented in Table 5. The range of relative
errors was found between 5.86 and 89.68%. Interestingly,
the maximum relative error (RE) was found incidentally for
structure M8 for all the models, while the minimum RE was
found to vary. The lowest RE was found for ANFIS-GA
for M12 (5.86%), whereas M5 (6.4%) and M13 (10.44%)
showed the lowest RE for ANFIS-PSO and ANFIS-DE,
respectively. The classical ANFIS model showed the lowest
RE for the input combination (M13). Although M14 not
showed a remarkable improvement in term of RE for any
of the predictive models, in general a low percentage of
RE (below 15%) was observed for all the models. Tak-
ing into account of the model performance for different
input combinations, M14 was found as the best followed by
M13 and M12.

Figure 4 shows the box plots of RE for the best three
input combinations, M12 to M14. A rather consistent behav-
ior was observed for the three hybrid ANFIS models for
structure M12. The box height was found smaller for

ANFIS-GA which indicates ANFIS-GA as the best hybrid
model for M12. Much smaller range of RE was observed
for M13 compared to M12 particularly for ANFIS-DE and
ANFIS-PSO. The boxplot of RE for ANFIS was found the
tallest among the four, which indicates better performance
of hybrid ANFIS models compared to classical ANFIS. The
M14 produced the smallest range of RE compared to other
input structures. The smallest ranges of RE were found for
hybrid ANFIS models when the input structure was M14.
Furthermore, the median values of RE of different hybrid
ANFIS models were found very close to 0, suggesting a high
level of accuracy of the models.

The results indicate that models with a higher num-
ber of inputs have higher prediction accuracy. The results
are in agreement with the hybrid model forecasts obtained
by [54], [55], where a 3-inputmodel was found to provide bet-
ter accuracy than a 1- or 2-input model. The results also indi-
cate that incorporation of longer antecedent data improves
the prediction capability as the model is able to capture the
seasonal pattern and existing trend in time series more accu-
rately. The rainfall of Malaysia is highly variable due to two
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TABLE 6. Uncertainty in prediction of hybrid and classical ANFIS models.

monsoon seasons, southwestmonsoon (May–September) and
northeast monsoon (November–February). Incorporation of
longer antecedent data helps to capture the low, medium and
high flow conditions due to seasonal changes and thus more
information of the fluctuation of streamflow. The models
were able to capture the nonlinear streamflow behavior when
twelfth antecedent value was used [56]. The results clearly
indicate M14 as the best input combination and therefore,
the ability of the models in forecasting streamflow was tested
only for M14.

Scatterplots were prepared for four input combinations
(M1, M5, M10, and M14). The figures demonstrate the
variance between the measured and forecasted streamflow.
M14 for all the applied hybrid models was found to forecast
both low and high flows satisfactorily. Most of the data were
found on the line of agreement (Figure 5). However, some
over- and under- estimation were noticed for ANFIS and
ANFIS-DE. Lower number of paired points was observed for
ANFIS-GA and ANFIS-PSO, respectively.

It is rather obvious that hybrid ANFIS models have better
prediction capability than classical ANFIS model as shown
in Figure 5. Most of the streamflow values were estimated
with highest accuracy, for both low and high flows. How-
ever, the accurate prediction was not necessarily certain for
all the observations, as evident for months no 41 to 48
where low flows were overestimated and high flows were
underestimated. This is most probably due to the inability of
the predictive models to capture the sudden increment in the
river flow due to monsoon heavy rainfall. The high intensity
of tropical rainfall events where it could be up to 600 mm,
particularly in December cause immediate increase of
streamflow [56]. The models however eventually able to
capture the dynamicity of the discharge pattern, where the
consequential sudden high flow (at sample no 60) was
accurately predicted by the models. Focusing on the 48th

month, although the predicted peak was overly underesti-
mated, the hybrid ANFIS models performed better than the
non-hybrid ANFIS.

It is worth to highlight that although appropriate time lags
(having the highest autocorrelation) and longer time lags
increase the accuracy, the improvement is not comparable
when an intelligent pre-processing approach is used. This
study shows that DE and PSO give a relatively highest accu-
racy in streamflow forecasting compared to GA.

