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ABSTRACT This paper introduces a novel hybrid fault diagnosis method for power transformer. This
method employs solar-powered radio-frequency identification (RFID) sensor for transformer vibration signal
acquisition and deep belief network (DBN) for feature extraction. The customized RFID sensor employs
solar panel as a power source, and a supercapacitor is adopted to be the stand-by power when the solar
panel cannot work. A charging circuit is exploited to guarantee constant DC output voltage. The collected
hybrid faults signal is characterized as nonlinear and nonstationary; moreover, it contains abundant noises
and harmonic components, which makes it difficult to acquire succinct and robust features from the raw
signals. Hence, the DBN is adopted to extract features from the collected vibration signal. In order to obtain
optimum feature extraction performance, the quantum particle swarm optimization algorithm (QPSO) is
employed to determine the hidden layer structure and learning rate of the DBN model. The experiments
indicate that the proposed RFID sensor is able to realize reliable data acquisition and transmission. Besides,
the optimized DBN achieves remarkable results in feature extraction for the hybrid fault signal and achieves

high diagnosis accuracy.

INDEX TERMS Transformer, incipient fault diagnosis, solar-powered RFID sensor, deep belief network.

I. INTRODUCTION

The operation state of power transformer is closely related
to the reliable operation of the power grid. During the
operation time of transformer, the short circuit current and
electro-magnetic force would cause damage to the transfer,
and the mechanical failure is the most serious type [1]-[3].
The mechanical failures are mainly resulted from the winding
or core, and it is hard to be recognized in its early stage,
so the mechanical failure would always cause great economic
loss [4], [5]. Therefore, it is essential to find the transformer’s
mechanical failure in early stage.

Several transformer fault diagnosis approaches have
already been proposed. The dissolved gas analysis (DGA)
and low voltage impulse test (LVI) are able to distin-
guish the faults’ type, but the fault’s location cannot be
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determined [6], [7]. Frequency response analysis (FRA) [8]
has high diagnosis accuracy, but the low voltage winding
needs to be disconnected during the measurement process.
Short circuit reactance (SCR) [9] is capable of realizing live-
line measurement, so the transformer can keep operating
during the measurement procedure. But the failure’s location
and category cannot be obtained [12]. Recently, Ultra-Wide
Band (UWB) technique is proposed in the field of transformer
fault diagnosis, and both the location and type of failure can
be obtained [13], [14]. For the time being, this approach
can only detect the condition of winding. Moreover, this
method needs UWB transceivers and Vivaldi antenna for
measurement, it would increase the diagnosis cost. Vibration
analysis has drawn great attention in the field of mechanical
fault diagnosis since it is easy to be realized and charac-
terized as live line measurement [15]-[21]. In our previ-
ous study [22]-[24], we have employed RFID sensor and
the vibration analysis approach to realize non-intrusive fault
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diagnosis and prognosis of transformer with low costs and
high accuracy. In [23] the stacked denoising autoencoder
is employed for transformer fault diagnosis and has shown
satisfactory performance, it focuses on the diagnosis of single
fault, when several types of fault happen simultaneously, they
cannot achieve satisfactory result. Moreover, all these meth-
ods perform fault diagnosis after the fault happens, so the
transformer has already been damaged and caused the eco-
nomic loss. Therefore, this paper aims to realize the fault
diagnosis when the failure is in the incubation period, which
is the incipient fault diagnosis. In this period, the failure
shows no influence on the transformer operation, but the
failure may deteriorate rapidly in the following time, resulting
in the shutdown of transformer. In this way, the transformer
can be fixed before serious failure happens, and the economic
loss can be significantly reduced.

In the field of mechanical fault diagnosis, a lot of signal
processing approaches are employed, such as Wavelet packet
transform [25], HHT analysis [26], time-frequency analy-
sis [27], [28], and sparse representation [29], [30]. However,
the state-of-art approaches requires deep understanding on
the fault signal and prior knowledge about signal processing
and mechanical system. With the rapid development of com-
puter science, the deep learning approach has been a hot topic
especially in recent years. The deep learning technique tries
to train a deep neural network that can realize automatically
feature extraction and other tasks [31]—[33].

