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ABSTRACT In-vitro fertilization (IVF), as the most common fertility treatment, has never reached its
maximum potentials. Systematic selection of embryos with the highest implementation potentials is a
necessary step toward enhancing the effectiveness of IVF. Embryonic cell numbers and their developmental
rate are believed to correlate with the embryo’s implantation potentials. In this paper, we propose an
automatic framework based on a deep convolutional neural network to take on the challenging task of
automatic counting and centroid localization of embryonic cells (blastomeres) in microscopic human embryo
images. In particular, the cell counting task is reformulated as an end-to-end regression problem that is
based on a shape-aware Gaussian dot annotation to map the input image into an output density map.
The proposed Cell-Net system incorporates two novel components, residual incremental Atrous pyramid,
and progressive up-sampling convolution. The residual incremental Atrous pyramid enables the network to
extract rich global contextual information without raising the ‘grinding’ issue. Progressive up-sampling con-
volution gradually reconstructs a high-resolution feature map by taking into account short- and long-range
dependencies. The experimental results confirm that the proposed framework is capable of predicting the
cell-stage and detecting blastomeres in embryo images of 1−8 cell by mean accuracies of 86.1% and 95.1%,
respectively.

INDEX TERMS Cell counting, human embryonic cells, IVF, medical image analysis, deep learning.

I. INTRODUCTION
According to the World Health Organization (WHO), one in
every four couples in developing countries suffers from infer-
tility [1]. In-Vitro Fertilization (IVF) is one of the most com-
mon infertility treatments that emerged about four decades
ago and practiced over one million times annually around
the world [2]. Unfortunately, IVF has never reached to its
maximum potentials. According to the Canadian Fertility
and Andrology Society (CFAC) [3], only 33.1% of embryo
transfer cycles led to a clinical pregnancy in Canada in 2017.

In IVF process, the fertilized eggs (refers to as embryos)
are cultured for about 5 days inside an incubator to develop
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into blastocysts. These blastocysts are then subjectively
assessed and selected according to their morphological char-
acteristics for implantation. One of the most common embryo
quality assessment techniques is pre-implantation genetic
screening (PGS). While PGS has an excellent ability to
predict non-implanting embryos (negative predictive value
96%) [4], it suffers from a low positive predictive rate
(41-57% live birth rates) [4], [5]. Consequently, it is not the
best option for embryo quality assessment due to its low posi-
tive predictive value and high costs (caused by embryo biopsy
and genetic testing). In Canada, only 16.4% of IVF treatment
cycles were classified as PGS treatment cycles in 2017 [3].
Therefore, embryo morphological grading remains the most
practical method for embryo selection.
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FIGURE 1. Blastomere cells in human embryo images versus other types
of human cells. (a) Blastomere cells. (b) Blood cells [8]. (c) Bone marrow
cells [9].

Several studies suggest that the timing and the synchronic-
ity of the first few cleavages during the early human embry-
onic development correlate with an embryo’s potentials for
developing into a healthy baby [6], [7]. Automatic counting
and centroid localization of embryonic cells (blastomeres)
can provide information about the timing and spatial patterns
associated with cell cleavages. Automatic cell counting is
also of great interest in other biomedical diagnosis/analysis
systems dealing with blood [8]–[12], tumor [13]–[15], and
bacterial [15], [16] cells.

Microscopic embryo images are usually acquired by an
embryoscope equipped with a digital microscope imaging
system that captures images at 5-minute time intervals. Mea-
suring the exact time associated with each cleavage requires
processing approximately 576 frames for a single embryo.
This measurement, if done manually, is expensive, error-
prone, and most importantly impractical. Automating this
process, although of great interest, is a challenging task.
Ambiguity, partial view due to occlusion and out-of-focus
conditions in these images results from the unconstrained
transformation of 3D spherically shaped embryos into 2D
image planes. In addition, background noise, cell fragmen-
tation, cell transparency, and shape variability make this task
even more complicated. Most of these complexities are not
observed in other cell-based medical applications, such as
tissue cell, blood cell counting (Fig. 1-b) or bone marrow
cell counting (Fig. 1-c). In addition, for applications with a
high number of cells, under- and over-counting of cells may
not affect the accuracy of the outcome significantly. However,
under- and over-counting of even one cell in human embryo
images can lead to a significant error in assessing an embryo’s
quality.

