IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 4, 2019, accepted May 29, 2019, date of publication June 5, 2019, date of current version June 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920885

A Novel Systolic Parallel Hardware Architecture
for the FPGA Acceleration of Feedforward
Neural Networks

LEANDRO D. MEDUS, TARAS IAKYMCHUK™, JOSE VICENTE FRANCES-VILLORA,
MANUEL BATALLER-MIOMPEAN“, AND ALFREDO ROSADO-MUNOZ

Group for Processing and Digital Design, Department of Electronic Engineering, Universitat de Valencia, 46100 Burjassot, Spain

Corresponding author: Alfredo Rosado-Muiioz (alfredo.rosado@uv.es)

ABSTRACT New chips for machine learning applications appear, they are tuned for a specific topology,
being efficient by using highly parallel designs at the cost of high power or large complex devices. However,
the computational demands of deep neural networks require flexible and efficient hardware architectures
able to fit different applications, neural network types, number of inputs, outputs, layers, and units in
each layer, making the migration from software to hardware easy. This paper describes novel hardware
implementing any feedforward neural network (FFNN): multilayer perceptron, autoencoder, and logistic
regression. The architecture admits an arbitrary input and output number, units in layers, and a number
of layers. The hardware combines matrix algebra concepts with serial-parallel computation. It is based
on a systolic ring of neural processing elements (NPE), only requiring as many NPEs as neuron units in
the largest layer, no matter the number of layers. The use of resources grows linearly with the number
of NPEs. This versatile architecture serves as an accelerator in real-time applications and its size does not
affect the system clock frequency. Unlike most approaches, a single activation function block (AFB) for
the whole FFNN is required. Performance, resource usage, and accuracy for several network topologies and
activation functions are evaluated. The architecture reaches 550 MHz clock speed in a Virtex7 FPGA. The
proposed implementation uses 18-bit fixed point achieving similar classification performance to a floating
point approach. A reduced weight bit size does not affect the accuracy, allowing more weights in the same
memory. Different FFNN for Iris and MNIST datasets were evaluated and, for a real-time application of
abnormal cardiac detection, a x256 acceleration was achieved. The proposed architecture can perform up
to 1980 Giga operations per second (GOPS), implementing the multilayer FFNN of up to 3600 neurons per
layer in a single chip. The architecture can be extended to bigger capacity devices or multi-chip by the simple
NPE ring extension.

INDEX TERMS Feedforward neural networks - FENN, systolic hardware architecture, FPGA implementa-
tion, neural network acceleration, deep neural networks.

I. INTRODUCTION

Feed-Forward Neural Networks (FFNN) in different vari-
ations are one of the most used machine learning algo-
rithms, with numerous applications typically running under
PC-based software systems. However, when fast processing
time is required in real-time applications or fast prediction,
decision or classification, a PC-based system might not be
able to provide enough throughput. Nowadays, this situation
becomes very common since FFNN sizes are growing due
to the complexity of the problems to be solved and big data
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applications, with an increasing number of inputs, neuron
units, and the number of layers. Moreover, power consump-
tion and computational speed is an important issue; CPUs
and GPUs can process data at a high speed, but the use of
power and resources is higher than FPGA and other custom
embedded hardware platforms [1].

The computational resources and internal architecture pos-
sibilities of FPGA devices differ from classic Von Neumann
PCs or even SIMD processing units as GPUs, CPUs or DSPs.
FPGA are optimal for massive parallel and relatively simple
processing units, rather than large universal computational
blocks. This is the case of FFNN, which are composed of
parallel inputs, parallel outputs and multiple neuron units
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arranged in layers. Thus, the FPGA device is a good candidate
to be used as an independent device, receiving inputs directly
from the process, computing them and sending the output to a
real process. FPGA devices are one of the best options for the
hardware implementation of FFNN in particular and artificial
intelligence algorithms in general since required computa-
tions are based on the sum of products, which can fit very well
into the FPGA internal slices (logic blocks, arithmetic units
and RAM). Thus, the use of FPGA devices allows the paral-
lelization of neural networks by using concurrent computing
of multiple units, which can be massively interconnected and
are able of be reconfigured with different weights and topolo-
gies depending on the target application. In addition, data rep-
resentation can be tuned according to precision and accuracy
requirements, as in [2]. Different applications can be found,
as in the case of [3], where a fault tolerant Hopfield Neural
Network was implemented in FPGA for space applications,
or in [4], where a weightless neural network with Multi-
valued Probabilistic Logic Nodes (M-PLN) was implemented
and evaluated. Other similar practical FPGA implementations
of neural networks can be found, as in MPPT controllers
for solar charging applications [5], or in Software Defined
Radio (SDR) modulation [6]. Alternatively, an FPGA accel-
erator can be connected to a PC in a Hardware In the Loop
System (HILS), where input and output data are sent and
received from the PC, guaranteeing a fixed processing time
from the dedicated hardware [7], being independent on the
load from the host PC.

Specific hardware implementation of artificial neural net-
works can be beneficial to speed up both training and online
processes, as in [8], where the backpropagation learning
algorithm was implemented, in [9], where a neural fuzzy
chip with on-chip incremental learning ability was described,
or in [10], where a fully pipelined acceleration architec-
ture is designed aiming to alleviate the high computational
demands of Restricted Boltzmann Machines (RBM). Further,
the inclusion of artificial intelligence algorithms in embed-
ded systems, targeting real-time applications, is common,
as in [11], where an optimized streaming method for the
hardware acceleration of deep convolutional neural networks
is shown, or in [12], where the acceleration of Support Vec-
tor Machines (SVM) through a hybrid processing hardware
architecture (optimized for object detection) was proposed.
In addition, some other applications include modeling, as the
case of a digital implementation of a modified astrocyte
model [13].

The process of generating specific hardware from a ver-
satile architecture can be tedious. In order to assist to inex-
perienced users in the hardware implementation of neural
networks, some works propose neural network software
design tools using user-friendly visual graphical interfaces,
where the hardware configuration files are automatically
generated according to the user options. This is the case
in [14], where a complete design environment for migrating
neural networks from software to FPGA hardware, including
network training, was described, or [15], which describes
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an end-user design environment where any FFNN can be
modeled, simulated, and later programmed on an FPGA.

Concerning hardware topologies, a straightforward neural
unit architecture might consist of using separate hardware
entities to perform each input by weight multiplication, and
a parallel adder to add the multiplication products. Such
design would be a fine-grained architecture. However, such
architecture is unpractical due to the very high hardware
requirements in occupation and interconnection lines, which
leads to high power and high resource usage, along with
low speed architectures [16]. A different approach might
use neuron units with serial processing, which is more prac-
tical because every unit just requires one Multiply-And-
Accumulate (MAC) block, time-multiplexing data into the
same units [17]. However, despite serial or parallel computa-
tion, all fine-grained architectures implementing directly the
neural units suffer from the connectionist problem: the num-
ber of interconnection synapses grows exponentially with the
number of units in the FFNN, consuming a significant part of
resources and reducing the operating frequency due to long
lines delay. Thus, with every new unit in a fully-connected or
feedforward network, the topology of connections becomes
more complex and the synthesis software tries to create
connections using logic cells instead of connection lines,
inefficiently using logic resources, adding delay and power
consumption to the device. Then, a fine-grained architecture
can be used only for small size networks, limiting its range of
applications.

When implementing large size networks, a more promis-
ing approach is offered by a coarse-grained architecture
where a small number of processing elements perform time-
multiplexed serial computation of the network units. In this
case, performance is a trade-off between processing node
complexity and working speed: the simpler the processing
node, the faster, but requires more clock cycles. In this
approach, the hardware implementation benefits from short
point-to-point data lines and pipelined uniform operations,
obtaining higher clock speed and lower resource usage at the
expense of higher latency. As an example, in [18], the biggest
FFNN layer was implemented and reused.

In this work, an unusual approach to design the pro-
posed architecture was followed. Typically, custom com-
puting architectures are defined according to the required
algorithm calculations: after defining the control and data
flow, the hardware architect makes use of required hardware
blocks, which availability, resource occupation and perfor-
mance might depend on the device used. However, in this
work, the systolic architecture design considered the FPGA
available resources as a premise: the existing FPGA on-chip
resources were analyzed and then, the computational process
was proposed. By doing this, an optimal use of resources
is obtained, using short lines, reducing the use of logic
resources, reducing local interconnections between blocks
(avoiding delays due to long internal connections), increasing
clock rate and, as a side effect, reducing power consumption,
too. Thus, considering typical FPGA resources, the proposed
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hardware architecture was proposed: it is a versatile and
universal Systolic Massive Parallel Architecture (SYMPA)
for feedforward neural networks, based on computationally
independent Neural Processing Elements (NPE) having local
weight memory, global data input, and command lines. The
resulting hardware structure is a combination of fine-grained
and coarse-grained with parallel input processing (all neuron
units of an FFNN layer process the same input at the same
time) and time-multiplexed input (a new input every clock
cycle). The SYMPA architecture allows the implementation
of arbitrary size and arbitrary type FFNN. The computational
procedure and its hardware architecture are described, but
also an analysis of the proposed FPGA-based implementation
is conducted using different topologies, to assess the level of
optimization achieved and the weak points of the proposed
implementation. The main contributions of this paper are as
follows:

o Proposal of an architecture able to adopt any type
of FFNN. Thus, it can be used to solve different
applications using FFNN such as the Multilayer Per-
ceptron (MLP), autoencoder (AE), or logistic regres-
sion (LR).

o The proposed architecture can scale up to arbitrary size
(inputs, units and layers), only limited by the avail-
able resources. Scaling up has no penalty on the opera-
tion clock frequency. It provides linear resource growth
with the number of neuron units in the largest layer of
the FFNN.

