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ABSTRACT With the wide application of the Internet of Things (IoT), the risk of data leakage and theft
in IoT is gradually increasing since communication channel is public in data transmission. Thus, the IoT
security has become a major problem in information security. Steganography is one of the key methods
to solve the problems of personal privacy disclosure and covert communication. In order to make sure
secure communications, this paper proposes a novel steganography algorithm based on image-to-image
translation by adding steganography module and steganalysis module to CycleGAN, adapting to the covert
communication and privacy preserving of the IoT. Steganalysis network is used to improve the anti-detection
ability of stego image. Moreover, cycle consistent in CycleGAN can guarantee the quality of the generated
image. Through the proposed scheme, the stego image can resist steganalysis by monitors to some extent
and remain intact. The experimental results show that this method has a better performance than the state-
of-the-art approach.

INDEX TERMS Internet of Things (IoT), steganography, CycleGAN, image-to-image translation.

I. INTRODUCTION
Nowadays, Internet of Things (IoT) technologies have been
widely used in industrial control, military investigation,
identification technology, pervasive computing, etc [2]. The
architecture of the IoT can be generally divided into three
componets: cloud, device terminal and mobile terminal.
Through the communication between mobile terminal and
cloud, an instruction is sent to device terminal through the
cloud, thereby realizing the connection between the things
and the network [3]. In this situation, high-performance
servers are usually required to provide public service comput-
ing [3].Meanwhile, in order to effectively control the network
congestion problem in IoT, the emergency packets are applied
and improved [4]–[7]. In addition, for multiple cloud plat-
forms and terminal devices, there are lots of service quality
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data, which may exist the leakage of important data [8].
Moreover, because IoT devices are close to users’ lifes, such
as video surveillance, vehicle localization, smart bracelet and
so on, the most of data is about user privacy. It is possible
that sensitive data is more vulnerable to disclosure and mon-
itor. Therefore, security and privacy get a large number of
concerns [9]–[11], and privacy-perserving challenges faced
by IoT system are major problems to be solved.

In order to secure communication between device and the
cloud or application programs, information hiding technolo-
gies can be applied to approach the concealment and security
of communication besides encrypting the transmitted mes-
sage. The scheme of covert commutation is urgently needed
to guarantee the privacy or essential data protection and
resist the potential monitor. Steganography scheme refers to a
covert communication mode that embeds secret information
imperceptibly into carrier and transmits it publicly. By hiding
secret information in the public communication media, such
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as image, text, video, audio, etc., it can obtain the secret
carrier called stego. In the process of stego transmission, it is
a challenge that finding anomalies by the monitor, so that
secret information can be covertly transmitted. Therefore,
researchers are adopting the steganography approaches to the
IoT in attempt to secure communication. Kim et al. [12] pro-
posed an anti-reverse-engineering dynamic tamper detection
scheme in IoT applications, which realized image informa-
tion hiding. Li et al. [13] proposed a steganography method
for IoT using aMaximumMatchingDegree sifting algorithm.
This method mainly chooses a better cover image which is
the most suitable image to embed secret messages by prepro-
cessing. In addition, Chen et al. [14] applied a information
hiding algorithm to mobile platforms. They introduced an
improved image steganography method for secure data trans-
mission from a computer to a mobile phone. In their method,
messages could be hidden in an image on the computer using
a password, and users can download the image from the com-
puter to a mobile phone. The decoder program will extract
hidden information through Java programs on the mobile
phone. Later, Shirali-Shahreza et al. [15], [16] proposed text
and image-basedMMS steganography and secret information
exchange through abbreviated short message to realize the
covert transmission. With the computational power of edge
computing in IoT, Cui et al. [17] proposed an scheme of
foreground object generation by GAN. Thus, the stego for
covert communication shall have the ability of undetectable
where the ability plays a key role in the steganography
approach. At the same time, we need to ensure that there is no
perceptible difference between cover and stego, which means
that the anti-descent mechanism of stego image quality.