In this paper, a modern deep learning based approach with
a novel architecture is proposed to automatically count the
number of blastomeres and localize their centroids in day
1-3 microscopic human embryo images. It is important to
mention that no more than one n-cell (n = 1 : 8) per
physical embryo is utilized in the benchmark dataset for a
true performance measurement.

II. RELATED WORK
A. DEEP CONVOLUTIONAL NEURAL NETWORKS (DCNNS)
The evolution of neural network architectures for image-to-
image translation began in late 2014 by introducing fully
Convolutional Neural Network (FCN) [17]. Since FCN archi-
tecture does not utilize fully connected layers, it can copewith

FIGURE 2. Day 1− 2 human embryo image samples at 1 to 5 cell stages.
(a) Classification approach - 4-cells stage. (b) Regression approach -
Single cells.

images of arbitrary sizes. Despite all differences, existing
architectures [17]–[25] can be divided into threemain classes.

The first class utilizes an encoder-decoder structure. The
encoder extracts hierarchical features by gradually scaling
down the spatial dimension using pooling layers. The decoder
scales up the dense features to reconstruct the original dimen-
sion. Models of this class are similar in the encoder part
while their decoder design makes them distinct. Some of the
most popular architectures in this category include FCN [17],
DeconvNet [18], SegNet [19] and U-Net [20].

Methods of the second class extract sparse features in the
first place using dilated convolutions. Dilated convolutions
increase the field of view without reducing spatial dimen-
sions. DilatedNet [21], RefineNet [22], and DeepLab V2 [23]
are among the most popular architectures in this category.
These methods developed their own way of aggregating
multi-scaled features to generate the final prediction map.

More recently, a third class has emerged with the introduc-
tion of PSPNet [24] and DeepLab V3 [25]. These methods
introduced the concept of pyramid pooling to capture multi-
scale contextual information. This concept is proven to be
effective for handling objects at different scales.

B. AUTOMATIC METHODS FOR CELL COUNTING
Conventional approaches to cell counting include a
two-stage process where counting is performed following
a detection or segmentation phase [26], [27]. Expectedly,
the performance of the counting task relies heavily on the
effectiveness of the underlying cell detection/segmentation
algorithm. Recently, a new class of approaches for cell count-
ing has emerged [8], [15] that perform the task of counting in
one step using object density maps. These approaches do not
require nor depend on prior knowledge through the detection
process. Here, we focus on one-step approaches since the
minimum annotation requirement makes them highly advan-
tageous for biomedical applications. These approaches can
be divided into two categories:

1) CLASSIFICATION BASED APPROACH FOR CELL
COUNTING
To the best of our knowledge, [28] is the only classification-
based counting method for human embryo images. It per-
forms the cell counting task using a multi-label classification
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FIGURE 3. The block diagram of the proposed Cell-Net model.

approach via AlexNet network [29]. Such an approach
assigns the same class label, x, to all images that contain x
number of cells (as shown in Fig. 2-a).

2) REGRESSION BASED APPROACH FOR CELL COUNTING
Recently, we proposed a regression-based approach [30] for
embryonic cell counting by reformulating the task as an
end-to-end regression problem. This approach is based on
supervised learning and maps the input image into an out-
put cell density map. It undertakes the cell counting task
using a Residual Dilated U-Net (RD U-Net) comprised of
cascaded dilated convolutional layers and residual blocks.
Such a regression-based approach alleviates the require-
ment for balanced training samples by learning how a sin-
gle cell looks like regardless of its developmental stage
(Fig. 2-b).

In this paper, we extend our previous work [30] by intro-
ducing a shape-aware Gaussian dot annotation, a content-
based loss function, and most importantly a novel DCNN
architecture. The main contributions of the proposed
approach include:
• Reformulating the task of human embryonic cell count-
ing as an end-to-end regression problem that is trained in
a supervised manner using shape-aware Gaussian anno-
tation via a content-based loss function. This approach
demonstrated great potentials and can be easily utilized
for counting other types of cells such as blood or tumour.