« A single Activation Function Block (AFB) is required
for the whole FFNN (not one per neuron unit as usual),
easily permitting to modify this block as different appli-
cations may require different AFB. Moreover, each
FFNN layer may use a different AFB if more than one
is defined.

o The proposed architecture achieves up to 550MHz of
operation frequency, being the AFB the limiting block
and thus requiring a careful design or selection of the
activation function.

« The architecture provides great versatility: the output of
intermediate layers can be available externally and the
weights of the neural network can be modified during
execution without device reprogramming.

« In a Virtex-7 FPGA implementation, SYMPA architec-
ture accelerates up to x256 times with respect to the PC
implementation and can perform up to 1980 GOPS when
using 3600 neuron units per layer.

Despite some works demonstrate the feasibility of on-chip
learning [19], [20], embedded learning is not considered in
this work since weights are generally calculated using off-line
procedures (backpropagation, ELM, etc.). Once calculated,
the weight values are loaded to the FPGA internal memory.

Section II describes the types of FFNNs implemented in
this work, followed by section III where the algorithm used
for implementation is described. Section IV details the hard-
ware implementation; section V describes the experimental
results; section VI uses a real case application detecting
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anomalous heart rhythms to conduct a platform comparison,
and, finally, sections VII and VIII deal with discussion and
conclusions of the work.

Il. MULTILAYER PERCEPTRON (MLP), AUTOENCODER
(AE) AND LOGISTIC REGRESSION (LR) AS FFNN TYPES
The main characteristics of any FFNN are the basic computa-
tion neuron units and the topology where they are arranged.
Structured in layers, each unit of a layer is connected to all
units in the next layer, never in a cyclic or recurrent form,
imposing an ever forward flow of information. Each unit j
in a layer i performs a sum of products for all the outputs
of the previous layer, 17,-_1, or the input layer, X , with a
weighted value lek for each connection (synaptic weight),
and adding a bias value b;;. The result serves as the input to
an activation function ' where the final output of the unit is
generated. Eq. 1 shows the required computation for a single
unit j in a layer i containing N inputs; the same operation
must be repeated for all units in an FFNN. The activation
function is non-linear, typically a sigmoid, although different
approximations simplifying calculations exist [21].

N
Yj=F (Z(W}k * Y1) + by ) M
k=1

Fig. 1 shows the most common structure for an FFNN, the
Multilayer Perceptron (MLP). In a MLP, units are arranged
in layers and forward interconnections exist between inputs,
layers and outputs.

FIGURE 1. Multilayer Perceptron (MLP) topology for 4 inputs, two hidden
layers with 3 and 4 neuron units, respectively, and 2 outputs (4x3x4x2).

Another type of FFNNSs are autoencoders (AE), which aim
to learn a compressed, distributed representation (encoding)
of a dataset. An autoencoder network is a type of neural
network whose main focus is to extract features that will help
in reconstructing the original input signal back from those
features efficiently. Autoencoders can be stacked (stacked
autoencoders) [22], [23] to form deep networks and were
first introduced in the 80s by Hinton [24]. The simplest form
of an autoencoder is very similar to an MLP [25], with an
input layer, an output layer and one or more hidden layers.
An autoencoder can be seen as a type of MLP where the
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FIGURE 2. Diagram of an autoencoder (AE) with 4 inputs (and thus,
4 outputs), and 3 hidden units.

FIGURE 3. Logistic regression topology using 4 inputs and 3 neuron units.

output layer has the same number of nodes as the input
layer, and instead of being trained to predict the target value
Y of given inputs X, autoencoders are trained to make the
reconstruction X’ of their own inputs (Fig. 2). Therefore,
autoencoders are unsupervised learning models.

Autoencoder networks have shown excellent proper-
ties for feature extraction, data compression or visualiza-
tion [26], [27]. Autoencoders are popular [28]-[31] as they
are used as a pre-training mechanism for deep supervised
networks. Training deep neural networks is difficult as the
magnitudes of gradients in the lower layers and in higher
layers are different, it is difficult for stochastic gradient
descent to find a good local optimum, then, as deep networks
contain many parameters, they can remember training data
and do not generalize well. With AE used for pre-training,
the process of training a deep network is divided into some
steps: training a sequence of autoencoders, one layer at a time
using unsupervised data, train the last layer using supervised
data and use backpropagation to fine-tune the entire network
using supervised data.

Logistic Regression (LR) can also be considered a special
architecture of neural networks [32]. The functional forms for
logistic regression and artificial neural network models are
quite different. However, an FFNN with only an output layer
is identical to a logistic regression model if the logistic acti-
vation function is used (Fig. 3). Logistic regression is widely
applied in medical applications [32], [33], topography [34] or
social networks [35].
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Additionally, other different variations of FFNN propose
the use of a different activation function for each layer,
or obtaining the output layer values without using any activa-
tion function, or using a SOFTMAX activation function for
multiclass classification [36]. Note that, to obtain a more ver-
satile architecture, it is important to be able to configure the
activation function that calculates the output value in each
layer.

Ill. ALGORITHM PROPOSED FOR THE GENERAL

FFNN COMPUTATION

Despite the number of inputs, outputs, hidden units and num-
ber of layers, which may vary according to the application,
the topologies for the aforementioned types of FFNN only
differ in some interconnection schemes. This fact makes it
possible to propose a versatile hardware architecture defining
the computation procedure is defined independently on the
number of inputs, layers and neuron units in each layer.

All FFNN share the following properties:

1) No connections exist among the units in the same layer.

2) The output of a layer is a function of the previous layer
inputs and a bias.

3) All units in a layer share the same activation function
and can be computed independently. Different layers
can have different activation functions, or even it can
be skipped (as for the last layer in some FFNN).

In a general sense, an FFNN can be described as a par-
allel computation of Eq. 1 for each unit in the FFNN. The
difference between units lies in its inputs and weight values.
Thus, defining a vector N = (Np, ..., N;, ..., Np) associated
to the number of inputs (Np), number of units in layer i (V;),
and number of outputs (Ny ), the generic computation of the
unitj = {1, ..., N;} in the layer i = {1, ..., L} (L is the total
number of layers including the output lqyer) can be described
according to Eq. 2. In this equation, ¥; is the layer output
obtained from the previous layer output Yl 1 (input values
X are renamed as YO) Wi and b, are, respectively, the weight
matrix and bias vector of a given layer i, and F the activation
function. The final FFNN outputs correspond to Yy, values.

Ni—

Yj=F Z(W;k * Y(i—1yk) + bij @
k=1

Eq. 3 shows the computation case for the Ny units in the
first layer, which results in Y.

No
Yii =F (Z(Wfk * Yor) + bu)

k=1
No
Yo=F (Z(Wzlk * Yok) + b12>
k=1
No
Yiny =F (Z(Wl\]hk * Yor) + b11v1) 3)
k=1

To adapt the data computation flow in a regular form,
the bias values of layer i are renamed as wo, = b; and every
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output vector ?i from a layer is expanded by one element
equal to 1 before entering the next layer (named Y/, N;_; + 1
in size). Additionally, the bias column vector is concatenated
with the weight matrix to create a layer matrix Wi = [wo, Wi]
with size (N;x(N;_1+1)). Then, the computation W’ ixY{_1 =
§i provides all sum of products corresponding to each unit in
layer i. Repeating the process for all layers (i = 1, ..., Np),
it can be written as in Eq. 4. Finally, in order to obtain the
output value for each FFNN unit, each S;; element must be
applied the activation function F (Eq. 5).

Thus, Eqs. 4 and 5 show that computing the output of
an FFNN requires two main operations: vector by matrix
multiplication and activation function computation.

. 1
S1 = Wl [io:| = Wy,

o . 1
_ wii R
S = Wix [YH

] = WixY]_, )

L—1
Yi = (FSi1), ..., F(S1p), ..., F(Sin,))

St = Whx [?1 ] = WhxY| _,

= (FSi), ..., F(Sik), ..., F(Sin,)

=i

Yo = (FSe1), .- F(S1x), ..., F(Sta,)) )

In general, the matrix by vector multiplication BxA of a
matrix B (size MxN) by a column vector A (size N) can be
parallelized in two forms:

o Multiplying in parallel all elements ofg by the matrix
row vector B;. This option requires N multipliers and the
process must be repeated for all M rows in the matrix.
All partial sums of a single unit are computed in one
cycle, thus computing the partial sums of all units after
M clock cycles.

o Multiplying in parallel a single element of the input
vector A by each element of a matrix column Z?, This
option requires M multipliers and computes one partial
weighted sum of all units in a layer in the same clock
cycle. Thus, after N clock cycles, all partial sums are
obtained.

These two possibilities are different from the hardware
architecture perspective. To obtain all partial sums in a FFNN
unit, the first option requires the simultaneous multiplication
of different pairs of data Ay * Bjx, whereas the second method
requires the simultaneous multiplication of one fixed argu-
ment A; by all row elements By, i.e. the problem is reduced
to scalar-by-vector computation since, in each clock cycle,
one element is the same for all multiplications.