CycleGAN learns a mapping G : X → Y from source
domain X to target domain Y to perform image transfer [1],
that is, to transfer the image style from source domain X to
target domain Y . It contains two mappings: G : X → Y ,
F : Y → X . CycleGAN consists of two discrimina-
tors and two generators. Each mapping process includes a
discriminator and a generator to realize the style migra-
tion of images from source domain X to target domain Y .
Another mapping implements the style migration of images
from target domain Y to source domain X . Because the
texture of image has changed in the process of style trans-
fer, and the two mapping processes are a cyclic process,
this paper proposes to add secret information in the pro-
cess of style transfer, which makes a high anti-detection of
steganalysis. This paper extends the structure of CycleGAN
by adding an information hiding module and a steganaly-
sis module. Secret information is embedded in the process
of image-to-image translations, and steganalysis is used to
judge and supervise the generated stego image and transferred
image, which will achieve secure covert communication
under the monitor. The cycle-consistency loss of CycleGAN
ensures no obvious abnormality between the style transferred
images and stego images. For the extracting terminal, secret
information is extracted by the corresponding extraction
algorithm.

The main contributions of our work are as follows:
1) The proposed steganography approach makes the anti-

detection process of stego images more explicit and
effective than embedding on the images trained from
scratch. The reason is that the training objective and
direction of the stego images are shifted to image-to-
image translations.

2) Compared with embedding secret information from
scratch in the image generation process of GAN, this
method introduces cycle-consistent adversarial train-
ing pattern for steganography process, and defines the
embedding distortion, so as to improve the quality of
stego images.

3) This method is suitable for covert communication of
the IoT, that is to communicate secret message covertly
over terminals, which makes communication of the IoT
platform more covert and secure.

The rest of the paper is organized as follows. In Section II,
we introduce the models, technologies and research status
related to the proposed method. The basic idea of the pro-
posed scheme is outlined in Section III. Extensive experi-
ments are performed with the contrast results in Section IV
to demonstrate the performance of the method proposed in
the paper. Conclusions are presented in Section V.

II. RELATED WORKS
A. GENERATIVE ADVERSARIAL NETWORKS
Deep learning has been widely used in classification, object
and face detection, forensics and so on [18]–[21]. With the
development of deep learning, various algorithms based on
CNN have also been proposed and improved. In 2014, Good-
fellow et al. [22] firstly proposed GANmodel to simulate the
distribution of generating relatively real computer images to
natural images. It contains two basic sub-structures, generator
and discriminator. The generator generates images using a
convolutional operation through a random input noise. Then
the generated image and the real image are fed into the
discriminator to classify. Through supervised learning of
the features extracted on the real image and the generated
image, the discriminator judges whether the distribution of
the generated image and the real image satisfies the minimum
value of the maximum difference on KL-divergence. The
generator will modify the generated image according to the
optimal direction of the discriminator until the discriminator
can not recognize the generated image correctly at a specific
threshold. On the basis of GAN, a series of improved GANs
have been further developed. Mirza et al. [23] proposed
Conditional GAN, which improved the unsupervised genera-
tion process to a supervised process. They added constraints
to the generator of GAN model, thus providing the given
direction for the generation process. WGAN (Wasserstein
GAN) proposed by Arjovsky et al. [24] solved the problem
of instability in the training process of GAN, and proposed
effective methods to ensure the diversity of generated sam-
ples. On the basis of WGAN, Berthelot et al. [25] pro-
posed BEGAN, adding an auto-encoder to the discriminator.
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The construction of the encoder was the same as that of the
generator with different weights. The proposed model effec-
tively controlled the balance between generator and discrimi-
nator, as well as the balance between the diversity and quality
of generated samples. Ma et al. [26] proposed that DA-GAN
is used for instance-level image conversion by translating a
text description into an image.