TABLE 7. Optimum value of the gaussion membership function (MF)
related to the best model (ANFIS-PSO).

The forecasted streamflow during model testing was used
for uncertainty analysis. The results of uncertainty analy-
sis for four ANFIS-based models are presented in Table 6.
The table shows STD, MPE and 95% prediction error inter-
val (PEI) of streamflow as well as the width of uncer-
tainty bound (WUB). The results indicate that all the hybrid
ANFISmodels outperformed the classical ANFISmodel. The
MPE for ANFIS was 1.202 compared to 0.759, 0.782, and
0.647 (m3/s) for ANFIS-DE, ANFIS-GA and ANFIS-PSO,
respectively. The ANFIS-PSO showed the lowest and the
ANFIS-GA showed the highest MPE among the hybrid
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models. The uncertainty bound for hybrid models were in the
range of ±0.22 to ±0.26, while it was found ±0.3185 for
the classical ANFIS. The highest 95%PEI was observed for
classical ANFIS, while the lowest MPE and WUB were
observed for ANFIS-PSO. The optimum value related to the
best model is presented in Table 7.

The most crucial characteristics of time series forecasting
model is its capability to capture the pattern exist in the series
and generalize the captured pattern outside the domain of
calibration data. The performance of a data driven models to
generalize the captured pattern depends on the complexity of
the time series to be forecasted. It is not possible to decide
which model is best for forecasting a time series without
comparing the performance of different models. Even when
a data driven method is found suitable for forecasting a time
series, its performance largely depends on the tuning of its
hyper parameters. Proper tuning of parameters allows better
mapping of input-output relationship. Besides, when the time
series forecasting is only based on historical data of the
same series, selection of optimum combination of antecedent
time lag data as input is important as inappropriate input can
propagate error to output and deteriorate prediction accuracy.
Therefore, performance of different tuning algorithms was
assessed in this study for different combinations of inputs
in order to find the most appropriate model in term of both
tuning algorithm and input combination. The present study
revealed that ANFISmodel is capable to capture the pattern of
streamflow time series and generalize the pattern for forecast-
ing streamflow with unknown data when its parameters were
tuned with PSO and five antecedent data including three most
recent data and the seasonal and annual lag data were used
as input. Though ANFIS-PSO with five inputs was found as
the best model for forecasting monthly streamflow in tropical
environment, it cannot be guaranteed that same model will
perform best in other environment, even for other river in
tropical region. The framework proposed in this study can be
used for the selection of the state-of-art optimization method
for the tuning of model parameter and selection of best input
combination for the selection of most accurate forecasting
model for any other study area.

V. CONCLUSION
Three different evolutionary algorithms namely, GA, DE,
and PSO were integrated with ANFIS for forecasting highly
stochastic monthly streamflow of a tropic river. Fourteen
different combinations of antecedent streamflow values were
considered for the selection of best input combination for the
development of the forecasting models. The results indicated
that incorporation of longer antecedent data improves the
prediction capability as the model is able to capture the
seasonal pattern and the existing trend in time series more
accurately. The best performance was obtained for the model
with 5 input variables (t − 1, t − 2, t − 3, t − 6, t − 12),
with a 68% prediction improvement than the model with
1 input variable (t−1). Comparison of the performance of the
evolutionary hybrid ANFIS models with the classical ANFIS

model revealed the ability of evolutionary algorithms in the
optimization of ANFIS membership function in order to min-
imize the prediction error. Comparison of evolutionary opti-
mization techniques indicated the higher capability of PSO
in optimization of ANFIS membership functions compared
to GA and DE. ANFIS-PSOmodel provided better prediction
than non-hybrid ANFIS by 25%, slightly higher than ANFIS-
GA and ANFIS-DE (24% and 20%, respectively). The uncer-
tainty analysis revealed the lowest width of uncertainty band
for ANFIS-PSO than the other hybrid methods and classical
ANFIS. Therefore, the ANFIS-PSO model can be used for
reliable forecasting of highly stochastic river flow in tropical
environment.
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