The second method was the selected option for the algo-
rithm in this work because it requires N — 1 less data paths
in hardware and the input vector A can be fed into the system
element-wise instead of loading all elements at the same time.
This feature is very useful when the FFNN is working with
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data stream in real time, i.e. a new data input value enters
the FFNN per clock cycle. To illustrate this feature, Eq. 6
shows a computation example for an Np-input FFNN with
three units in a single hidden layer, being X the input vector
and W'l the weight matrix where each row represents the
weights of one unit and the first column contains the bias
values for each unit. After computation (Ng+ 1 clock cycles),
the resulting vector S| 1 contains the sum of products for each
unit in the layer and only the activation function evaluation is
required to obtain the final units’ output value (not included
in this equation). Using as many multipliers as units in the
layer working in parallel (Ny = 3 in this case, N; with
i = 1,...,Np in general), the partial sums for all units
will be simultaneously computed for each new input data Xy,
every clock cycle (assuming that a multiplication operation
takes place in one clock cycle). The bold elements marked in
Eq. 6 illustrate a partial sum result obtained for each unit in a
single clock cycle when using three multipliers to process the
input X;. Using three arithmetic accumulators (&; in general),
the complete sum of products for each neuron unit in the layer
are simultaneously obtained after Ny + 1 clock cycles.

1
/1 /1 /1 X
S11 Woo @o1 -+ - Won, Xl
_ /1 /1 /1
Si2 | = [ wip @11 C Wiy | X 2
S /1 /1 /1
13 | Wao @1 -+ Wap,
XNy

/1 1 /1 /1

Woo + @1 * Xa+wp, * Xo + - “+Won, * Xp,
/1 /1 /1 /1

= | Wyt o *Xg+wp xXo + - '+W1N0 * Xp,
/1 1 /1 /1

| W20 + wyy * X1+w22 *Xo + - ~+w2N0 * Xp,

(6)

Once the output values of units in a layer are obtained,
they are used as inputs for the next layer. The layer structure
and computation scheme described above can be repeated
for all layers using the same computation elements, i.e. the
same hardware architecture. Fig. 4 graphically shows the
proposed, layer-wise, parallel feedforward architecture for a
NoxN1xNp = 5x4x4 FENN (L = 2). Initially, the inputs in a
layer are serially processed by the layer computation blocks,
feeding one input each clock cycle as described above. After
obtaining the results of the units in one layer, its layer output
values S; (i = 1, ..., L) are stored in a memory (inter-layer
memory) and the same hardware can be iteratively reused
to compute all layers. It is important to note that the stored
values S; correspond to the sum of products result without
activation function evaluation. It is only before entering into
the next layer (or final output result) that they are evaluated by
the activation function. In other words, the layer output values
are stored before being evaluated by the activation function,
and they are only evaluated when they are needed. Applying
this mechanism, together with the serial input processing,
a single activation function block can serve for all the FFNN
structure since one value per clock cycle is used, no matter
the FFNN size.
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FIGURE 4. Computation procedure for the proposed layer-wise parallel feedforward architecture with
serial input: An example of a L = 2 FFNN with NoxN;xN, = 5x4x4. The input vector X is serially
entered and processed (orange arrow denotes sequentiality) by the array of multiply-accumulators to
calculate the weighted sum of products. As the output layer values S are generated, they enter the
activation function block, generating Y as the output of the layer. When one layer is finished,

the computation is repeated for the next layer.

Asin FFNN architectures, every unitin a layer is connected
with all units in the next layer, the layer-wise parallelism
is very convenient as every layer output value is dependent
upon the output values of the previous layer and the dataflow
always goes in one direction.

As the number of units in each layer varies, the number
of required computational blocks and associated control of
computations changes from one layer to another. In order to
the hardware architecture can fit all layers, the number of
hardware processing units N is given by the highest number
of units in a layer, considering all layers in the FFNN (N =
max(Ny, ..., NL)). Then, by careful design of the control
flow, only the required number of computational units will
be used in each layer computation. This architecture allows
to process all units in a layer in parallel, with inputs serially
processed in a pipelined fashion.

Taking into account all the aforementioned factors, the pro-
posed hardware implementation of this versatile and universal
SYstolic Massive Parallel Architecture (SYMPA) for FFNN
is based on computationally independent Neural Processing
Elements (NPE) having a Multiply-Accumulate (MAC) unit,
local weight memory, global data input, and command lines.
For the inter-layer communication memory implementation,
all NPEs also include a scratchpad register connected in a
daisy-chain, forming a scratchpad ring SR. In this architec-
ture, all control signals but one are globals, and thus, the sys-
tem has excellent scalability with linear dependency between
the size of the network layer and hardware occupation. The
hardware implementation benefits from short point-to-point
data lines and pipelined uniform operations. An additional
feature of this architecture is the external availability of inter-
mediate result values after each layer computation, which
can be used for network training algorithms or any other
debugging purposes.

Algorithm 1 describes the sequence of operations required
when computing an FFNN with L layers. The loops involving
k index are those performed in parallel by NPEs, the loops for
j index are serially computed, and the loops for i index reuse
the hardware computation architecture. To demonstrate the
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Algorithm 1 Computation Process for a FFNN Network
L — Number of layers
N; — Number of NPEs used for layeri (i =1, ...,L)
wiG) (k) — wj’}( weight k from unit j in layer-i
Processing the inputs, layer 1
Acc() = w' ((0);
for j=1to N; do

for k=1 to Ny do

> bias loaded in MAC unit

Acc(j) = Acc(j) + X (k) = w' () (k); > MAC
end for
end for
SR() = Acc(); > Flush results into the SR

Processing layers i = {2, ..., L}

for i=2 to L do > layers
for j=1 to N; do > units
Acc(j) = w"(j)(0) > bias load

for k=1 to N;_; do
X (k) =AFB(SR(k));
SR(k + 1) = SR(k);
Acc() = Acc() + X (k) % wi()(k);
end for
end for
end for
SR() = Acc();
Processing the output layer
for j=1to N do
Output(j) =AFB(SR()));
SR(j 4+ 1) = SR());
end for

(SR: Scratchpad Ring, AFB: Activation Function Block)

> unit output value

> MAC

scratchpad daisy-chaining, it is presented as a vector (SR),
common for all units. The activation function is denoted
as AFB.

The proposed algorithm consists of three main parts:
accepting the network inputs, forward propagation of the
signal through the layers in the network, and obtaining
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FIGURE 5. Hardware structure of a 3x3x2 MLP neural network. NPEs are created and connected according to the number of units existing in
the biggest layer. In this case, three NPEs are required, the blue dashed line shows one NPE with BRAM memory, ALU, scratchpad

register (SR) and all existing data and control lines. From top to bottom starting in the first layer, each NPE memory contains the unit
weights. As two output units exist, the left-most NPE is empty for the bottom half memory since only one unit weights are stored. A single

activation function (AFB) is used for the whole FFNN.

the outputs of the final layer. In the first part, the input
data are externally taken from the FFNN inputs, which are
sequentially introduced and concurrently multiplied by its
corresponding weight w]/,i of each unit j in each NPE. The
multiplication result of each NPE is added to the accumulator
register by a MAC operation. As the bias value is stored in
weight index zero (wj%) for each unit, it is loaded in the MAC
unit of each NPE in the first clock cycle, before the inputs
to the accumulator enter. After No + 1 cycles, where Ny is
the number of network inputs, the accumulator of each unit
Acc(j) contains the sum of products of inputs by weights.
Then, computation of the first layer is done and the values of
the accumulators are stored in the scratchpad ring SR. Now,
the NPEs are ready to compute the next layer. Note that, for
those layers with a lower number of units than N, not all the
NPEs of the hardware structure will be used.

The scratchpad ring SR is a serially connected line of
registers, similar to a shift register with a parallel load. After
latched, data can be shifted out serially while NPEs compute
anew sum of products. The SR contains the computed sum of
products values and they already have to be shifted through
the AFB block to calculate the final output value.

As it can be seen in Algorithm 1, the input data are serially
entered to the NPEs to compute the first layer; for the remain-
ing layers, the layer input data are those obtained from the
output of the previous layer. From the hardware perspective,
the proposed architecture consists of a single layer of con-
current NPE units with common input, where each layer is
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computed using the weights of the corresponding layer, only
using the number of units required for each layer.

After computing the sum of products value of the units
in the output layer, the network output can be externally
accessed by serially reading on the AFB output port, fin-
ishing the FFNN computation. Since the AFB output port is
externally accessible and intermediate output unit values go
through this module, it is also possible to read internal unit
output values.

IV. HARDWARE ARCHITECTURE

When developing the computation algorithm in the previous
section, specific hardware blocks existing in FPGA were con-
sidered beforehand: distributed memories, arithmetic units,
logic and different types of interconnections. By doing this,
we guarantee that the proposed implementation uses stan-
dard blocks with the aim of obtaining an optimal and effi-
cient implementation on existing commercial hardware. This
favors the portability to any FPGA, regardless of the manu-
facturer, or even a VLSI device.