B. IMAGE-TO-IMAGE TRANSLATION
Hertzmann et al. [27] proposed that non-parametric texture
model for translating an image to another image by image
analogies method. Due to the antagonistic characteristics
of GAN, it is very suitable to generate natural images.
Isola et al. [28] put forward the ‘‘pix2pix’’ framework by
modifying conditional adversarial networks. The framework
added a U-Net structure to the generator. In addition, on the
basis of adversarial loss, L1 loss was added to measure the
variation between real image and generated image, making it
suitable for image-to-image translation, so as to generate the
image of the corresponding domain according to the input
image. Wang et al. [29] realized the generation of high-
resolution images on the basis of pix2pix. The SingleGAN
proposed by Yu et al. [30] was based on multiple GAN.
It implemented multi-domain image-to-image translations by
using a single generator. In the field of Unpaired Image-to-
Image Translation [31]–[33], Zhu et al. [1] proposed Cycle-
GAN using cycle-consistent adversarial networks to achieve
unpaired image-to-image translation. By transforming the
images of different domains into each other, the converted
images could also be restored to the pre-converted images.
Anoosheh et al. [34] proposed RoDayGAN by modifying
the image translation model and using the known 6-DOF
position of the closest day image, the night driving image was
converted into a more meaningful day driving image.

C. STEGANOGRAPHY
Image steganography algorithms use redundant information
of the cover image to hide secret information, which is dif-
ficult to be detected by the monitor. It is achieved that trans-
mitting secret information over the public transmission of the
stego image. In the early days, the most widely used method
is the least significant bit (LSB) replacement. Information
hiding is accomplished by embedding secret information
directly into the least significant bit of image pixels. Although
the LSB algorithm has large hiding capacity and is easy to
extract and operate, its robustness and anti-detectability is not
strong. In order to improve the robustness of stego images,
boosted steganography scheme (BSS) was proposed by
Sajedi and Jamzad [35]. It had a preprocessing stage to select
a cover image from a database before applying steganog-
raphy methods. And the experimental results showed that
the scheme could significantly improve the steganography
security. Content adaptive algorithms are mainly designed
based on the theory of minimizing distortion, such as
S-UNIWARD [36], WOW [37], HUGO [38] and so on.
This kind of algorithm calculates the image distortion after

embedding secret messages by defining a distortion cost
function and gives the recommended value that each
unit can be embedded. The stego image is completed
after hiding the secret message over the unit suitable for
embedding.

Due to deep neural network can extract the deep features
of images, the information hiding algorithm based on deep
learning has developed to a certain extent. Baluja [39] pro-
posed to use neural networks to find the appropriate location
to embed secret images in the cover images. By training
an encoder network to embed secret images, they could be
dispersed in every bit of the image unit, rather than embed
in one bit of a unit. At the same time, the model also trained
a decoder network, which could extract secret images from
the stego images. Meng et al. [40] proposed the use of object
detection method to select the object area in cover images as
the safe area for steganography. They proved that the security
of steganography was increased by hiding secret information
in a secure well-textured region. Meng et al. [41] proposed
that combining coverless information hiding and steganogra-
phy in [40], so as to increase the payloads. Zhang et al. [42]
proposed a steganographic algorithm to invalidate steganal-
ysis networks based on deep learning. This method used the
gradient in the training process of the deep learning model to
add specific noise to the cover image to obtain the enhanced
cover image so that it could ‘‘mislead’’ the classification
of the deep learning (make the stego image recognized as
cover image). Then the traditional adaptive steganography
framework was used to realize information embedding on the
enhanced cover image.

In addition, the application of information hiding in GAN
has been extensively studied due to the similarity of con-
frontation characteristics between the generator and dis-
criminator in GAN and steganography and steganalysis in
information hiding [43]. Volkhonskiy et al. [44] proposed a
GAN-based steganography model named SGAN in 2017.
On the basis of GAN, this model added a new discrimi-
nator named steganalysis, which was used to discriminate
on the generated stego images during training process to
make the final generated stego images can resist steganalysis.
On the basis of SGAN, Shi et al. [45] proposed an improved
steganographic model SSGAN based on GAN model, whose
model structure was similar to that of SGAN. WGAN
(Wasserstein GAN) [24] was adopted in SSGAN to replace
DCGAN [46]. It achieved faster training speed and higher
image quality. In addition, the steganalysis was replaced by
GNCNN [47]. Through the confrontation between GNCNN
and generator, the image generated by GAN was more suit-
able for steganography. When CycleGAN was proposed,
although the problem of unpaired image-to-image translation
was solved, there were also some problems. Chu et al. [48]
pointed out that CycleGAN could hide part of the input data
and then restored the hidden data at the time of output, which
could be used for information hiding. Tang et al. [49] pro-
posed the ADV-EMB steganographic scheme, which adjusted
the cost of image modification according to the gradient
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FIGURE 1. An instance of covert communication between terminals in
the IoT.