• Proposing two novel components: Residual incre-
mental Atrous pyramid (RIAP) and Progressive Up-
sampling Convolution (PUC). RIAP efficiently extracts
rich global contextual information without raising the
‘grinding’ issue. PUC gradually reconstructs the high-
resolution feature map by aggregating location-aware
contextual information. These components can be incor-
porated into the design of DCNN for other applications
such as semantic segmentation.

III. METHODOLOGY
A. EMBRYOS STRUCTURAL ATTRIBUTES
Prior to describing the proposed approach, we detail some
of the unique aspects and properties of human embryos to
provide some insights regarding some of the choices made
for the proposed model. Human embryos possess unique
biological attributes that could potentially complicate the task
of counting the number of blastomeres inside them. Some of
these attributes include:

• Cell Overlap and Occlusions: The highly overlapped
and densely occupied space inside a human embryo
make the task of counting embryonic cells a challenging
one. Furthermore, the elliptically shaped overlapping
regions between adjacent cells could trigger identifying
false-positive cells.

• Cell Fragmentation and Artifacts: Fragmentation is
defined as the presence of the small portions of cyto-
plasm that are enclosed by a cell membrane but sepa-
rated from the nucleus. Human embryos often exhibit
some degree of fragmentation that complicates the auto-
matic analysis of these images.

• Cell Size Variation: Unlike blood cells which have
approximately the same size, embryonic cells may have
various sizes. Cells in an 8-cell embryo are smaller
than cells in a 2-cell embryo, although of the same
importance.

B. PROPOSED MODEL
The block diagram of the proposed Cell-Net model, which
comprises encoder and decoder parts, is depicted in Fig. 3.
In the encoder part of Cell-Net, residual incremental Atrous
pyramid module is designed following the ResNet-50 to
incorporate multi-scale contextual prior. An effective decoder
module is created by introducing progressive upsampling
convolution to recover fine details and object boundaries.
These two novel components are described next.

1) RESIDUAL INCREMENTAL ATROUS PYRAMID (RIAP)
Availability of some knowledge on the global context is
beneficial to the interpretation of microscopic images [24],
[25], [31] for the cell counting task. Context relationship
is a crucial factor in handling fragmentation and other arti-
facts to comprehend the complex nature of embryo images.
In addition, scalable receptive field helps to improve the
performance on remarkably small or large cells as some
visual features become prominent only at a certain scale.
PSPNet [24] proposed a pyramid poolingmodule by applying
pooling operations at 4 different scales to capture global
context prior. Although [24] extracts rich context features,
the pooling operation with striding leads to the information
loss at object boundaries. DeepLabv3 [25] proposed using
parallel Atrous convolution with different rates instead of
average pooling to capture the global context prior.

Dilated convolution [21] has become popular recently [21],
[25], [30], [32]–[34]. Utilizing dilated convolution enlarges
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the receptive field without introducing additional parame-
ters to the network. Although applying dilated convolution
improves the performance in DeepLabv3 [25], larger dila-
tion rates could lead to a practical problem, known as the
‘grinding’ issue. Grinding issue occurs when the sampling
rate is too large to capture high-frequency content [33]. When
applying dilated convolution, we observed that increasing the
dilation rate can cause the correlation to fall apart gradually.
In practice, when a 3×3 kernel applies to an image region or a
feature map, the number of valid weights decreases by
increasing the dilation rate. When the dilation rate is large,
the number of valid weights reduces to the point where the
3×3 kernel acts as a 1×1 kernel. Yu et al. [33] applied three
policies (removing the max-pooling, adding more layers, and
removing residual connections) to address grinding problem
in a dilated residual network. More recently, DeepLabv3 [25]
adopted image-level features by global average pooling to
overcome the grinding problem. Here, we address the root
cause of the grinding problem by a simple yet effective
solution.