The deep belief network (DBN) [34]-[36] is an unsu-
pervised deep learning approach which has proven to be
effective in terms of feature extraction. DBN can effectively
avoid the over-fitting phenomenon to the training data set
via unsupervised pre-training. Compared with the traditional
unsupervised models, DBN can obtain the laws in the deep
layer which hiding in multiple features and achieve better
generalization ability. Therefore, this paper employs DBN
for feature extraction of transformer hybrid incipient faults.
In existing studies, the hidden layer structure and learning
rate is set on the basis of experience, but the feature learn-
ing performance cannot always be optimum. To solve this
problem, the quantum behaved particle swarm optimization
algorithm (QPSO) is employed to find the optimum hidden
layer structure and learning rate.

The frequency spectrum is employed as the input data
for feature extraction and has achieved diagnosis accuracy
over 97% [37], [38]. Therefore, in this paper, the frequency
spectrum obtained by EEMD is used as the input of DBN.

This work aims to introduce a hybrid fault diagnosis
method for transformer mechanical failure in early stage with
advantages of high accuracy, low cost and high stability.
Compared with previous research, this paper realizes the
diagnosis for transformer incipient hybrid fault. To realize
optimum diagnosis performance, the hidden layer structure
and learning rate of DBN is optimized by using QPSO algo-
rithm, besides, the envelop spectrum of raw signal is selected
as the input data to further improve the diagnosis perfor-
mance. The solar-powered RFID sensor design is shown in
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Section II. Section III describes the theories of fault diagnosis.
Section IV discusses the experiments detail and results. The
conclusion drawn from the study is shown in Section V.

Il. SOLAR-POWERED RFID SENSOR

Fig. 1 is the solar powered RFID sensor that employed
for vibration signal acquisition, it has the same struc-
ture with that of in [24]. The low dropout voltage reg-
ulator (TPS780180300DRVR) is adopted to stabilize the
output voltage of solar panel and supercapacitor. In this
design strategy, the MSP430FR5964 MCU is used for sig-
nal processing, it has fast written speed which can write
64kB data within 4ms, and its power consumption is
118 nA/MHz in active mode. The vibration signal is col-
lected by ADXL372 accelerometer sensor which current con-
sumption is 22 nA under 2.5V voltage when measuring. The
RFID chip is a typical Monza X-8K, which memory could be
accessed by the I>C interface and UHF interface.

FIGURE 1. Proposed RFID sensor.

As described in [23], a Faraday cage which inner side
is made of epoxy resin is employed to reduce the electro-
magnetic interference to the sensor. Meanwhile, it can also
prevent the RFID sensor being damaged by induction voltage.
Since the RFID sensor employed in this paper utilizes solar
energy as power source, so the solar panel should be outside
of the Faraday cage, Fig. 2 shows the packaged RFID sensor.

FIGURE 2. Packaged solar-powered RFID sensor.
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Ill. THEORY

A. RESTRICTED BOLTZMANN MACHINE

The DBN model is constructed by Restricted Boltzman
Machine (RBM) via a greedy layer-wise training princi-
ple [34]. The RBM model consists of two layers including
a visible layer v={0, 1}” and a hidden layer h={0, 1}X,
the architecture of RBM is shown in Fig. 3. Both the visible
layer and the hidden layer contains a series of units, and the
input data are fed into the visible layer. The energy configu-
ration of the layers is defined as:

D K D K
Ew.h) ==Y vpwpghg — > cpvp— Y bghg (1)
p=1 q=1

p=1¢g=1
where w), is the weight between the visible unit p and hidden
unit g; ¢, and by are the bias term of visible unit p and hidden
unit g, respectively.

Visible layer

Hidden layer

FIGURE 3. Structure of RBM.
The joint distribution of the layers is defined as:
1
1(v,h) = Z exp(—E®v, h)) @)

where Z is the normalization constant. From the equation,
it can be seen that the probability could be increased by
decreasing the energy.