returned by the target CNN steganalyzer, so as to hide secret
message and deceive CNN-based steganalysis at the same
time.

III. THE PROPOSED S-CYCLEGAN
STEGANOGRAPHIC SCHEME
In this section, we propose a novel steganographic scheme,
called S-CycleGAN. As illustrated in Figure 1, an instance
of covert communication between terminals in the IoT with
public channel is presented. Here, T1, T2, T3 and T4 are
terminals in the IoT. The covert communication exists on
T1 and T2. T1 hides secret messages in a cover image by
the proposed steganography algorithm, and sends the stego
image with secret messages to T2. T2 extracts secret messages
by extraction algorithm. The steganographic scheme adds
steganography module and steganalysis module based on
CycleGAN.

FIGURE 2. The structure of S-CycleGAN.

As illustrated in Figure 2, our model includes two cycles
Embedding : (G : X → Y ) → y′′, F : y′′ → X and
Embedding : (F : Y → X ) → x ′′, G : x ′′ → Y .
Among them, X and Y represent two domains respectively,
x ′′ and y′′ represent stego images. In addition, there are three
discriminators DX , DY and S, where the functions of DX and
DY are same as those of DX and DY in CycleGAN. DX and
DY are used to distinguish the generated image from the target
domain image. S is the increased steganalysis module, which
is used to distinguish stego images from generated images.
Through the confrontation between steganalysis and gener-
ator, the concealment and robustness of the steganographic
image are improved.

FIGURE 3. The detailed processes of S-CycleGAN, (a) is the transformation
and steganography process from X domain to Y domain, (b) is the
transformation and steganography process from Y domain to X domain.

In the proposed scheme, we hope to carry out information
hiding in the process of translating the image from X-domain
into the style image of the Y-domain, so as to achieve high-
quality image transformation and the stego image can resist
steganalysis at the same time. The scheme that includes
three phases, as shown in Figure 3(a). In the first stage, the
X-domain image is transformed into the Y-domain style
image by generatorG, that is, y′. The real image y(y ∈ Y ) and
the generated image y′ are distinguished by DY . If the differ-
ence can be judged, the generator will adjust the distribution
of the generated image until it can fool DY . The second stage
is the steganography of secret messages. By using the LSB
matching steganography algorithm to embed the secret mes-
sages into the generated image y′, the stego image is obtained
as y′′. The inputs of steganalysis S are the stego images as fake
images and the generated images as real images. Steganalysis
S aims to maximize the difference between the stego image
and the generated image. When S distinguishes stego image
and generated image, generator will adjust the distribution of
y′ until it can fool S after it being embedded secret messages.
Thus, a high quality stego image that can resist steganalysis
is obtained. In the third stage, the stego image can be recon-
structed to the input image of the generatorG by generator F ,
that is, the generated x̄ and x are as similar as possible. The
transformation and steganography process from Y-domain to
X-domain is similar to the transformation and steganography
process fromX-domain toY-domain, as shown in Figure 3(b).