In a 2-D space, a s× s dilated convolution between signal
F and kernel K with dilation rate r is defined as:

(F ∗r K )(x, y) =
t∑

m=−t

t∑
n=−t

K (m, n)F(x − r .m, y− r .n)

where t = (s− 1)/2 (1)

In the dilated convolution, the kernel only visits the signal
at every r th location of each dimension. Therefore, from a
sd × sd dilated neighborhood region, where sd = (r − 1).
(s − 1) + s, only s × s pixels contribute to the computation
of the response at the central pixel. The s × s contributing
pixels are all r − 1 pixels away from each other and have
the same distance from the centroid. For example, in a 3× 3
dilated kernel with r = 4 (Fig. 5-d), only 9 pixels (out of
the 81) contribute to the calculation of the kernel response,
under-utilizing a substantial ∼ 89% of the information.
Here, we propose a simple yet effective solution, named

Residual Incremental Atrous Pyramid (RIAP). RIAP pursues
two primary objectives. First, it addresses the grinding issue
by allowing every single pixel in the dilated neighborhood to
participate in the computation of the kernel response. Second,
it further enlarges the receptive field. In RIAP, we set the stage
for applying a large dilation rate of 2j by backing it up with
smaller dilation rates of 2i where j > i ≥ 0 with residual
connections. Particularly, the dilation rate is increased to 2i

at the (i + 1)th level of the pyramid, as illustrated in Fig. 4.
In ID convolution, not only does each pixel matter but also its
contribution is somewhat proportional to its distance from the
central pixel. RIAP is computationally efficient with a total
of five dilated convolutional layers that are built on the top of
each other. Cascaded structure (i.e., instead of parallel) and
residual connections are two major difference between RIAP
and ASPP in [25].

Figs. 5-a to 5-c depicts the receptive field of the ID
convolution. Here, ID has a receptive field of 15 × 15

FIGURE 4. Structure of Residual Incremental Atrous Pyramid (RIAP).

FIGURE 5. The blue shades and numbers on each pixel indicate
significance of its contribution to the computation of the kernel response.
(a) 3 × 3 Conv with r = 1. (b) ID Conv with r = 2. (c) ID Conv with r = 4.
(d) One dilated Conv with r = 4. (e) Three dilated Conv with r1:3 = 2.

(when r = 4) which is backed by two convolutions with
r = 21 and r = 20. Fig. 5-d shows the receptive field of a
single dilated convolution with r = 4 and Fig. 5-e depicts
the receptive field of three cascaded dilated convolutions
with r = 2. The proposed ID convolution in Fig. 5-c has a
wider and enhanced receptive field with the same number of
parameters compared to the one in Fig. 5-e.

2) PROGRESSIVE UPSAMPLING CONVOLUTION (PUC)
Information associated with boundary features and texture
details could be lost in the absence of a proper up-sampling
strategy. In the decoding phase, most state-of-the-art DCNNs
simply use either bi-linear upsampling [20] or deconvolu-
tion [17], [18] to upscale the downsized dense features and
create a final prediction map. Bi-linear upsampling is not
learnable, and therefore the deconvolution could suffer from
a checkerboard artifact [35]–[37]. Recently, Shi et al. [38]
came up with an interesting idea (sub-pixel convolution) to
recover resolution in a single-image super-resolution sce-
narios. The sub-pixel convolution aggregates low-resolution
feature maps to reconstruct the high-resolution image.
Wang et al. [34] adopted this idea for upscaling dense feature
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FIGURE 6. Structure of the proposed Progressive upsampling convolution (PUC) decoder module.

maps in end-to-end segmentation reconstruction applications.
The sub-pixel convolution in [38], however, was originally
designed for super-resolution application, where the required
upscaling factor was either 2 or 4. However, for end-to-end
image processing applications, such as segmentation, usually
a much larger upscaling factor is required. For example,
ResNet [39], when employed as the encoder, downscales the
input by a factor of 32. The main problem is that these pixels
are upsampled regardless of their spatial locations, which
leads to crucial information loss when reconstructing details
and boundaries.

Inspired by [38], we take the idea of sub-pixel convolution
one step further and propose the Progressive Upsampling
Convolution (PUC) module as illustrated in Fig. 6. Here,
the sub-pixel convolution produces a high-resolution image
(upsampled by a factor of f ) from f 2 low-resolution feature
maps. These kernels are activated periodically in the high-
resolution space to learn an individual upsampling kernel
for locations that are f pixels away from each other. When
the upsampling factor f is set to 32, for instance, each ker-
nel learns the upsampling of pixels that are not strongly
correlated in most regions. The proposed PUC attempts to
reconstruct a high-resolution image in a progressive manner.