The conditional distribution of visible layer v and hidden
layer h can be calculated by the following equations:

thg =1v) = 0 (O Wpqgvp + by) 3)
p

tp = 11h) = (Y wpghy + cp) 4
q

O'(S) = HTP(—S) ( )

The contrastive divergence approach is employed to update
the weights, and the weights’ variation is calculated by the
following equation:

Aqu =é& (Vphqorigin - Vphqreconstruct) (6)
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FIGURE 4. Reconstruction procedure of RBM.

where ¢ is the learning rate. Every RBM model has its own
learning rate and the optimum learning rate can generate the
suitable weights distribution.

The reconstruction procedure of RBM is shown in Fig. 4.
In this procedure, the hidden layer makes attempt to recon-
struct a visible layer v1 which can recover the original visible
layer v. Then the data obtained in the hidden layer can be
thought to be the features of the input data. If the recon-
structed data can perfectly recover the original input data,
the hidden layer is thought to be effective in terms of learning
robust features from the original data.

B. DBN STRUCTURE

Generally, a single stage RBM cannot realize optimum fea-
ture learning performance. Thus, several RBMs are stacked
to form a deep structure to extract features well. The fea-
tures extracted by the first RBM are input to the next RBM.
Fig. 5 shows the whole training process of a typical DBN
with two-stage RBM, the process contains a pre-training and

Fine-tuning

Pre-training T

1 Input data

FIGURE 5. The structure of DBN.
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a fine-tuning procedure, and the output layer is generally
employing the Softmax classifier.

During the pre-training procedure, the input data are pro-
cessed by the first RBM and the features are learnt, then the
learnt features are employed as the input data of the second
RBM and the second RBM’s features are obtained. This pro-
cedure is running in this manner repeatedly, and the features
obtained by the last RBM is the extracted features in the
pre-training procedure. After that, the features are input into
the Softmax classifier layer for fine-tuning.

The pre-trained DBN model is fine-tuned by the Softmax
classifier during the fine-tuning process. The Softmax clas-
sifier is employed to classify the extracted features in the
pre-training process and generate the labels of the features.
Then, the generated labels are compared with the input data
label and the back-propagation mechanism is employed to
minimize the error between these two kinds of labels by
updating the weights in the RBM. After the fine-tuning pro-
cess is finished, the features extracted by the new last RBM
is thought to be the learnt features of DBN model.

The learning rate and RBM layers are important parame-
ters to the DBN model, which would significantly influence
the feature extraction performance of DBN. Traditionally,
these two parameters are selected according to experience,
which cannot always find the optimal results. Therefore,
in this paper, QPSO is employed to find the optimal values
of these two parameters.

C. QPSO

QPSO algorithm introduces the quantum behavior into the
convergence mechanism of particle swarm algorithm [39].
Since the quantum behavior characterized as polymorphic
and uncertain, it can force the particle can appear at any point
in space with some probability and satisfy the requirements of
aggregation state in properties difference, so that the particle
can search for the global optimal solution more efficiently in
the whole space. The particle in QPSO algorithm is iterated
as following:

1 M

mbest = m ' lPi 7)
=

P = P+ (1= P, ®)

Xi(t +1) = P+ o |mbest — X;(t)| In(1/u) )

where M is the population size, ¢ and u are the random num-
bers with uniform distribution on the interval [0, 1], mbest is
the average position of the optimal position of all particles, P;
and P; is the individual optimal position and global optimal
position of i-th particle. X(¢) is the position of i-th particle
in the ¢-th iteration, « is the compressive expansion factor.
The process of optimizing DBN model by using QPSO can
be described as following:

Step 1: initialize QPSO, including the particle position, the
searching space, the compressive expansion factor and the
iterations, the learning rate and number of hidden layer nodes
of DBN is projected as the position of particle;
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Step 2: calculate the fitness value of every particle in the
group, then calculate the individual optimal position of each
particle and the global optimal position of group;

Step 3: calculate the average value of the individual optimal
position of all the particles and then update the particles’
position;

Step 4: repeat steplto step 3 until meeting the condition
of convergence, and the optimization result is the optimal
learning rate and number of hidden layer nodes of DBN
model.

The employed fitness function during the optimization
process is:

1
fit = RMsE (10)

where RMSE is the root-mean-square error, when the maxi-
mum fitness value obtained, the output result is the optimal
solution of learning rate. The whole process is illustrated
in Fig. 6.

initializing
Parameter
selection

Meet the
convergence
condition?

