
Received May 20, 2019, accepted May 31, 2019, date of publication June 5, 2019, date of current version June 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920998

Secure Encrypted Data With Authorized
Deduplication in Cloud
JINBO XIONG 1, (Member, IEEE), YUANYUAN ZHANG 2,3,
SHAOHUA TANG 2,3, (Member, IEEE), XIMENG LIU 4, (Member, IEEE),
AND ZHIQIANG YAO 1
1Fujian Provincial Key Laboratory of Network Security and Cryptology, College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117,
China
2School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
3Peng Cheng Laboratory, Shenzhen 518055, China
4Fujian Provincial Key Laboratory of Information Security of Network Systems, College of Mathematics and Computer Science, Fuzhou University,
Fuzhou 350108, China

Corresponding author: Yuanyuan Zhang (zyy837603010@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61872088, Grant 61632013,
Grant 61872090, Grant 61702105, and Grant U1804263, and in part by the Natural Science Foundation of Fujian Province under
Grant 2019J01276.

ABSTRACT In this paper, we propose a novel secure role re-encryption system (SRRS), which is based
on convergent encryption and the role re-encryption algorithm to prevent the privacy data leakage in cloud
and it also achieves the authorized deduplication and satisfies the dynamic privilege updating and revoking.
Meanwhile, our system supports ownership checking and achieves the proof of ownership for the authorized
users efficiently. Specifically, we introduce a management center to handle with the authorized request and
establish a role authorized tree (RAT) mapping the relationship of the roles and keys. With the convergent
encryption algorithm and the role re-encryption technique, it can be guaranteed that only the authorized
user who has the corresponding role re-encryption key can access the specific file without any data leakage.
Through role re-encryption key updating and revoking, our system achieves the dynamic updating of the
authorized user’s privilege. Furthermore, we exploit the dynamic count filters (DCF) to implement the data
updating and improve the retrieval of ownership verifying effectively. We conduct the security analysis and
the simulation experiment to demonstrate the security and efficiency of our proposed system.

INDEX TERMS Role re-encryption, role authorized tree, privacy leakage, authorized deduplication, proof
of ownership.

I. INTRODUCTION
The rapid development of cloud computing and big data
technology changes user’s method and efficiency in pro-
cessing information, the cloud servers provide the scalable
computing and efficient storage to users in anytime and
anywhere. Therefore, for enterprises and individuals, it will
be a trend to outsource data to the cloud service providers
(CSP) [1], [2]. A report ‘‘Internet data generated in one
minute’’ of Excelcom shows that more than 701389 accounts
log onto Facebook in one minute, more than 300 hours new
video and audio are uploaded to YouTube in one minute. The
users generate 2.4 million search requests in Google search,
and the users post more than 24.30 million photos to the

The associate editor coordinating the review of this manuscript and
approving it for publication was Kuo-Hui Yeh.

Instagram social application per minute [3], [4]. The amount
of global uploaded data reached 4 billion or more per day
in 2011, the data volume reached 1.8 ZB. IDC (International
Data Corporation) statistic shows that the global data vol-
ume reached 4.4 ZB in 2013, reached 8.61 ZB by the end
of 2015, the growth rate of data volume is more than 50%,
and expected to 2020, it will unexpectedly reach 44 ZB [5].
More than half of the cloud storage space is occupied by
the duplicate data, and the expenditure for managing the
duplicate data is 8 times that of the original data [6]. Along
with the explosive growth of cloud data, massive duplicate
data occupied the storage space and the huge expenditure
bring a severe challenge to the limited cloud storage space.
Therefore, how to reduce the management expenditure and
improve the storage efficiency in cloud is an urgent issue to
be solved for the cloud service providers [7]–[9].

75090
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-9985-1953
https://orcid.org/0000-0002-2302-836X
https://orcid.org/0000-0003-4892-6550
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-8612-5984