The reconstruction begins by learning 4 upsampling kernels.
It then performs a mirroring action to learn the global context
of the high-resolution space. The reconstruction continues by
increasing the number of upsampling kernels exponentially
and performing themirroring action. Thismechanism enables
PUC to capture short- and long-range dependencies between
pixels in a high-resolution space.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATASET AND GROUND TRUTH
Unfortunately, there is no public dataset for early human
embryo images (days 1 − 3) in the biomedical field. Here,
the first public dataset1 for human embryo images up to
8-cell stage is introduced and utilized for experimental pur-
poses. This benchmark human embryo dataset comprises 176
images that contain 511 embryonic cells collected at the
Pacific Centre for Reproductive Medicine (PCRM). It must
be noted that no more than one n-cell (n = 1 : 8) per
physical embryo is utilized to ensure that there is no bias in
the accuracy of the method. These images have been acquired

1Dataset is available at: https://vault.sfu.ca/index.php/s/li0M2T3MHw9V
u8r

VOLUME 7, 2019 81949



R. M. Rad et al.: Cell-Net: Embryonic Cell Counting and Centroid Localization via Residual Incremental Atrous Pyramid

TABLE 1. Details of the benchmark embryonic cell dataset.

FIGURE 7. Visualization of the content-based attention map. (a) Original
sample (b) Gaussian dot annotation. (c) Attention map Mt .

using an Olympus IX71 inverted microscope that employs
Nomarski optical enhancement technique (DIC). The training
set comprises 140 images (80%) containing 388 embryonic
cells. The test set comprises 36 images (20%) containing 123
embryonic cells. Distribution of the data over all cell-stages is
provided in Table 1. The Ground Truth (GT) for these images
is identified manually by expert embryologists at PCRM.
We apply 2D elliptical Gaussian filters (proportional to the
elliptical approximation of blastomeres) to the blastomere
centroids to create shape-aware Gaussian dot annotation (as
illustrated in Fig. 7-b). In addition to our human embryo
benchmark dataset, two public datasets are utilized for exter-
nal evaluation. First, VGG dataset that is introduced in [8]
and contains 200 images of simulated bacterial cells from
fluorescence-light microscopy. Second, MBM dataset that is
introduced in [9] and contains 44 images of bone marrow.

B. IMPLEMENTATION DETAILS
The proposed DCNN models are implemented using an
NVIDIA GeForce GTX 1080 Ti with 11-gigabyte memory
and 32-gigabyte RAM. The model was trained with 10 mini-
batches of size 14 and Adam optimizer [40] with initial
learning rate of 9.8e− 5.
Data augmentation: We applied standard data augmen-

tation by randomly performing vertical/horizontal flipping,
shear transform with an intensity of 0.1, zooming by a factor
within the range of [0.88,1.12] and rotating by an anglewithin
the range of [0◦,360◦].
Loss function: Predicting cell density map using a regular

loss function is not feasible since labels are highly biased
in favor of the background class (Fig. 7-b). As black pixels
dominate the GT heavily, the network constantly falls into
local minima, predicting all-zero image for any input image.
In order to direct the learning process to the cells, we applied
a Content-BasedMean Squared Error (CBMSE) loss function
defined by Eq. 2.

CBMSE =

∑n
t=1 (Pret − Tart )

2
×Mt

n
(2)

TABLE 2. Comparison of the proposed regression approach with the
classification approach for cell counting (in %).

Here, n is the number of images in the batch and Mt is a
content-based attention map that draws the attention of the
training task to the most important regions (as illustrated
in Fig. 7).