The proposed architecture, shown in Fig. 5, is a generic
architecture that can be arbitrarily extended in number of
layers and units per layer as long as hardware resources are
available. Actually, since layers reuse the hardware, the main
limiting factor is the number of units in the biggest layer,
and the number of input. This is especially beneficial to deep
multi-layer neural networks. Each NPE acts as a neuron unit
of the FFNN for each layer computation. At most, one NPE
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will be reused as many times as layers exist in the SFNN.
Weight values corresponding to all units that will be com-
puted by the NPE are stored in its internal local memory,
i.e. each NPE contains the weight values of one unit per
layer, at most. In case of computation of layers with a lower
number of units than the biggest layer, some units will be
unused and the corresponding local memory will not be
fully filled. The NPE architecture is designed to accumulate
the partial sum of products of the current unit in the ALU
accumulator register, and, when finished, the resulting value
is moved into the corresponding SR register so that they can
be shifted through the SR daisy-chain into the Activation
Function Block (AFB) and, simultaneously, the NPEs can
compute the next layer values by feeding back the AFB output
value to the NPEs, or providing the output values in case
of the output layer. The order of operations is defined by a
Finite State Machine (FSM) block. The FSM controls the
weight loading into memories, and the addressing of local
NPE memory depending on the layer computation being
carried out, the NPE usage depending on the layer, and the SR
latching.

An important feature of this architecture is the modu-
lar structure and minimization of connections: adding more
NPEs gives linear growth in the hardware occupation with
most of the connections being internal in the NPE. The only
external connections in an NPE are the addressing, mem-
ory write enable (we), and SR register connection with the
previous and next SR. As seen in Fig. 5, the NPEs must
be placed with alignment to the right, i.e. the right-most
NPE must contain the last unit of each layer and the rest
of units will be arranged in NPEs from right to left. As not
all layers contain the same number of units, the left-most
NPEs will not be used for certain layers. Fig. 5 shows the
placement for a 3x3x2 FFNN where the left-most NPE only
contains weights from the hidden layer since the output layer
contains two units. At least, weight values for one unit in a
certain layer are stored in one NPE memory. In case a local
NPE memory contains weights for units from several layers,
the addition of an offset to the NPE memory addressing is
the only modification required to reuse the hardware archi-
tecture for different layers. The data input in the system is
serially performed through the DIN port, the control system
allows weight update using the same data port (including bias
values), at any time. This feature is very useful when weight
values need to be modified without device reprogramming,
once the hardware system is running.

The total number of weights in an FFNN is given by Eq. 7a,
which corresponds to the memory size required for weights
in the whole design. However, since weights are distributed
in different memories, as many distributed memory blocks as
NPEs are required. The size of each distributed memory block
is the key factor to properly optimize the resources in the
NPE implementation. The maximum distributed memory size
required for each NPE is given by Eq. 7b. Despite some NPEs
may require less memory, all NPEs are defined according
to the value given in Eq. 7b in order to maintain a regular
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hardware structure which eases the memory addressing.

L—1
a. Total_Weights = Z(N,- 4+ 1) % Ni11
i=0
L—1
b. Max_Weights_in_NPE = (N + 1) (7
i=0

For such a versatile architecture, it becomes very important
to be able to customize the FFNN implementation according
to parameters which can be easily modified to generate the
hardware definition of any FFNN. Thus, a set of config-
uration parameters is defined. Using these parameters, the
synthesized FFNN hardware will be obtained. The required
information to properly generate the FENN structure is the
following:

o Number of NPEs. Is the maximum number of units in a
layer, considering all layers, in the FFNN, i.e. NPE# =
max(N;) withi = {1,...,L}.

o Memory size per NPE. This is the maximum memory
size required by any NPE in the FFNN as indicated by
Eq. 7b.

o Weight bit size. It is important for the estimation of
memory requirements and must be determined accord-
ing to the required accuracy.

« Fractional part bit size: Together with the total weight
size, this value must be chosen according to the accuracy
requirements.

o Number of layers L.

o Number of inputs Ny.

o Number of units in each hidden layer N; (i = {1, ...,
L—1}.

« Number of outputs Ny.

A. NEURAL PROCESSING ELEMENT (NPE) DESCRIPTION
As shown in Fig. 5, a single NPE consists of three blocks:
a RAM block with single-cycle read/write access for weight
storage, an ALU, and a scratchpad register SR.

Having each NPE its own distributed RAM block allows
for concurrent NPE operation. The RAM block of the i-th
NPE must contain several weights’ banks, one for each
i-th unit of each layer in the FFNN. In order to estimate the
final RAM block size for the NPEs, the bit size of data is also
required: reducing the weight data size allows lower memory
size. This issue is discussed in detail in Section V-D.

The ALU required for the arithmetic computations must
perform the following operations: P = 0, P = A% B, P =
AxB+P, P = A, where A and B are N-bit input data and P is
the accumulator where resulting data are stored, also serving
as data output of the ALU. The P = A operation serves as
an ALU bypass from DIN to the memory block required in a
weight update operation.

The scratchpad register SR is the third component of
the NPE. Each NPE scratchpad register is connected to the
adjacent NPE scratchpad register forming a ring. The regis-
ter contents can be loaded from the din(SR) input (through
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the ALU), or from the adjacent scratchpad register on the left
(using the cin(SR) port connected to the previous NPE). Data
input source is selected by the DSRC input signal controlled
by the FSM. The scratchpad register latches its content on the
dout(SR) output port every clock cycle, acting as a rotating
register in case of DSRC = 1. When the final sum of products
of a certain unit is computed, the scratchpad register value
is updated from ALU (DSRC = 0), which simultaneously
occurs for all NPEs. After that, the FSM starts shifting them
out to the Activation Function Block (AFB). In turn, the AFB
output serves as input of the processing array to compute the
next layer or provides final FFNN output values.

B. ACTIVATION FUNCTION BLOCK (AFB)
IMPLEMENTATION

The systolic nature of the proposed architecture makes it pos-
sible that just one Activation Function Block (AFB) is neces-
sary to perform the neural computations of the whole FFNN.
Despite its obvious impact in resource usage reduction, this
fact enables an easy modification of the used AFB block,
with a low impact on resource usage, opposite to hardware
implementations where one activation function per unit is
required. Thus, the hardware complexity of the single AFB
block can be reasonably high with the sole consideration that
its performance must be high enough to work at the same
clock frequency that the NPE blocks, to avoid bottlenecking.
Additionally, it is possible to implement FFNNs using differ-
ent AFB for each layer by implementing as many AFBs as
desired, and multiplexing them during the computation pro-
cess. The following activation functions were implemented in
this work: ReLU, Logistic Sigmoid and Hyperbolic Tangent.

1) RELU

It is a relatively new type of activation function, becoming a
trend in the last 10 years. Networks using the ReLU activation
function can be trained faster and have sparser activations.
The ReLLU output is defined in the range [0, oo]. As its imple-
mentation consists of a sign bit evaluation and one conditional
signal assignment (Eq. 8), it is the simplest of the proposed
activation functions and can be directly implemented in fixed-
point arithmetic.

X ifX>0

F(X) = max(0,X) = 0 X <0 (®)

2) LOGISTIC SIGMOID

It is a classic differentiable function, used in networks
trained with gradient descent methods. The logistic sigmoid
is defined in the range [0, 1]. Two approximations of this
activation function were implemented:

o Classic piecewise-linear (PLA) [37]. The PLA calcu-
lation procedure is shown in Fig. 6. It is based on
shift and add operations, where every approximation is
described by the line y = Sx + B, with coefficients S
chosen to be a power of two. As only comparison, addi-
tion and bitwise shift operations are used, the resulting
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FIGURE 6. Shift and add approximation algorithm for the PLA
approximation of the logistic sigmoid.

implementation requires low hardware resource usage.
A 9-line approximation was implemented due to its
reduced MSE (as seen in Section V-C). It requires
16 constants to store, one array for comparison, and
one array for constant addition. Due to the symmetrical
nature of the sigmoid, the 9-line approximation has a
precision of 18-line PLA. The implementation requires
a 3 clock cycle pipeline.

o Zhang second-order approximation [38]. It requires a
single-multiplication, as described in eq. 9, implemented
using an ALU block and a bit shift (multiplications by
the power of two are replaced by bit shift operation).
This implementation can be obtained using a 4 clock
cycle pipeline.

2711 +272 . x)?
1—271'1-27%2. %),

if—-4<X<0

F(X)= .
if0<X <4

C))

3) HYPERBOLIC TANGENT

Defined in the range [—1, 1], it is another classic differ-
entiable function, used in networks trained with gradient
descent methods. It was implemented using the second-order
approximation function proposed by Kwan [39], based on
the FPGA implementation by Rosado-Mufioz et al. [40]. The
original expression for this approximation is described in
Eq. 10, where V is the parameter controlling the slope of
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approximation function.

sign(X) if | X| > 2
FX)=1 -x-|X 2-X 10
X) | |+( ) it 1X] <2 (10)
& 1%

To achieve maximum performance, this function has been
slightly modified and parallelized using 2 ALU blocks with
a 5-clock pipeline delay as depicted in Eq. 11.

sign(X) if | X|>2
X .
FX) = 1+Z X if—2<X<0 (11)
X .
I_Z X if 0<X <2

C. NETWORK CONTROL SEQUENCES

According to the defined FFNN parameters (number of
inputs, No, number of layers, L, number of neuron units in
hidden layers, N; with i € {1,...,L — 1}, and number of
outputs, Ny ), the Finite State Machine (FSM) was designed
to automatically execute the required computation sequence.