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

To tackle the above issue, data deduplication is widely
applied in the cloud service providers, which eliminates the
multiple duplicate data to improve the storage utilization and
reduce management expenditure [10]. Recent research [11]
shows that data deduplication can reduce up to 83% for
backup systems and 68% for memory systems [12]. Accord-
ing to different criteria, the classification results for data
deduplication have multiple types. Based on the data pro-
cessing unit, it can be divided into file-level data dedu-
plication and block-level data deduplication; based on the
data execution object, it can be divided into server-side data
deduplication (target-based data deduplication), client-side
data deduplication (source-based data deduplication), and
cross-user data deduplication [13]–[15]. The cross-user data
deduplication can save more storage space, and the dedu-
plication rate is up to 90%-95% [16], [17]. Although data
deduplication brings above benefits, it also poses some new
security challenges [18]–[20]. Firstly, the data outsourced by
enterprises and individuals to cloud service providers usually
involves the privacy information [21]–[23]. The users lose
the control over these privacy data, which exists the risk of
privacy leakage by the curious cloud service providers [24].
At the same time, in order to improve the management
efficient, the cloud server providers perform data dedupli-
cation to control the number of duplicate data. In the pro-
cess of data deduplication, the adversary may utilize the
relative attack methods to intercept the user’s privacy infor-
mation, which also discloses the user’s identity, location,
and number of duplicate data. Therefore, it is important to
protect the user’s privacy when performing data deduplica-
tion. Secondly, the data deduplication based on the tradi-
tional convergent encryption poses serious security problems,
the unauthorized users can obtain the user’s information only
by supplying the hash value of the file, which makes it
difficult to protect the data security, check the ownership
and achieve authorization access. Only the user who has
the corresponding privilege can access the specific file and
perform the data deduplication in cloud, which is an urgent
issue to be solved. Thirdly, the privilege of the authorized
user is dynamic and flexible, it is difficult to guarantee the
access permission of authorized user and achieve the key
updating and revoking management when performing data
deduplication.

To tackle the above issues, we propose a novel secure role
re-encryption system with authorized deduplication called
SRRS, which is based on the convergent encryption and the
role re-encryption algorithm to achieve authorized dedupli-
cation. Up to now, we propose the first solution to prevent
privacy data leakage, achieve authorized deduplication and
satisfy dynamic privilege updating and revoking, meanwhile,
support ownership checking. The main contributions of the
proposed scheme are fourfold:
• We proposed a novel secure role re-encryption sys-
tem (SRRS) with authorized deduplication in cloud,
which is based on the convergent encryption to pro-
tect data privacy and achieve secure data deduplication,

utilizes the role re-encryption to achieve authorized
access. In SRRS, we introduce a management cen-
ter to handle with the authorized request, and gener-
ate the role re-encryption key, which guarantees that
only the authorized user who have the correspond-
ing role re-encryption key used to access the specific
file.

• We construct a role authorized tree to manage the user’s
role and implement the role re-encryption key updating
and revoking efficiently, which satisfies the dynamic
updating of authorized user’s privilege.

• When performing the secure data deduplication, CSP
can check the ownership of the authorized user.
We exploit the dynamic count filters (DCF) to achieve
the data updating and improve the retrieval efficiency of
ownership verifying.

• Security analysis shows that our proposed system is
secure under the proposed security model, and perfor-
mance evaluation demonstrates the effectiveness and
efficiency of our proposed system.

The rest of our paper is organized as follows: Section II
gives the preliminaries in our work; and Section III describes
the system model, adversary model and design goal; in
Section IV, we construct the proposed system; Section V and
Section VI gives the security analysis and the performance
evaluation, respectively; We describe the related work in
Section VII; and give the conclusion in the end.

II. PRELIMINARIES
In this section, we give the preliminaries in our work about
B+ tree and DCF.

A. B+ TREE
B+ tree has two types of nodes: internal nodes and leaf
nodes [25]. The internal node, including a root node, stores
the index information, and the leaf node stores the elements
related to data. All of the leaf nodes are linked by a doubly
linked list. A B+ tree of order M satisfies the following
properties:
• The root node has 2 child nodes at least, and hasM child
nodes at most.

• With except of the root node, each internal node has
M−1 key values at least, and has dM/2−1e key values
at most.

• Each leaf node has dM/2e elements at least.
B+ tree is a tree-like data structure that stores and searches

data in order, which supports data searching, sequentially
reading, insert and deletion. The non-leaf nodes of the B+
tree contain only index information, and do not store actual
values. All leaf nodes and the connected nodes are con-
nected by a linked list, which is convenient for interval
searching and traversal. Those properties are used in the
construction of role authorization tree to implement quickly
querying and retrieving user’s role information in the SRRS
system.

VOLUME 7, 2019 75091

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

B. CONVERGENT ENCRYPTION
Convergent encryption is a specific symmetrical encryp-
tion and provides data confidentiality in deduplication
process [18], [26].

The key of convergent encryption is a value of a cryp-
tographically strong hash calculating from the original file
content. Therefore, two users with the identical plaintext
files can get the identical hashes and identical keys to obtain
identical ciphertext files without considering their encryption
keys.