C. QUANTITATIVE RESULTS
Performance of the proposed method is evaluated at two
levels: image level and cell level.While the first onemeasures
the ultimate success of a cell counting system, the second
one provides a more detailed analysis of the performance.
The proposed approach is compared against [28], [30] that
are the only two methods developed exclusively for blas-
tomere counting. These methods are re-implemented, then
trained and tested on the benchmark dataset. Furthermore,
to highlight the effectiveness of the proposed architecture,
some state-of-the-art architectures are adopted in the pro-
posed shape-aware dot-annotation regression-based frame-
work, includingUNet [20], TernausNet [41],PSPNet [24] and
DeepLabv3 [25].

1) THE PROPOSED REGRESSION-BASED FRAMEWORK
VS THE CLASSIFICATION-BASED APPROACHES
Table 2 compares the performance of the proposed
regression-based approach with that of the classification-
based approach [28]. For a more comprehensive comparison,
we extended our experiments by testing other well-
established DCNN classification models (in addition to
the AlexNet [29] used in [28]), including VGG16 [42],
ResNet50 [39], and Inception V3 [43]. Table 2 contains
the cell-stage prediction accuracy at the image level (i.e.,
predicting the correct number of cells that exist in an image).
A k-fold cross-validation is performed for amore comprehen-
sive evaluation. Since in some categories such as 5− cell or
6 − cell, one-third of the data is kept in the test set (as
shown in Table 1), there are 3 folds available to perform cross
validation.

Overall, the proposed regression-based approach performs
significantly better than the classification-based approach,
regardless of the underlying DCNN model. There are two
main reasons that explain the results in Table 2. First, unlike
a typical classification problem, images of different cell
counts are not independent of each other. For example, miss-
classification of a bicycle as a motorcycle is as wrong as
the miss-classification of a bicycle as a horse. However,
miss-classifying a 2-cell embryo as a 3-cell embryo is not
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TABLE 3. Comparison of the proposed Cell-Net model with
state-of-the-art architectures on cell-stage prediction (in %).

TABLE 4. Detailed comparison of the proposed Cell-Net model with the
state-of-the-art architectures (in %).

the same as miss-classifying it as a 7-cell embryo. Second,
the availability of balanced/adequate training samples for all
class categories is necessary to train a CNNmodel effectively.
This, unfortunately, is rarely the case in medical field related
applications.

2) THE PROPOSED CELL-NET MODEL VS STATE-OF-THE-ART
MODELS
Table 3 and 4 compare the performance of the proposed
Cell-Net model with the state-of-the-art architectures [20],
[24], [25], [41] when employed in the proposed regression
based framework. To emphasize the contribution of each of
the two RIAP and PUC components, introduced in the pro-
posed Cell-Net, two variants of the proposed Cell-Net model
are implemented. In the first variant, the proposed RIAP
component is replaced with a plain dilated pyramid pooling
(i.e., as incorporated in DeepLabV3 [25]). In the second
variant, the proposed PUC component was replaced with sub-
pixel convolution (i.e., as introduced in [38] and incorporated
by [34]).

Table 3 summarizes results at the image (cell-stage predic-
tion) level. In this table, the prediction accuracy is reported
for both 4 − 8 and 1 − 8 cell-stage categories. As shown in
this table, the proposedCell-Netmodel outperforms the state-
of-the-art models by a large margin.

Table 4 reports results at the cell level (cell detection
performance). Cell detection performance is more discernible
than the cell-stage prediction accuracy. Table 4 suggests that
the proposed Cell-Netmodel outperforms the state-of-the-art
models with an accuracy of 95.1%.

TABLE 5. Localization performance comparison between the proposed
Cell-Net system and state-of-the-art models (in %).

TABLE 6. Effect of the CBMSE loss function on the prediction accuracy
(in %).

TABLE 7. Comparison of the test set mean absolute error (MAE) on two
external datasets.

3) LOCALIZATION PERFORMANCE
Table 5 compares the centroid localization performance for
detected cells (excluding [28] as it cannot localize cells).
Euclidean distance (Eq. 3) between the identified centroids
and the corresponding GTs is utilized to measure the local-
ization accuracy. In this table, the number of miss and per-
fectly localized blastomeres along with the mean Euclidean
Distance (ED) are reported. Miss and perfect localization are
referred to the cases where ED is greater than 10 pixels and
less than 3 pixels, respectively.