Algorithm 2 Control Sequence for Weight Loading
A — ALU Global Input
ADDR — Address bus
Set P = A mode ( All ALUs)
A (All NPEs) < DIN

> using OPCODE
> Weight from external input

into A

Set ADDR > Address of the weight
Wait for weight propagation > Through ALU pipeline
we < 1 > Write Enable NPE

Wait one clock cycle

(Repeat the sequence until all weights are stored in NPEs)

For the sake of replicability, the control sequence of the
load of weights is described in Algorithm 2, and the control
sequence of the FFNN output computation is described in
Algorithm 3. Note that, in both algorithms, some adjacent
pseudocode steps are executed in parallel. Fig. 5 can be
used as support to illustrate the use of the lines and buses
referenced in both algorithms.

Most FSM operations are cyclically performed using two
counters: one for the address generation, and another for the
cycle count. Provided the FSM simplicity, with few continu-
ously repeated states, the hardware occupation of the FSM is
negligible compared to that of the NPEs.

D. NUMBER OF CLOCK CYCLES OF EXECUTION

From the point of view of the number of clock cycles for exe-
cution, the SYMPA architecture presents a very efficient and
deterministic behavior. Its systolic nature and mixed serial-
parallel architecture permit to use pipelining efficiently: dur-
ing the layer computation, input data are processed at a
rhythm of one input per clock cycle, i.e. a N; input layer
requires NV;+ 1 clock cycles to be computed. Depending on the
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Algorithm 3 Output Computation Control Sequence

A — ALU Global Input

ADDR — Address bus

AFB — Activation Function Block output

N; — Neuron units at layer i

Computation of first layer

Set P = A x B mode (All ALUs) > using OPCODE

ADDR < 0 > bias reading for all units in first layer

DIN <1 > All bias multiplicated by one

P < A% B (All ALUs) > bias in B loaded into P

Set P =P+ AxBmode (All ALUs) > using OPCODE

for each input data X(n) do >n=/{l,...,No}
Increment ADDR > Adjust address to read weight
A (All NPEs) < DIN <« X(n) > Input to ALUs
P« P+ AxB(AIlALUs) > MAC; B is the weight

end for

DSRC <0

DSRC « 1

> Transfer ALU results to SR registers
> Set SR registers into Ring Mode

(The next N1 cycles the layer 1 outputs will be shifted out
sequentially)

Computation of additional layers
for each layer i do >(i=1{2,...,L})
Set P = A x Bmode (Al ALUs)  using OPCODE
ADDR < (0  bias reading for all units in first layer
DIN <1 > All bias multiplicated by one
P < A% B (All ALUs) > bias in B loaded into P
Set P = P + A x B mode (All ALUs) > using
OPCODE
for each input Y;_1(n) do >n={l,...,Ni_1}
Increment ADDR > Adjust address to read weight
A (All NPEs) < DOUT <« AFB > Feeding
ALUs
(The output of activation function feeds Yi_1(n) to
all ALUs)
P« P+AxB(AIlALUs) > MAC; B is weight

end for
DSRC <0 > ALU results to their SR registers
DSRC <1 > Set SR registers into Ring Mode

(Next N; cycles layer-i outputs will be shifted out
sequentially)
end for

(In the next Ny, cycles the FFNN output will be shifted out
sequentially)

implementation form of the hardware blocks, some additional
cycles are needed for the interlayer delay: ALU (Tary),
SR (Tsg) and AFB (T4rp). Thus, after the last input of a
layer i has entered to the core, the next layer i + 1 will be
computed after Tary + Tsg + Tarp clock cycles. As an
example, for a FFNN with Ny inputs, Np units in the hidden
layer and N, units in the output layer, the total computing
time of the FFNN output of a input data pattern would be
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TABLE 1. Resource usage and maximum frequency of operation performance of several FFNN topologies.

Dataset Iris Reduced MNIST | Reduced MNIST | Reduced MNIST | Full MNIST Full MNIST
Type of FENN MLP MLP MLP LR AE MLP
4x10x3 400x40x10 400x40x40x10 | 400x10 784x196x784 | 784x600x600x10
Activation Function | Kwan HT ! | Zhang LS 2 Zhang LS 2 Zhang LS 2 ReLU Kwan HT ! + ReLU
NPEs required 10 40 40 10 784 600
Slice registers 681 2481 2481 726 47871 36057
LUTs 681 2512 2512 668 45510 34838
BRAM36 5 20 20 5 392 600
DSP4SE 12 41 41 11 784 602
Fmaz (MHz) 490.849 498.691 498.691 498.691 550.570 490.849

1 Kwan’s second order approximation of the Hyperbolic Tangent activation function.
2 Zhang’s second order approximation of the Logistic Sigmoid activation function.

WNo+ 1D+ W1+ D) +No+2+(Tary +Tsg+Tarp). All layers
account for bias calculation time adding one clock cycle,
except the output layer, which does not need bias calculation.
In general, the FFNN computation time can be described
according to the number of clock cycles, C, described in
Eq. 12. In case of the clock cycles required for weight loading,
Cyioad provides the value.

Np-1
C=) Wi+ D+N
i=0
+(L - (Tary + Tsr + TarB))
N
Cutoad = Y_(Ni* (Ni—1 + 1)) (12)
i=1

V. RESULTS

Once defined and characterized as shown in previous sec-
tions, the architecture was coded in VHDL. As a particular
implementation case, we used Xilinx ISE Design Suite 14.7
for synthesis and implementation, using as target device the
Xilinx XC7VX485T-2FFG1761 Virtex 7. The implementa-
tion was done using 18-bit word-length fixed point signed
arithmetic (DIN, DOUT and CIN), with a fractional part
of 12 bits. Nevertheless, different bit sizes were also tested.

In order to validate the architecture, four datasets were

used. Three standard datasets, and one additional dataset
aimed at a real case application. The datasets are:

o Iris. Dataset using four parameters per input pattern and
three output classes.

o Full MNIST. Dataset with 784 (28x28) grayscale 8-bit
pixels per sample and 10 output classes.

o Reduced MNIST. Dataset with 400 (20x20) grayscale
8-bit pixels per sample and 10 output classes.

e MIT-BIH & AHA. The MIT-BIH Malignant Ventricular
Arrhythmia [41] and AHA (2000 series) [42] databases
were processed as in [43], [44] to obtain 15 features.
One output class identify two different types of rhythms
(normal and abnormal).

Each one of the above classification problems were trained

for different test topologies (MLP, AE and LR) with the
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scaled conjugate gradient descent algorithm (MLP used
backpropagation) in Matlab R2017b using the Deep Learn-
ing Toolbox [45]. LR and MLP performance was calcu-
lated as recognition error and, in case of the autoencoder,
the cost function was the reconstruction error (MSE). Finally,

the selected topologies were:
o Iris: 4x10x3 MLP (HT)

o Full MNIST: 784x196x784 AE (ReLU)

784x600x600x10 MLP (HT+ReLU)

e Reduced MNIST: 400x40x10 MLP (LS)

400x40x40x10 MLP (LS)
400x10 LR (LS)

e MIT-BIH & AHA:15x20x20x1 MLP (HT)

The list above also indicates the activation function used in
each implementation. The Logistic Sigmoid (LS), Hyperbolic
Tangent (HT), and ReLU activation functions were used. The
use of different activation functions aims to analyze their
resource usage and how they affect the performance of the
whole design.

The 784x600x600x10 MLP implementation of the Full
MNIST classification problem was selected to illustrate the
versatility of the proposed architecture for large FFNN, which
permits to use different activation functions by layer, without
impacting performance. In this case, the hyperbolic tangent
was used for all layers except the output layer, which used
the ReL.U activation function.

A. HARDWARE RESOURCES

Table 1 shows the resource usage of six different FFNN
implementations. The number of DSP48E blocks matches the
number of NPEs (each NPE uses one DSP48E block in its
internal ALU) plus the number of DSP48E blocks required
for the AFB. Different requirements in DSP48E blocks for
the used AFB are seen in the table. The table clearly shows
that the number of used LUTSs and slice registers are a linear
function of the number of NPEs.

Concerning distributed RAM memory usage (BRAM36
memory blocks), the required number is NPE /2 since all
implementations use 18-bit word length and BRAM36 can
thus accommodate a 36-bits word-width which is shared by
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two NPEs. Depending on the word-length and distributed
RAM block used (it varies from one device family to another,
or from device manufacturer), this value could change. Using
word-length above 18 bits would imply dedicating a single
BRAM block per NPE. Implementation in word-length divi-
sors of 36 is preferred, especially 18 and 9 bits, natively
supported by manufacturer cores. In this case, as we chose
18-bits word-length for weights and BRAM in the selected
device is 1024 in size, each NPE can accommodate up to
2048 weights.

It is also important to consider the number of weights to
be stored in memory since the size of distributed RAM block
also varies from device and manufacturer; a large number of
weights stored in a single NPE can imply an extra block RAM
per NPE. This is the case of the 784x600x600x10 FFNN
in Table 1, where one BRAM block per NPE is required.

Considering multilayer FFNN, the resource usage of the
implemented architectures does not significantly change as
long as new layers contain the same or less units than previ-
ous layers. As an example, 400x40x10 and 400x40x40x10
implementations show nearly the same hardware require-
ments in terms of DSP48E, LUT, and BRAM36 blocks.

B. MAXIMUM FREQUENCY OF OPERATION

Table 1 clearly shows that the proposed design achieves a
very high frequency of operation across implementations.
In fact, the core architecture can work at 55S0MHz, which is
the limiting frequency of operation specified by Xilinx for
DSP and BRAM slices in Virtex7. In other words, as the
proposed architecture requires a reduced amount of logic
and block slices, along with short delays in interconnections,
the maximum frequency of operation of its core design is
only limited by the frequency of operation of the used FPGA
device technology. This is why the maximum frequency of
operation for a large FFNN (784x196x784) implementation
is 550MHz.