In the beginning of training process, converting the image
x from domain A into the image y′ that the image style is
the style in domain B, and y′ is fed to the discriminator of
CycleGAN. Then, the random binary string with length of
3×H×W (payload= 1), whereH andW denotes the height
and width of the pixels in y′ is embedded in y′ and output
y′′ to simulate the process of embedding the secret message.
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Algorithm 1 The Embedding Algorithm Applied in the
Proposed S-CycleGAN
Input: The Image x belong to domain X and the secret
message Msecret
Output: The stego y′′ belong to domain Y

1 Transfering by the trained Model: x → y′

2 Embedding the Msecret into y′:
3 for i← 1 to lenth(Msecret ) do
4 if LSB(y′(i)) == LSB(Msecret (i)) then
5 pass
6

7 else if y′(i) == 0 then
8 y′(i) + = 1
9

10 else if y′(i) == 255 then
11 y′(i) − = 1
12

13 else
14 y′(i) + = randomInt (0, 1)

15

16 return y′ as y′′

After the steganalysis discriminates y′′, the updated gradients
are transmitted to the generator. Repeat the process until the
training is completed.

In the scenario of implementing the trained model, we will
get the stego by carring out Algorithm 1. In the proposed
method, we mainly design adversarial loss, cycle consistency
loss and full objective function.

A. ADVERSARIAL LOSS SETTING
For cyclic Embedding : (G : X → Y ) → y′′, F : y′′ → X ,
their discriminators are DY and S. We design adversarial loss
as shown in Formula (1).

LGAN (G, S,DY ,X ,Y )

= ∂
((
Ey∼Pdata(y)

[
logDY (y)

])
+Ex∼Pdata(x) [1−DY (G (x))]

)
+ (1− ∂)Ex∼Pdata(x)

[
log S (G (x))

+ log (1− S (Emb (G (x))))]→ min
G

max
DY

max
S

(1)

Among them, Pdata(y) and Pdata(x) denote the distribu-
tions of real images in Y-domain and X-domain, DY and S
are discriminator and steganalysis module respectively, and
Emb (G (x)) is the stego image after embedding secret infor-
mation into the generated image. The purpose of generator G
is to make the distribution of generated image G (x) as close
as possible to that of image inY domain.DY (G(x)) means that
the discriminator DY is to distinguish the difference between
the generated image G (x) and the real image y in the Y
domain. The purpose of discriminator S is to judge the dif-
ference between the distribution of stego image Emb (G (x))
and that of generated image G (x) as far as possible.

The discriminator DY and steganalysis S are trained to max-
imize them. ∂ is the weighting term.
For cyclic Embedding : (F : Y → X )→ x ′′, G : x ′′ → Y ,

their discriminators are DX and S. We design adversarial loss
as shown in Formula (2).

LGAN (F, S,DX ,X ,Y )

= ∂
((
Ex∼Pdata(x)

[
logDX (x)

])
+Ey∼Pdata(y) [1−DX (F (y))]

)
+ (1− ∂)Ey∼Pdata(y)

[
log S (F (y))

+ log (1− S (Emb (F (y))))]→ min
F

max
DX

max
S

(2)

where F is the generator to make the distribution of generated
image F (y) as close as possible to that of image in X domain.
DX and S denote the discriminator and steanalysis module
respectively. Emb (F (y)) is the stego image embedded with
the secret message.

B. CYCLE CONSISTENCY LOSS FOR STEGANOGRAPHY
There are two cycles in our model. One cycle is to transform
the X-domain style image into the Y-domain style image, and
then hide the messages to get the stego image y′′. Next, y′′ is
reconstructed to X-domain style image through generator F ,
that is, x̄. That is, cycle: Embedding: (G: X -Y )-y′′ , F : y′′-
X . Another cycle is to transform the Y-domain style image
into the X-domain style image by generator F , that is, x ′, and
then hide themessages from x ′ to get the stego image x ′′. Next
generator G is aimed to reconstructed x ′′ into the image with
the same distribution as the input image of generator F, that
is, ȳ. The difference with CycleGAN is that we reconstructed
the stego image to the input image instead of reconstructing
the generated image directly. Cycle consistency loss shows
as Formula (3). For image x transferring from X-domain to
Y-domain, G and F should satisfy backward cycle consis-
tency: x → G(x) → Emb(G(x)) → F(Emb(G(x))) ≈ y.
For image y from Y-domain, the cycle consistency is
y→ F(y)→ Emb(F(y))→ G(Emb(F(y))) ≈ y.