Output the
optimal result

Obtain the
learning rate and
RBM numbers

Training
DBN

Calculate
fitness value

FIGURE 6. The flow chart of optimizing learning rate.

IV. MEASUREMENT RESUTLS

A. EXPERIMENT SETUP

In this experiment, an 110kV three-phase transformer (Fig. 7)
is adopted as the test object. The RFID sensor is installed
on the shell of transformer for vibration signal acquisition.
Table 1 shows the main parameters of the test object.

TABLE 1. Parameters of testing transformer.

Primary voltage  Secondary voltage  Rated power
kV) kV) MW)

110 10 50

To evaluate the communication performance of the pack-
aged RFID sensor, the signal-to-noise ratio (SNR) is mea-
sured. Fig. 8 shows the measurement results. It can be seen
that the packaged sensor shows higher SNR. The RFID
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FIGURE 7. Test environment.

FIGURE 8. SNR measured at different communication distances.

system requires at least 30dB SNR for regular communica-
tion [45], thus, from Fig. 8 it can be deduced that the pack-
aged sensor achieves the maximum communication distance
of 17.5m.

Ten health conditions of transformer including one nor-
mal condition, nine hybrid faults conditions are adopted for
diagnosis. The object transformer operates under rated load
power. In order to obtain the data of all the hybrid faults con-
ditions, several customized windings and cores are employed
(shown in Fig. 9), and each winding or core is artificially
damaged to simulate the failure in actual operation.

Table 2 shows the information about these ten conditions,
W represents winding, C represents core, D represents defor-
mation, L represents looseness, and O represents overlapping.
For each condition under rated load, 1000 signals are col-
lected, it need to be noticed that the frequency spectrum of
the vibration signal rather than the signal itself is employed
as the input value of DBN. The sample data are normalized
before being used for training:

X — Xmi
Xnorm = — (1D

Xmax — Xmin
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FIGURE 9. (a) Customized winding; (b) customized core.

TABLE 2. The health condition of transformer.

Number Fault Category  Description  Power
Fl1 Normal / Rated
F2 W, W D,L Rated
F3 W, W D,0O Rated
F4 W, W L O Rated
F5 W, C D,D Rated
Fo6 W, C L,D Rated
F7 W, C 0,D Rated
F8 W, W, C D,L,D Rated
F9 W. W, C D,0,D Rated
F10 W, W, C L,O,D Rated

TABLE 3. Optimized hidden layer structure and learning rate.

Hidden . Training Test -

. Learnin Training
Algorithm layer + rate accuracy  accuracy o )
structure & (%) (%)

500-800-
PSO 200 0.12 100 89.9 3340
FoA 0TS 09 100 90.7 3212
QGA 893—26131' 0.47 100 92.8 3473
QPSO 103834;89' 0.43 100 99.5 3107

where X, denotes the normalized value, Xy 1S the min-
imum value and Xmax 1S and maximum value. Half of the
samples are used as training data and the other half as test
data.

B. PERFORMANCE OF QPSO
The hidden layer structure and learning rate should be deter-
mined before the feature learning process. In order to eval-
uate the optimization performance of QPSO, particle swarm
algorithm (PSO), fruit fly optimization algorithm (FOA) and
quantum genetic algorithm (QGA) are also adopted to deter-
mine the hidden layers’ structure and learning rate. The opti-
mization process of all the optimization process are shown in
Fig. 10, the hidden layer structure and learning rate are shown
in Table 3. in Fig. 10, the QPSO achieves the best optimiza-
tion result with minimum fitness value and iterations.

From Table 3 it can be seen that the DBN optimized by
QPSO shows highest training accuracy and test accuracy,
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FIGURE 10. The optimization process of different algorithms.

meanwhile, its optimizing time is less than that of PSO and
QGA. So, the hidden layer structure of the DBN is 4096-
1033-789-847-10, 4096 is the dimension of input data, 10 is
the corresponding to the number of transformer condition.