However, it can also be seen that implementations using
the hyperbolic tangent activation function have a maximum
frequency of 490MHz and those using the logistic sigmoid
activation functions have a maximum frequency of 498MHz.
This is because, although the core architecture frequency is
only limited by the frequency limitation of its slices, the clock
speed limiting block in the whole architecture is the AFB.
In case of the 784x196x784 implementation, the maximum
frequency of operation achieves SS0MHz due to the imple-
mentation simplicity of its ReLU activation function, which
avoids the AFB bottleneck and permits the maximum fre-
quency of operation to match the maximum frequency of
operation of the device. On the other hand, implementations
using the hyperbolic tangent and sigmoid logistic activa-
tion functions present lower maximum frequency of opera-
tion. This must be taken into consideration when maximum
throughput is required.

Being N the number of NPEs, the peak performance of
the whole design (using the ReLLU activation function) is
Jmax * N synaptic Operations Per Second (OPS). Note that
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this benchmark depends on the selected topology (e.g. in case
of the 784x196x784 AE using the ReLU activation func-
tion, the total performance is: 550 MHzx784 NPEs =
431.2 GOPS. As the maximum estimated number of NPEs
in a Virtex-7 family device is 3600 (maximum number of
DSP48E blocks included in a device), the proposed architec-
ture claims to perform up to 1980 billion operations per sec-
ond (GOPS) on the biggest Virtex-7 FPGA device. However,
using a multi-chip approach, the size of the FFNN could be
enlarged by a simple interface between different devices as
few lines are required to connect NPEs with the FSM and
other NPEs.

C. ACTIVATION FUNCTION
Four Activation Function Blocks (AFB) have been imple-
mented according to the approximations described in
Section IV-B:
e PLA LS: Classic piecewise-linear approximation of the
Logistic Sigmoid activation function.
o Zhang LS: Zhang’s 2™ order approximation of the
Logistic Sigmoid activation function.

e Kwan HT: Kwan’s 2" order approximation of

the Hyperbolic Tangent activation function.

e ReLU: Rectified linear unit.

It is important to analyze the impact of the approximations
in the accuracy results. Fig. 7 (top left and top right) shows
the similarity in shape of the real-valued non-approximated
function and the proposed approximations for Hyperbolic
Tangent (Kwan approximation) and Logistic Sigmoid (PLA
and Zhang approximations). The bottom left and bottom
right show the absolute error for the approximated functions,
which is always under 4.3% in case of Kwan approximation,
and 2.1% in case of PLA and Zhang approximations.

All four approximations were independently implemented
in hardware in order to verify the required hardware
resources. The summary of the FPGA implementations is
presented in Table 2. The upper half of the table reports the
resource usage, i.e., the amount of Look Up Tables (LUTs),
Registers and DSP blocks (DSP48E); no memory is used
in any implementation. As it can be seen, the PLA LS
approach triples the LUT usage of the Zhang LS approxi-
mation, whereas avoids using DSP48E slices (because only
uses shifts and adds are used). On the other side, the ReLU
implementation shows a really low use of resources because
of its simplicity. Nevertheless, taking into account that only
one AFB is needed for the whole implementation, it can
be considered that, in general, the resource usage of the
Activation Function Block (AFB) is negligibly small in all
cases and then, does not influences the design complexity.
However, the performance is important in order to obtain
the fastest clock operation as possible. The bottom half of
Table 2 shows the maximum clock frequency (fj,4y ), which is
clearly dependent on the pipeline design (except for ReLU),
less pipeline stages decreases clock frequency and increases
the amount of logic used. The table also shows the MSE and
maximum error for the approximated functions. The number
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FIGURE 7. Top left: Comparison of hyperbolic tangent function (blue) and its Kwan approximation (red). Top right:
Comparison of logistic sigmoid function (red) with its PLA (blue) and Zhang's second-order (green) approximations. Bottom
left: Absolute error of the Kwan approximation to the hyperbolic tangent. Bottom right: Absolute errors of PLA and Zhang

approximations to the logistic sigmoid.

TABLE 2. Resource usage, performance and error of proposed activation
functions approximations. MSE and maximum errors compares to 64-bit
floating-point with FPGA hardware implementation.

Activation function

PLALS! ZhangLS? KwanHT3 ReLU
Registers 51 69 23 2
LUTs 165 53 26 1
DSP48E 0 1 2 0
fmaxz (MHz) 270.8 498.7 490.8 550.6
Pipeline (Tarp)* 3 4 5 1
MSE 3.10e-05 1.59¢-04 3.27e-04 0
Max. error 0.020 0.021 0.043 0

L PLA approximation of the Logistic Sigmoid.

2 Zhang’s second order approximation of the Logistic Sigmoid.

3 Kwan’s second order approximation of the Hyperbolic Tangent.
4 Pipeline length (number of pipeline stages).

of pipeline stages Tprp depending on the used AFB must
be considered in the design of the FSM for proper data
synchronization, as described in section I'V-D.
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Given the simplicity of the ReLU implementation, its clock
frequency limitation comes from the delay in logic resources,
which is 550MHz. On the other hand, Zhang LS and Kwan
HT implementations show similar complexity, achieving an

Jmax around 490MHz. Finally, an f,,, of 270MHz reveals

that the PLA LS implementation is a hard bottleneck for the
whole performance of the architecture. This illustrates the
paramount importance of the AFB block design for achieving
good performance in the proposed architecture. As a result,
the PLA implementation was discarded for further analysis
and not included in accuracy results.

D. ACCURACY

In addition to performance and resource occupation, a very
important issue lies in the accuracy of the proposed comput-
ing architecture since fixed-point arithmetic is used. An anal-
ysis of six different FFNN implementations was carried
out, comparing the output of the neuronal network imple-
mentations with its 64-bits floating point PC Matlab-based
counterpart. Using Matlab, it was found that Iris MLP imple-
mentation obtained 98.67% classification accuracy, both
the MLP and LR implementations of the Reduced MNIST
dataset obtained 95.2% classification accuracy, and the Full
MNIST autoencoder reconstruction MSE was 0.21. Table 3
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TABLE 3. Accuracy results for several FFNN classifiers with variable data
size and using three different datasets. The MSE was calculated against
64-bit floating point Matlab implementation. Default format is

Q6.12 unless other fractional part stated.

FFNN AFB MSE Max diff
Iris MLP

4x10x3 HT 3.86e-08  2.40e-03
Full MNIST AE

784x196x784 ReLU 4.61e-09  4.73e-04
Full MNIST AE

784x196x784 (Q9.9) ReLU 6.70e-07  3.60e-03
Full MNIST AE

784x196x784 (Q12.6) ReLU 3.97e-05  2.99e-02
Full MNIST MLP

784x600x600x10 HT +ReLU < le-06  6.29¢-03
Full MNIST MLP

784x600x600x10 (Q9.9) HT + ReLU  6.00e-06  4.64e-02
Full MNIST MLP

784x600x600x10 (Q12.6) | HT+ ReLU  4.77e-04  3.5e-01
Reduced MNIST MLP

400x40x10 LS 2.06e-08  4.00e-04
Reduced MNIST LR

400%x10 LS 5.59¢-06  2.00e-02

shows the MSE error of the reached classification accu-
racy for different FPGA implementations when compared to
Matlab.

In order to evaluate the influence of fixed-point arith-
metic, the Full MNIST dataset using both a 784x196x784
AE and a 784x600x600x10 MLP were implemented with
18-bit word-length and three different fractional part sizes:
Q6.12,Q9.9 and Q12.6. As expected, the MSE error increases
when bit size decreases (Table 3) but the MSE error is still
negligible and thus, it can be considered that fixed-point
arithmetic is not affecting the neural network results.

Note that the largest FFNN with ReLU units has alow MSE
due to the ReLU activation function which provides mathe-
matically exact results regardless of its fixed/floating point
representation. This network was trained with regularization
and dropout to obtain small weights ([—1, 1]) and avoid
overflow problems with easy fixed-point implementation.

Concerning the Logistic Sigmoid, it is a very efficient
data range limiter, limiting data amongst the layers into the
[—1, 1] range. Thus, when the implementation uses saturated
arithmetic, the numeric data overflow does not become a
problem and fixed-point arithmetic is valid. In fact, Table 3
shows that MSE error is mostly linked to the AFB imple-
mentation approximations done, rather than the fixed-point
implementation versus floating-point implementation.

One of the interesting and useful properties of neural net-
works is their robustness to weight rounding. This fact can
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TABLE 4. Dependency between fractional part size of the weights and
overall network accuracy for different FFNN implementations.

Classification Accuracy (in %)

Bits IrisMLP rMNIST!  fMNIST 2
(fractional part) ~ 4x10x3  400x40x10  784x600x600x10
17 98.67 95.2 98.62

12 98.67 95.2 98.62

10 98.67 95.18 98.63

8 98.67 95.2 98.60

6 98.67 95.2 98.64

4 98.67 95.42 96.39

2 97.33 94.88 9.80

1 96.67 93.06 9.00

1 Reduced MNIST dataset.
2 Full MNIST dataset.

be used to optimize the hardware resources by reducing the
memory size. Table 4 gathers the classification accuracy for
different sizes of fractional parts using three implementa-
tions, including the large 3-layered 784x600x600x10 for the
full MNIST. The obtained results show the fact that the FFNN
using between 6 and 10 bits of fractional part have compara-
ble performance to the FFNN using double precision floating-
point weights. This is in the line with some studies [46], [47]
showing that weight precision can be drastically reduced
without compromising the network accuracy.