Lcyc(G,F) = Ex∼Pdata(x) [‖ F (Emb (G (x)))− x ‖1]

+Ey∼Pdata(y) [‖ G (Emb (F (y)))− y ‖1] (3)

C. FULL OBJECTIVE FUNCTION
The full object function is shown in Formula (4). It contains
two cycles of adversarial losses those are LGAN (G, S, DY ,
X , Y ) and LGAN (F, S,DX ,X ,Y ) and a cycle consistency loss
that is Lcyc(G,F).

L (G,F, S,DX ,DY ) = LGAN (G, S,DY ,X ,Y )

+LGAN (F, S,DX ,X ,Y )+ λLcyc(G,F) (4)

IV. EXPERIMENTS
In order to evaluate the performance of the proposed
S-CycleGAN scheme, we conducted the following
experiments.

1) Adding steganalysis and steganographic module to
CycleGAN, that is, the proposedmethod S-CycleGAN.
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The S-CycleGAN model is trained to generate stego
images. It will be showed in Section IV-B.

2) SGAN [44] is used as the one of baselines. We use
the same datasets of S-CycleGAN to generate the stego
images for SGAN. It will be reported in Section IV-B.

3) Using the Freìchet Inception Distance (FID) [50] and
Inception score (IS) [51] to evaluate the image qual-
ity of two sets of stego images generated by two
steganographic algorithms. It will be demonstrated in
Section IV-C.

4) We add S-UNIWARD steganography which embeds
the message directly into translated image by Cycle-
GAN as the other baseline for steganalysis. The data-
sets are the same as S-CycleGAN model’s datasets.
Steganalysis algorithms SPA and SRM are used to
analyze the three groups of stego images obtained
by SGAN, S-CycleGAN and CycleGAN with
S-UNIWARD steganographic algorithms, so as to com-
pare the concealment of these stego images. It will be
demonstrated in Section IV-D.

5) The instance of implementing the process of embed-
ding and extraction with the real secret messages is
shown in Section IV-E.

The common settings, hardware environment and notations
in the experiments will be described in Section IV-A.

A. SETTING
1) IMAGE SET
To evaluate the proposed methods, we conducted exper-
iments on the datasets in CycleGAN [1]. Among them,
the data sets Horse2Zebra and Apple2Orange are sam-
pled from LSVRC2012 (ImageNet) dataset. To simulate
secret data embedding during the variation of landscape
images, we chose Summer2Winter dataset for translation.
Meanwhile, we select to train on the Photo2Monet dataset
to implement the embedding of secret information in the
style transfer process. The details of each dataset are shown
in Table 1. We select the image in training set for training.
At the same time, when testing performance, we select the
image in the test set.

TABLE 1. Number of images in each data set.

2) HARDWARE ENVIRONMENT
All experiments in this paper are performed on NVIDIA
1080Ti GeForce GPU and Intel i7-6900K CPU. The
employed framework is TensorFlow with Python.

3) NOTATIONS
In the experiments, the name of the dataset indicates the trans-
formed style of S-CycleGAN or the target class of SGAN.

B. TRAINING PROCESS AND RESULTS
By default, the learning rate is set to 0.0002 with update
parameters β1= 0.5, β2= 0.999 in the training process of
S-CycleGAN and SGAN. We choose Adam as the optimiza-
tion function with momentum of 0.5. The weight of the regu-
lation term in S-CycleGAN is set to 10. Refer to the setting of
CycleGAN, generative network consists of 9 residual blocks
with instance normalization [52] for data normalization dur-
ing style transferring. In S-CycleGAN, Instance Normaliza-
tion is not set up in the first layer of the discriminant networks
and stegannalysis networks, and leacky Relu with 0.2 is
added in the next three layers. In addition, the steganalysis
network refers to Xu-Net [53]. After data feeding, the high-
pass convolutional kernel is added to extract weak embedded
features, and the extracted features are used for steganalysis.
In the training process, we will simulate secret information
as random binary codes of the same scale as the pixels of the
input image. The output stego images are derived from the
generated images with size of 256× 256. Then the embedded
binary code length is 256 × 256 × 3, i.e. the payload is 1.
Some experimental results are shown in Figure 4. Stego

images generated on apple, orange, horse, zebra, summer,
winter, monet and photo datasets by steganography algorithm
S-CycleGAN and SGAN, respectively. Through the display
and comparison of some experimental results, we can clearly
see that stego images generated by S-CycleGAN are of much
higher image quality than those generated by SGAN.