ED =
1
N

N∑
i=1

√
(xpi − xgi)2 + (ypi − ygi)2 (3)

Here (xpi, ypi) is the centroid coordinates of the detected
blastomere, (xgi, ygi) is the centroid coordinates of the ground
truth, and N is the number of blastomeres in the image.

4) EFFECT OF THE CBMSE LOSS FUNCTION
To highlight the effectiveness of the proposed CBMSE loss
function, the proposed Cell-Net model is trained using a
regular MSE loss function and the comparison results are
reported in Table 6.

5) EXTERNAL VALIDATION
External validation is performed on two public datasets, VGG
dataset [8] (200 images with an average of 174±64 simulated
bacterial cells) and MBM dataset [9] (44 images with an
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TABLE 8. A qualitative comparison of the Cell-Net and the state-of-the-art models (best viewed in color). Here, green dot (•) implies true positive,
light-magenta plus (+) highlights false negative, and yellow cross (×) indicates false positive.
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FIGURE 8. Performance versus computational complexity trade-off (network parameter size is
proportional to the radius of the circles).

average of 126 ± 33 bone marrow cells). We follow the
same training protocol used in [8], [9], where a fixed set
of 100 images is reserved for testing while the size of the
training and validation sets are varied. Since every image on
these datasets contain more than 100 cell samples, a relatively
smaller portion of data is sufficient for training and validation
purposes. In Table 7, Nt and Nv represents the number of
images used for training and validation processes. Sample
images from these datasets are depicted in Fig. 1.

D. QUALITATIVE RESULTS
Table 8 displays some sample outputs of the proposed Cell-
Net model and visually compares them against Base-
line UNet [20], TernausNet [41], PSPNet [24], and
DeepLabV3 [25]. The results from 1-cell stages are skipped
due to their simplicity and to reserve the space for more
complicated cases. The 1st row of Table 8 depicts an exam-
ple with background floating particles/cells. Both Baseline
UNet [20] and TernausNet [41] mis-interpreted the floating
cells as blastomeres. Rows 2 and 8 show cases where the
proposed Cell-Net model, PSPNet, and DeepLabV3 handle
fragmentation by not mis-interpreting it as a blastomere cell,
unlike baseline UNet and TernausNet. The example in the
3rd row depicts a case where two blastomeres overlap. The
elliptically shaped overlapping region between neighboring
cells triggers false identification of a new blastomere in
Baseline UNet [20] and TernausNet [41] but not in Cell-Net.
Rows 4, 5, 6, and 7 represent cases where partial view due
to occlusion and out-of-focus planes make the blastomeres
ambiguous. This is themain areawhere the proposedCell-Net
model delivers superior performance comparing to PSPNet
and DeepLabV3 models.

E. COMPUTATIONAL COMPLEXITY
Figure 8 depicts a visual comparison of all the discussed
models at both image and cell levels along with their net-
work’s parameter sizes. The proposed Cell-Net model con-
tains roughly ∼ 34 millions parameters. While such a
number is larger than some of the earlier models (Baseline
UNet [20], RD-UNet [30], and TernausNet [41]) with much
lower performance, it is roughly the same as PSPNet [24] and
∼ 5 millions less than DeepLab V3 [25].

V. CONCLUSION
In this paper, an automatic framework based on a deep
convolutional neural network was proposed to take on the
challenging task of automatic counting and centroid localiza-
tion of blastomeres in microscopic images of early human
embryos. In particular, the cell counting task is formulated as
an end-to-end regression problem that is based on supervised
learning to map the input image into an output density map.
The proposed Cell-Net system introduced two novel com-
ponents, residual incremental Atrous pyramid and progres-
sive upsampling convolution. Residual incremental Atrous
pyramid extracts rich global contextual information without
raising the grinding issue. Progressive upsampling convolu-
tion gradually reconstructs the high-resolution feature map
by taking into account local and global contextual structures
of the scene. Experimental results confirm that the proposed
framework is capable of predicting cell-stage and detecting
cells by a mean accuracy of 86.1% and 95.1%, respectively.
Furthermore, experimental results confirmed that the pro-
posed method is capable of localizing blastomere centroids
with a mean Euclidean distance error of 6.6 pixels.
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