C. PERFORMANCE OF DBN

The performance of DBN in feature learning is compared
with that of kernel principal component analysis (KPCA)
approach. The test data set contains the ten kinds of con-
ditions listed in Table 2, and the hidden layer structure and
learning rate of DBN are determined by using QPSO. Both
the two approaches are employed to extract features from the
test data set, and the t-SNE (T-Distribution Stochastic Neigh-
bor Embedding) [37] is used to realize the visualization of
high dimensional data into a two-dimension feature distribu-
tion. The results are shown in Fig. 11, Fig. 11(a) is distribution
of raw data, Fig. 11(b) is the feature extracted by KPCA, and
Fig. 11(c) is the feature extracted by optimized DBN. When
dealing with the hybrid fault conditions, the KPCA method
cannot acquire discriminative features, some of the features
are mixed. The optimized DBN is able to learn succinct and
discriminative features from the hybrid fault signal, which
guarantees the fault diagnosis accuracy.

The diagnosis accuracy of the proposed method is com-
pared with the traditional approaches, all the approaches are
optimized by QPSO and the results are shown in Table 4.
The kernel principal component analysis (KPCA), indepen-
dent component analysis (ICA) and DBN are employed to
extract features from the data, respectively, and the support
vector machine (SVM) is employed for classification of the
extracted features. It can be seen that under hybrid faults
conditions, the proposed DBN achieves the best diagnosis
results with highest accuracy and minimal time.

To further evaluate the priority of the introduced Hilbert
envelop spectrum in term of fault diagnosis, the raw vibration
signal in time domain (F1) and its frequency spectrum (F2)
are employed as the input data of SSDA, respectively. The
SSDA are optimized by QPSO algorithm, the results are
listed in Table 5. For these three kinds of input data, the
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FIGURE 11. Feature extraction performances: (a) raw data; (b) KPCA;
(c) DBN.

training accuracy are all 100%, which means the SSDA model
has excellent performance in feature learning. But the test
accuracy is different for different input data, F1 shows the
minimal test accuracy, F2 ranks the second and the introduced
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TABLE 4. Fault diagnosis performance comparison.

Approach Accuracy (%)  Time (s)
KPCA-SVM 65.7 2.258

ICA-SVM 71.1 1.762

This paper 99.8 0.488

TABLE 5. Fault diagnosis performance of Different input feature data.

Input data  Training accuracy (%)  Test accuracy (%)
F1 100 60.5
F2 100 88.1

This paper 100 99.8

input data in this paper achieves the highest test accuracy.
This experiment indicates that the feature extracted from F1
cannot represent the whole character of raw signal. As for the
frequency spectrum and Hilbert envelop spectrum, the Hilbert
envelop spectrum achieves higher test accuracy. Therefore,
it can be deduced that the Hilbert envelop spectrum is more
sensitive to the fault and has better robustness compared with
the other two kinds of input data.

V. CONCLUSION

In this study, a non-invasive, low cost and high accuracy
method using solar-powered RFID sensor and DBN is intro-
duced for incipient hybrid fault diagnosis of transformer. The
exploited RFID sensor utilizes solar panel to harvest power,
a series of supercapacitors are used as stand-by power to
improve the sustainability of power supply. During the day-
time, the solar panel harvests solar energy to power the RFID
sensor and charge the supercapacitors. When the illumination
intensity is not adequate for the solar panel to harvest enough
power (>2.8V output voltage) for the RFID sensor (such
as during the night), the supercapacitor starts to operates as
power supply.

The DBN model is aimed to obtain succinct and dis-
criminative features from transformer vibration signals that
contains miscellaneous noises and abundant harmonic com-
ponents. The Hilbert envelop spectrum is employed as the
input data of DBN, which promises reliable feature extraction
performance as well as fault diagnosis performance. The
hidden layer structure and learning rate of DBN is optimized
by QPSO approach to guarantee optimal feature extraction
results. The experimental results have validated the effec-
tiveness of the proposed approach in learning features from
hybrid fault signals, the proposed method can achieve 99.8%
fault diagnosis accuracy for the incipient fault.

In the future, the study would focus on the improvement
of the RFID sensor and the realization of wireless monitoring
system for the whole substation.
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