VI. REAL CASE APPLICATION
To test the performance achieved by the proposed archi-
tecture on the FPGA against other platforms, a real case
application is proposed. The aim of this application is to
discern between the normal function of the heart and several
pathologies as Ventricular Tachycardia (VT) and Ventricu-
lar Fibrillation (VF), amongst others. To feed the classifier,
the input data (ECG signal) were preprocessed in several
stages [43], [44]. The first step consisted of a baseline wan-
dering removal (denoising), Fig. 8, using an 8th order IIR
Butterworth bandpass filter with a response range from 1 Hz
to 45 Hz. In the following stage, previous to a time-frequency
Pseudo Wigner-Ville representation, a window signal align-
ment was required. The result was a bidimensional matrix
image, which dimensionality was reduced with a kernel
average, and, finally, the smoothed image was subsampled
obtaining 15 values used as input data to the FFNN. Thus,
the classification phase executed by the neural network is
the last step to identify the normal/non-normal behavior of
a human heart. For comparison purposes, we only analyzed
the neural network.

A multilayer perceptron (MLP) was proposed, using
the MIT-BIH Malignant Ventricular Arrhythmia [41] and
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FIGURE 8. Block diagram of the real case application to classify between normal and pathological rhythms of the heart (especially,

VT and VF).

AHA (2000 series) [42] database for training and testing.
Two-thirds of the data were randomly chosen for training
whereas the rest of the data were used for testing. The
classifier was designed and trained using back-propagation
using the Matlab ’Neural Networks’ Toolbox. The hyperbolic
tangent was selected as activation function. Finally, an MLP
with 15 inputs, 20 neurons in the 1% hidden layer, 20 neurons
in the 2" hidden layer and one single output was obtained
(15x20x20x1).

The neural network was implemented in the FPGA using
the 2"¢ order Kwan approximation of the hyperbolic tan-
gent as activation function [43]. The complete architecture,
including the AFB block, was configured to operate in Q6.12
fixed-point format.

The resource usage and performance is detailed in Table 5.
It also shows the number of cycles required to process all
15 inputs. Results in the table show a reduced use of mem-
ory, high performance (490MHz) and low number of clock
cycles (84) required for each 15 input processing, which
means that 5.83 Msamples/second could be processed (171ns
processing time).

To evaluate the results of the FPGA-implemented FFNN
classifier, Table 6 details the Sensitivity (Se), Specificity (Sp),
and Accuracy (Acc), as defined in Egs. 13, 14 and 15, [44],
where TP are the True Positives, FN the False Negatives,
TN the True Negatives, and FP the False Positives. As seen
in the table, results for FPGA fixed-point implementation
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TABLE 5. Resource usage and performance for the FFNN MLP
implementation for normal or pathological classification of the heart.

Datasets MIT-BIH Malignant and AHA 2000
Type of FFNN MLP 15x20x20x1

Activation Function | Kwan HT

Slice registers 1267

LUTs 1198

RAMB18 10

DSP48E 22

fmaz(MHz) 490.849

#Clocks 84

slightly differ from floating-point implementations, showing
that AFB approximation and fixed-point weights do not alter
the classification results.

TP
Sensitivity(%) = ———— x 100 13
ensitivity(%) PN X (13)
Specificity(%) = ————— x 100 14
pecificity(%) N+ P> (14)
TP + TN
Accuracy(%) = + 100 (15)

X
TP+ FN + 1IN + FP
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TABLE 6. Performance comparison amongst platforms.

Matlab 1 LPC4337 2 FPGA 3
64-bit floating  32-bit floating ~ Q6.12 fixed
Accuracy 98.63 98.63 98.53
Specificity 98.88 98.88 98.82
Sensitivity 97.92 97.92 97.67
Computation time ~ 43.79 us 3.30 ps 171 ns
(@120MHz) (@490MHz)

1 Intel Core i7-7700HQ CPU @2.8GHz, 64-bit Linux, 8 GB RAM.
2 LPC4337 32-bit ARM Cortex-M4 microcontroller.
3 Virtex 7 XC7VX485T-2FFG1761 FPGA.

Obviously, this FFNN processing can be implemented under
different hardware technologies, being the main differences:
speed, workload and power consumption. For comparison
purposes, Table 6 also includes the performance of the
same classifiers implemented in Matlab on a PC (Intel Core
i7-7700HQ CPU @ 2.80GHz, 64 bit Linux OS, 8 GB RAM),
and an LPC4337 microcontroller unit (MCU 32-bit ARM
Cortex-M4 with floating point hardware arithmetic unit, run-
ning at 120MHz). As can be seen in the table, when imple-
mented on an LPC4337 MCU running at 120MHz, the output
is ready after approximately 400 clock cycles (implementing
the algorithm in assembler) [48]. In this case, the processing
time would be 3.3 us @120 MHz. However, the same com-
putation running in Matlab needs an average of 43.79 us per
input pattern. In any case, the FPGA implementation is able
to perform the computation in a much shorter time, using a
reduced hardware.

VII. DISCUSSION

The proposed architecture provides great versatility: it can
implement an arbitrary number of layers without hardware
increase except in the RAM for weight storage, which is
extremely useful in case of deep multi-layer neural networks.
The outputs of intermediate layers can be externally accessed
as the output of the AFB block where all units output are
evaluated is connected to an external port. This feature can be
used for network training algorithms or any other debugging
purpose. Additionally, the weight values can be modified
during execution by writing in the RAM memories, without
device reprogramming.

Another relevant characteristic of this architecture is the
use of a single Activation Function Block (AFB) for the
whole FFNN. By serial feeding, this AFB block evaluates
the non-linear neuron output function for the sum of prod-
ucts generated in each FFNN neuron unit. At first glance,
it may appear that having a unique AFB block for the
whole neural network may affect performance, but it allows
to maximize performance. As only one block is necessary,
the required amount of resources for this block is negligibly
small (Section V-C) compared with other approaches using
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one activation function per neuron unit. Moreover, it is possi-
ble to implement several AFB blocks which can be switched
in different layer computations; as an example, Table 1 shows
the results of implementing the 784x600x600x10 MLP using
the Kwan HT activation function in all layers except the
output layer, which uses the ReLLU activation function.

Table 2 illustrates the paramount importance of the AFB
design in this architecture. Here, the differences in the maxi-
mum frequency of operation are exclusively due to the AFB
implementation. ReLu implementation is the fastest, enabling
the FFNN to work at 550MHz (in this case, the maximum
frequency of operation of the FPGA modules: DSP48E and
BRAM). On the other side, the PLA implementation of
the Logistic Sigmoid makes the overall speed to fall down
to 270MHz, which means that this block is bottlenecking the
system. In turn, the Zhang LS and Kwan HT implementations
show better performance, achieving around 490MHz, which
indicates that both are bottlenecking the system but can main-
tain a high clock frequency. It is also important to consider the
pipeline-delay for a different AFB (Tafrp).

TABLE 7. Clock cycles required for different FFNN architectures. Weight
loading and single sample computation times are shown.

Weight Output
Topology loading  computation
MLP 4x10x3 83 39
MLP 400x40x10 16450 472
LR 400x10 4010 411
AE 784x196x784 308308 1786

The number of cycles of execution is very deterministic in
this architecture. It is described by Eq. 12, where T4rv, Tsr
and T4rp are additional cycles due to the propagation time in
the ALU, Scratchpad Register and AFB block, respectively.
As an example, Table 7 shows the number of cycles achieved
for four different implementations, with Ty y + Tsg = 8.
The output computation time also takes into account the clock
frequency. As an example, in case of the 784x196x784 AE
using the ReL.U activation function, the total performance is
550 MOPS per NPEX784 NPEs = 431.2 GOPS and the
output computation time is (1/550 - 10°) - 1786 = 3.24ps.

The comparison amongst hardware platforms reports a
considerable acceleration when using the FPGA implemen-
tation of the proposed architecture. This study was conducted
using a real case application and the same computation algo-
rithm on all platforms, Table 6. Thus, when the FFNN is
implemented in an FPGA, the output (the result of classify-
ing the inputs) is generated after 84 clock cycles, which is
171ns @490MHz. In turn, a careful assembler codification
of the algorithm in an LPC4337 32-bit ARM Cortex-M4
microcontroller requires 3.3 us @J/20MHz. In this case,
the sequential nature of the execution and the Von Neu-
mann architecture restricts the efficiency of the computation,
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TABLE 8. Comparison of the proposed FFNN hardware implementation with other approaches: Clock system frequency and normalized to the number of
neurons in the FFNN (considering it as the sum of the hidden and output neurons). ! Normalized values per neuron unit.