C. EVALUATING STEGO QUALITY
We selected different evaluation metrics to evaluate the image
quality. First, we select the classification model Inception
V3 [59] on ImageNet [60], and use Inception Score (IS)
as the quantitative evaluation index. By computing the
KL-divergence between the distributions of the target class
and the generated class, the IS measures the distance between
the two probability distributions. The larger the value of IS,
the smaller the discrepancy representing this distribution,
then the quality of the generated image is better. However,
there are some limitations of IS [54]. Due to the sensitivity
to weights in the neural network and the high dependence
on the category of samples, IS has certain restrictions on the
evaluation of generated images.

The experimental results are shown in Table 2 and Figure 5.
Besides the horse data set, the IS value of stego image gen-
erated by S-CycleGAN IS higher than that of stego image
generated by SGAN. In particular, the IS value of the image
generated by S-CycleGAN is 2.6 times higher than that of the
image generated by SGAN in the comparison experiment of
Monet data set. It shows that the image distribution generated
by the method of S-CycleGAN proposed in this paper is
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FIGURE 4. The comparison of two sets of stego images by S-CycleGAN steganography and SGAN steganography algorithm.

TABLE 2. Inception score of the generated stego images by S-CycleGAN
and SGAN.

closer to the natural distribution than that of SGAN, and the
diversity effect of S-CycleGAN is better.

To solve the limitation of IS in the evaluation of image
quality, FID is used as another evaluation metric for all gener-
ated data. FID calculates the Wasserstein-2 distance between
the generated data and the real data using Inception-v3 mea-
surement. A lower FID value indicates a closer distance

FIGURE 5. The comparison of stego images generated by S-CycleGAN and
SGAN in IS evaluationS-.

between the two distributions, which indicates the better
image quality. FID is more robust to noise than IS. In addi-
tion, FID shows a closer approximation to the human vision
system [50]. Therefore, we believe that FID shows the quality
of generated images more effectively.
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TABLE 3. Fréchet inception distance of the generated stego images by
S-CycleGAN and SGAN.

FIGURE 6. The comparison of stego images generated by S-CycleGAN and
SGAN in FID evaluation.

The comparative experiment results of FID are shown
in Table 3 and Figure 6. The images generated by
S-CycleGAN are all higher than those generated by SGAN
under the evaluation standard of FID. The maximum FID
value of stego image generated by S-CycleGAN can be
approximately 7 times that of the FID value of stego image
generated by SGAN. The FID experiment further proves
that the quality of generated stego image of S-CycleGAN
proposed in this paper is better than that of SGAN.

Due to the high efficiency of CycleGAN in domain trans-
fer, S-CycleGAN has advantages when the training set is
insufficient. Compared with SGAN, the image quality of
S-CycleGAN is obviously better, such as zebra, horse, apple
and orange. SGAN cannot effectively simulate the real data
distribution when the training data is insufficient. In the case
of training with sufficient training samples, although SGAN
can generate images with high image quality, the image
integrity of the image content is low, and it is easy to be
perceived as computer-generated images.

D. EVALUATING PERFORMANCE ON STEGANALYSIS
At first, sample pair analysis (SPA) [55], a steganalysis
method targeting at LSB stego steganography, is used to
estimate the performance of stego. Secondly, we use Spatial
Rich Model (SRM) [56] which is widely used to perform
steganalysis. Meanwhile, Ensemble Classifiers [56] are used

as the classifier. We use the trained model, which is provided
from [57], as the pre-trained model for classification,. The
model is trained on the BOSSBase v1.01 [58] dataset, whose
number of images is 10,000, and the training set and test
set account for 70% and 30% respectively. The high anti-
detection rate of stego image by steganalysis reflects the
concealment of secret information.