Formally, given a symmetric-key encryption function Enc,
a plaintext file f and a cryptographically strong hash func-
tion h, the convergent key is k = h(f), and the ciphertext
C = Enck (f).
In the SRRS system, we employ the convergent encryption

to protect data privacy and achieve secure data deduplication.

C. DYNAMIC COUNT FILTERS
A dynamic count filters (DCF) [27] is used to check whether
a specified element is in a set, and consists of two different
vectors and a series of randommapping functions. Compared
with the standard bloom filter, DCF can handle deletes and
inserts on multisets with less consumption and higher effi-
ciency. Each element is mapped to an array used the hash
functions. For the retrieved element, if all the mapping results
are equal to 1, it exists in the set. Otherwise, it has not been in
the set. However, the retrieved result has a certain probability
of false positive.

The process of initialization, insertion, retrieval and dele-
tion are described as follows:
• InitDCF(α, β, t) : CBF ← {CUi}i∈[1,t], OFV ←
{OFi}i∈[1,t]. Initialize a DCF, where t is the number of
counters, each CUi has size of α bits, each OFi has size
of β, where β varies dynamically its bit length.

• InseDCF(EM , γ) : CBF ← {EMhj}j∈[1,γ]. Insert a new
element EM , where {hj}j∈[1,γ] are γ independent hash
functions, then, updating the CBF and OFV.

• RetrDCF(EM ,DCF) : ⊥ ⇔ ∃i ∈ [1, t] : Vi =
(2α × OFi + Cui) ← 0. Retrieve whether the element
EM exists in the set, the value of the i-th counters is Vi.

• DeleDCF(EM ,DCF) : CBF ← {EMhj}j∈[1,γ]. Delete
an element EM , then, update the CBF and OFV.

In the SRRS system, we obtain the encrypted blocks and
insert the results to DCF to achieve the data updating and
improve the retrieval efficiency of ownership verifying.

III. PROBLEM DESCRIPTION
In this section, we firstly give a system model. Then,
we describe an adversary model and our design goal.

A. SYSTEM MODEL
The system model of SRRS consists of three entities: Users
(U), a Cloud Service Provider (CSP) and a Management
Center (MC), as shown in Figure 1. A user sends a request
to MC, and encrypts the original file, then, outsources the
ciphertext to CSP.

FIGURE 1. System model of SRRS.

Users who belong to different role groups owning the cor-
responding role keys. According to the role keys and access
control policies, the user can upload or download the specific
files from CSP. The creator of a file is unique, and is also a
special user.

A CSP is responsible for data storage, management and
verification. CSP stores and manages the uploaded files from
users. In terms of verification, CSP establishes a challenge
list for each file to verify the user’s ownership to prevent the
unauthorized user’s access.

AMC is a trusted third party, which is responsible for user
authorization and role key management.

B. ADVERSARY MODEL
In our proposed system, we assume that: 1© the MC is
trusted by all entities involved in our system, and will not
compromised by an adversary; 2© the CSP is ‘‘honest-but-
curious (HbC)’’, which performs our proposed protocol hon-
estly, but is curious about the user’s privacy information;
3© the communication channel between MC and the user is
secure in our system; 4© we define a secure hash function
resisted against the collision attack and exploit the standard
symmetric encryption algorithm [4], [28].

According to the above assumptions, we define the follow-
ing abilities of different types of adversaries [29], [30].

• A1 could eavesdrop the communications between CSP
and the user to get the transmitted information, and plays
a role of the user to interact with the CSP.

• A2 could eavesdrop the communications between CSP
and the user to get the transmitted information, and cloud
exchange Smin bytes information with the user.

• A3 may discard the user’s data that have not been
accessed or rarely accessed, and may tamper the user’s
data to maintain reputation.

C. DESIGN GOAL
We consider two aspects of system security and performance
efficiency to construct our system, therefore, the design goal

75092 VOLUME 7, 2019

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

includes security and performance requirement, which is
described as follows:
• Our proposed system is secure under the standardmodel.
Specifically, 1© the probability of an adversary running
a successful secure protocol should be negligible under
the secure parameter; 2© the privacy information of users
cannot be acknowledged by the CSP in the process of
performing data deduplication; 3© the adversary can
obtain a minimum amount Smin of the privacy informa-
tion from the authorized user to run successful secu-
rity protocol. Meanwhile, the system supports dynamic
updating and revoking of privileges to achieve flexible
access control.