Work fmaz | Clock! | Speed-up | DSP' | Memory | Registers' | LUTs' | FFNN type & size

(MHz) | Cycles blocks bits !
This work 490.8 2.05 256.1 0.53 4.4kb 30.9 29.2 | MIT-BIH. 15x20x20x1
This work 490.8 1.02 0.50 17.8kb 29.8 28.8 | Full-MNIST. 784x600x600x10
This work 490.8 3.00 0.92 0.4kb 524 52.4 | Iris. MLP 4x10x3
Ferreira et al. [49] 300.0 26.7 0.85 13.0kb 699.3 627.3 | Iris. MLP 4x8%x3x3
Vranjkovic et al. [50] 113.0 48.3 1.00 3.1kb 151.0 Average of several MLP-ANNs
Suzuki et al. [51] 231 5.00 1047.3 1033.0 | Autoencoder 4x2x4
Nedjah et al. [52] 20.3 10.47 6.9kb MLP 220x24x10
Oliveira et al. [53] 77.8 6.43 2.0kb 429.1 Iris. MLP 4x8x3x3
Huynh et al.(1) [18] 178.0 91.82 0.31 11.1kb 338.8 489.2 | Full-MNIST. 784x40x40x40x10
Huynh et al.(2) [18] 216.0 35.06 0.32 11.7kb 359.2 593.8 | Full-MNIST. 784x126x126x126x10
Zhai et al. [54] 7 0.50kb 715.7 1008 | MLP 12x3x1

in front of the parallel FPGA computation. Finally, the exe-
cution of the FFNN in Matlab running in a PC (Intel
Core i7-7700HQ CPU) needs an average computation time
of 43.79 us @2.80GHz. As it can be seen, the FPGA accel-
erates the computation x20 times than the LPC4337 MCU
and %256 times than a PC, not considering power consump-
tion, which is generally much lower in an FPGA than MCU
or CPU.

To enable hosting very large FFNN with reduced memory
occupation, the proposed architecture uses fixed-point for
arithmetic and weight storage. Nevertheless, it have been
demonstrated (section V-D) that using 18-bit word-length for
weights achieves a classification performance comparable to
double precision floating-point weight values and computa-
tion (Table 6). Furthermore, a value between 6 and 10 bits
for the fractional part reveals to be enough to achieve similar
classification accuracy than floating point. This fact is very
important due to the high number of weights existing in large
FFNN, thus requiring a large memory for storage. However,
this architecture allows to include more weights in the same
number of NPEs by using their BRAM.

A direct comparison of the proposed architecture to other
works in the bibliography is difficult. Different works take
different approaches to the architectural solutions and authors
tend to use relativistic metrics. In a search for similar works,
Table 8 shows three implementations using the architecture
proposed in this work and eight approaches made by other
authors. In order to have comparable values, the hardware
resources used in each implementation are normalized to the
total number of units in the FFNN, e.g. a 4x8x3x3 MLP
requires 14 neuron units, which means that reported total
resource values are divided by 14 in order to obtain the
normalized resources per unit.

In case of Ferreira and Barros [49], they achieved a x36
speedup over a GCC compilation on a Linux PC, using a Intel
Xeon @1.6GHz, for a 4x8x3x3 MLP (14 units). The use of
memory, LUT and registers are significantly higher than our
equivalent implementation of a 4x10x3 MLP (13 units).
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Vranjkovic and Struharik [50] reported a coarse-grained
accelerator on the same Virtex 7 platform as this work, they
propose several FFNN implementations and provide average
resource occupation results. The report 113MHz of maximum
operating frequency and an average of x48 speedup over
Weka/PC software implementation. Note that our proposal
works at 490MHz using the logistic sigmoid activation func-
tion, and accelerates by x256. The proposal uses more DSP
blocks and registers, while a slightly lower value for memory.

Suzuki et al. [51] showed a 4x2x4 autoencoder architec-
ture achieving 231MHz of maximum clock frequency. In this
case, all reported occupation values are remarkably higher
than our proposal. Furthermore, we use a single clock data
processing rate for the whole system, whereas [51] uses
several clock signals.

Nedjah et al. [52] computed a 220x24x10 MLP (34 units)
in 356 clock cycles, and our implementation would solve it
in 276 clock cycles (33% less clock cycles). The normalized
memory usage for our similar 15x20x20x1 MLP (41 units)
is also lower.

Oliveira et al. [53] implemented a 4x8x3x3 MLP Iris
problem using 90 clock cycles and 77.8MHz, whereas our
architecture would do it using 51 cycles at 490MHz at lower
memory usage.

Huynh [18] propose different FFNN implementation in
their work. They used a similar approach to that of our
work: they implement all neuron units of the largest layer
and serial processing. For a 784x126x126x126x10 and
784x40x40x40x10 MLP for Full-MNIST dataset classifica-
tion, i.e. 388 and 130 neuron units, respectively. They obtain
a much lower clock frequency and clock cycle number, while
being slightly better in memory and DSP, but using more
registers and LUTs when comparing to our 784x600x600x10
(1230 units).

Finally, Zhai et al. [54] propose a 12x3x1 MLP (4 units) in
a Xilinx Zynq SoC to detect and classify the gas sensor data
with a processing time of 540ns. Our architecture uses less
resources and achieves a x7 speedup.
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As summary, obtained results show remarkable benefits of
using the proposed architecture to accelerate FFNN computa-
tion, providing a high-end computing platform with superior
speed performance, being able to compute the output of large
FFNNs much faster than other works in the bibliography.
Furthermore, FPGA devices typically require less power than
PC or MCU and require a small board to work, providing
integration of online FFNN computation in multiple appli-
cations. This is especially important in our proposal, where a
single chip solution is given, without any additional external
memory or additional device which may act as bottleneck.

VIIl. CONCLUSIONS

The proposed SYMPA architecture exploits the fact that dif-
ferent types of FeedForward Neural Networks (FFNN) differ
only in its interconnection schemes. With this, the compu-
tational procedure can be generally defined, no matter the
number of inputs or outputs, hidden layers or hidden neurons
per layer. It provides a modular procedure for the single chip
FPGA implementation of any fully connected FFNN (MLP,
AR, LR), no matter of the number of input, outputs, layers
or neurons by layer, with the only limitation of the available
resources in a device. Its systolic nature and pipelined design
make it possible to obtain linear scalability in resource occu-
pation when increasing the number of units in the FENN, with
no resource increase when adding more layers, except for
weight memory storage. The architecture uses a single acti-
vation function for the whole FFNN, apart from the obvious
resource savings, this fact allows customization options for
the activation function model and intermediate unit outputs
result readout. It is also possible to update weights dur-
ing normal operation (no device reprogramming required).
By using a mixed serial-parallel architecture based on Neural
Processing Units (NPE) containing an ALU and a RAM
block each, the resulting computation time is a linear function
of the number of layers and number of inputs. However,
the maximum clock speed is fixed and independent of the
FFNN size, it is the number of clock cycles the changing value
for different FFNN. Thus, gathering versatility, simplicity and
high-performance, the proposed architecture design becomes
a clearly viable candidate for its use in practical implementa-
tions with standard off-the-shelf hardware.

The hardware architecture combines concepts from matrix
computation fundamentals, mixed serial-parallel computer
architecture, and specific hardware availability in current
FPGA devices as ALUs and distributed RAM. This archi-
tecture presents excellent scalability by replicating Neural
Processing Elements (NPE), providing local interconnection
among adjacent NPEs and reduced global control signals,
thus reducing delays and optimizing clock frequency opera-
tion. The resource usage has a linear dependency with respect
to the size of the largest network layer, i.e. the NPE number
(section V-A). Thus, the system can be easily scaled by
adding or removing NPE elements connected to a systolic
ring with adequate modification of the FSM. Scalability is
only limited by the availability of hardware resources though
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it is possible to create multi-chip FFNN by simple inter-chip
connections.

A practical implementation in a Xilinx Virtex 7 FPGA
device can host multiple-layer FFNN with up to 3600 units
per layer without using external memory, obtaining a high
concurrency in computation reaching up to 1980 Giga Oper-
ations Per Second (GOPS). The maximum clock frequency
achieved is 550MHz using the ReLLU activation function, and
490MHz using logistic sigmoid or hyperbolic tangent. It is
important to remark that the maximum clock frequency only
depends on the activation function used, since NPEs work
(independently of the neural network size) at the maximum
possible device speed. It is not the normal situation in other
designs, where increasing the complexity means a decrease
in clock speed. An important analysis of this work is related
to the result that a reduced bit word-length for weights is
valid for proper FFNN operation. Thus, since memory size
can be a limiting factor in large FFNN, using reduced bit
size for weights will allow storing more weight values in
the same memory size. Other authors use external memory
to store weights. However, by utilizing the on-chip mem-
ory, there is no RAM interface bottleneck, thus accelerating
the whole design. In general, the architecture proposed in
this work is significantly different from the aforementioned
approaches due to the combination of matrix algebra and
resource optimization.

Current research on similar architectures for matrix oper-
ations [55] suggests that the proposed design can be eas-
ily adapted for Recurrent Neural Networks and Restricted
Boltzmann Machines, and additionally, used in combination
with backpropagated-based on-chip learning methods.

One area of future work will be the adaptation of the
architecture to work with layers containing more units than
the number of available NPEs. It can be done by storing
partial layer results in additional BRAM block memory and
repeating the input feeding to the NPEs so that the result is
obtained after several iterations (as a ‘time vs. size’ trade-off).
It is also straightforward to adapt the architecture for very
large FENN by using multiple devices since the communi-
cation between chips would be very simple, expanding the
application to any deep learning application where FFNN
contain multiple layers with a large number of units per layer.
Since the speed of operation is limited by the maximum chip
frequency, future FFNN implementations in other devices
would increase the performance.
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