TABLE 4. The anti-detection rate of sample pair analysis.

FIGURE 7. The comparison of anti-detection rate of stego images
generated by S-CycleGAN, SGAN and CycleGAN with S-UNIWARD in SPA.

In order to compare the performance of the proposed
method, we add S-UNIWARD steganography with payload
of 1 which embeds the message directly into translated image
as comparison. Table 4 and Figure 7 show the results of
SPA steganalysis algorithm on the stego images obtained by
S-CycleGAN, SGAN and CycleGAN with S-UNIWARD
algorithm. The results are the anti-detection rate of stego
images. As can be seen from Table 4 and Figure 7, stego
images generated by S-CycleGAN can escape SPA detec-
tion with the highest accuracy. Moreover, the results on
S-CycleGAN are significantly better than those on SGAN,
and the results on S-CycleGAN are slight better than those
on CycleGAN with S-UNIWARD. The data with an anti-
detection rate of 1 in the detection result indicates that stego
images can completely resist SPA detection, which proves
that the cycle-consistent loss of S-CycleGAN in training can
help maximize the tolerance of cover image modification.

In addition to the SPA steganalysis, we use a more typical
steganalysis algorithmSRM. The algorithm contains a variety
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TABLE 5. The anti-detection rate of spatial rich model steganalysis.

FIGURE 8. The comparison of anti-detection rate of stego images
generated by S-CycleGAN, SGAN and CycleGAN with S-UNIWARD in SRM.

of spatial high-pass filtersthose are used to filter the image,
so as to obtain rich residual image. The cooccurrence matrix
is calculated according to the residual image as the steganal-
ysis feature of the stego image. Table 5 and Figure 8 show
the steganalysis results of SRM steganalysis algorithm on the
three group of stego images. By analyzing the data, we can
see that the anti-detection rate of the stego images generated
by the proposed S-CycleGAN is higher than that of the
stego images obtained by the SGAN and CycleGAN with
S-UNIWARD. has The average anti-detection rate of the
stego image generated by SGAN algorithm is 0.231.
The average anti-detection result of CycleGAN with
S-UNIWARD 0.431. But steganography algorithm
S-CycleGAN generated stego image anti-detection rate is up
to 0.99, the lowest is 0.38, the average anti-detection rate
is 0.791. The average anti-detection rate of stego images gen-
erated by S-CycleGAN is 3.4 times and 1.8 times higher than
those of stego images generated by SGAN and CycleGAN
with S-UNIWARD. Thus, the stego images generated by
S-CycleGAN are more suitable for steganography than those
generated by SGAN and CycleGAN with S-UNIWARD.

E. EMBEDDING AND EXTRACTION
When an image is input, the transferred image is generated
according to the pre-trained model, and secret information
is embedded in the process by LSB Matching algorithm.
For stego images, secret information can be obtained by

FIGURE 9. The illustration of the embedding process and the extraction
process.

extracting each minimum effective bit. Figure 9 shows an
specific procedure of the transmission of the secret message
and shows the results of extraction.

V. CONCLUSIONS
In this paper, we proposed a novel approach named
S-CycleGAN to embed secret messages in the process
of image-to-image translation. This approach mainly adds
steganography module and steganalysis module on the basis
of CycleGAN. Steganalysis module is used to counteract the
generated stego images, which makes the generated stego
images more secure. By the facilitation of cycle consistency
loss, the stego images generated by the proposed method will
be close to the cover images effectively. Through the analysis
of several experimental data, it is proved that the proposed
S-CycleGAN not only guarantees the quality of stego images,
but also makes the stego images more resistant to detection,
and realizes the concealment and security in the transmis-
sion process. The method is adapted to solve the security
of IoT communication and realize the secret communication
between terminals.
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