• The bandwidth, the server memory space, the client stor-
age space should be efficient and economical. In the pro-
cess of performing authorized deduplication, the bytes
of file exchanged between the user and CSP should
be the smallest possible to reduce the communication
overhead; the loaded information in the server memory
should be the smallest possible and should be indepen-
dent of the uploaded file size to reduce the memory
overhead; the information about keys and ciphertext
stored to the client should be the minimum possible,
in addition, the number and length of the stored keys
should be independent of the file size to reduce the
storage overhead.

IV. CONSTRUCTION OF THE PROPOSED SYSTEM
In this section, we firstly give the notations and descriptions,
as shown in Table 1, and we define that ‘‘:=’’ represents a
define operator, ‘‘←’’ represents an assignment operator.

TABLE 1. Notations and descriptions.

The overview of the proposed SRRS system consists of the
following three phases: authorized deduplication (Phase 1),
proof of ownership (Phase 2), and role key update (Phase 3),
as shown in Figure 2.

In phase 1, a file creator U1 calls Divided algorithm to
divide the file, then calls Encrypt algorithm to encrypt the
file. MC calls rkeyGen algorithm to generate the role key,
and calls Decomp algorithm to obtain the role key shares,
then sends the role key and role key shares to the creator.

After receiving the information, U1 calls ReEncrypt algo-
rithm, and sends to CSP. In phase 2, U2 uploads a file to
CSP, CSP then finds that the same file has been stored,
it will perform proof of ownership for U2. CSP generates
and sends the challenge of the proof of ownership to U2, who
calls Divided, Encrypt and ReEncrypt algorithms to
compute response, and sends the response to CSP, CSP will
perform Verify algorithm. U2 downloads a file from CSP,
who calls Verify algorithm and sends ciphertext to U2, U2
then calls ReDecrypt and Decrypt algorithms to obtain
the file. In phase 3, MC calls rkeyUp algorithm to update
the role key, and CSP retrieves data information and updates
date information.

A. ROLE AUTHORIZED TREE
We define a novel authorization structure named role autho-
rized tree (RAT) based on a B+ tree, as shown in Figure 3.
MC organizes a role group using a RAT to manage the role
key and achieve the user’s authorization.

For a RAT with order M , each node contains M elements
at most, and dM/2e elements at least. A RAT has two type of
nodes: leaf nodes and internal nodes, the root node belongs
to the internal nodes. The leaf nodes store data information,
and the internal nodes do not have these data.

We define a RAT with order 3, each node can store 3 ele-
ments at most. Each node V consists of three values, the def-
initions are described as follows:

• contain(V). The contain(V) stores the elements of this
node based on the index from left to right, contain(V) :=
{v1‖v2}.

• children(V). The children(V) stores the child nodes
of this node, consists of left child, the middle
child, the right child respectively, children(V) :=
{W1‖W2‖W3}. For a leaf node, the child nodes will be
null, children(V) = {null}.

• rank(V). The rank(V) stores the number of elements.
For a RAT with order 3, each node can contain 3
elements at most, and 2 elements at least. Therefore,
the rank(V) can be described as:

rank(V) =
{
2 the node has 2 elements.
3 the node has 3 elements.

We define the elements of the leaf node corresponding to
the user’s roles, each role group consists of a two-tuple R =<
rolekey,filelist >, where R[i].rolekey is the role key and
R[i].filelist is the list of file indexes, and i is the index of the
role group. Each role group holds the corresponding role key
and manages the corresponding files. The user who owns the
particular role has the privilege to manage the corresponding
files.

In order to obtain the role group and the corresponding
role key, MC must search the RAT. To search for the role
group Rι, MC needs to retrieve the element lι. MC takes the
retrieved role group Rι as input and returns the role key rkeyι,
the procedures of search process are described as follows:

VOLUME 7, 2019 75093

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

FIGURE 2. Overview of the SRRS system.

FIGURE 3. Role authorized tree.

Step.1: MC gets contain(·) and rank(·) from current
node Xi. If rank(Xi) = 2, MC needs to compare lι with two
elements xj, xj+1 of node Xi; If rank(Xi) = 3, MC needs to
compare li with three elements xj, xj+1, xj+2 of node Xi.
Step.2: MC checks children(Xi) to get the corresponding

child node Yj based on the result of step.1.
Step.3: MC invokes Algorithm 1 to check node Yj, and

obtains contain(Yj) and rank(Yj).
MC repeats from Step.1 to Step.3 until children(Xi) =
{null}, where the current node Xi is a leaf node, then, returns
the target elements lι. Finally, MC obtains the corresponding
role group Rι and the role key rkeyι.
The Algorithm 1 describes the procedure of Check Yj,

which takes the target node Yj as input, and returns
contain(Yj) and rank(Yj). Firstly, MC gets rank(·) from the

Algorithm 1 Check Yj
input: the target node Yj
output: contain(Yj) and rank(Yj)
1: get rank(Yj)
2: if (rank(Yj) = 2) then
3: get contain(Yj) := {yt‖yt+1};

return contain(Yj) and rank(Yj);
4: end if
5: if (rank(Yj) = 3) then
6: get contain(Yj) := {yt‖yt+1‖yt+2};

return contain(Yj) and rank(Yj);
7: end if

current node Yj, if rank(Yj) = 2, MC gets two elements from
node Yj, contain(Yj) := {yt‖yt+1}, then, returns contain(Yj)
and rank(Yj); if rank(Yj) = 3, MC gets three elements
from node Yj, contain(Yj) := {yt‖yt+1‖yt+2}, then, returns
contain(Yj) and rank(Yj).

B. ALGORITHMS
In this section, we elaborately describe all the algorithms in
the SRRS system, as shown in Figure 2.
Divided. The user executes the algorithm to divided the

file into n blocks. It takes a file f and a file block number n
as inputs, and outputs a set of file blocks {bi}i∈[1,n].

75094 VOLUME 7, 2019

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

FIGURE 4. Authorized deduplication: the process of uploading a file for the first time.

Encrypt. The user executes the algorithm to encrypt the
file blocks with the convergent key. It takes a set of file blocks
{bi}i∈[1,n] as input, and returns the ciphertext {Ci}i∈[1,n]. The
user runs the hash over file blocks {bi}i∈[1,n] to obtain the
convergent key {ki}i∈[1,n], ki = h(bi). Then, the user sym-
metrically encrypts the file blocks with the convergent key
to obtain the ciphertext Ci, Ci = Encki (bi), where Enc is a
symmetric encryption function.
rkeyGen. It takes a user’s role roleui as input, and returns

a role key rkeyj, rkeyj = roleui .rolekey. The specific user
ui is associated with the role key rkeyj. Upon receiving an
authorization request with the user’s role, MC searches the
node of RAT to obtain the corresponding two-tuple R[ui],
and returns the role key rkeyj. Each role is associated with
a unique role key and has the corresponding privilege.
Decomp. MC executes the algorithm to decompose the

role key into n shares. It takes the role key rkey and key
share number n as inputs, and returns a set of key shares
{rkeyi}i∈[1,n]. The key share number is identical to the file
block number.
ReEncrypt. It takes a set of ciphertext blocks and a set

of role key shares as inputs, and returns the re-encryption
ciphertext {C ′i }i∈[1,n]. Upon receiving n shares of the role
key {rkeyi}i∈[1,n], the user concatenates the ciphertext blocks
with the role key shares to obtain the re-encryption ciphertext
{C ′i }i∈[1,n], C

′
i = Ci + rkeyi.

ReDecrypt. It takes a set of re-encryption ciphertext
blocks and a set of role key shares as inputs, and returns
the ciphertext {Ci}i∈[1,n]. Upon receiving n shares of the role
key {rkeyi}i∈[1,n], the user splits the re-encryption cipher-
text blocks with the role key shares to obtain the ciphertext
{Ci}i∈[1,n], Ci = C ′i − rkeyi.
Decrypt. The user executes the algorithm to decrypt the

ciphertext with the convergent key. It takes a set of ciphertext

blocks {Ci}i∈[1,n] as input, and returns the original file blocks
{bi}i∈[1,n]. The user decrypts the ciphertext with the conver-
gent key to obtain the original file blocks, bi = Decki (Ci),
where Dec is a decryption function.
rkeyUp. It takes an original role key rkey as input, and

returns the updated role key rkey′. MC searches the RAT and
updates the specific role key, rkey→ rkey′.

C. AUTHORIZED DEDUPLICATION
In our proposed system, we define user U1 as the creator of
a file f and U2 as one of the users that owns the same file.
Figure 4 and Figure 5 illustrate the procedure of authorized
deduplication.
U1 wants to store file f to the CSP, as shown in Figure 4.

Firstly, U1 computes a token of f , token = h(h(f)), and sends
an upload request with {token, idu1} to CSP. Upon receiving
the token, CSP checks it, if it has not been stored, and requests
U1 to upload the file with related information. Secondly, U1
calls Divided to obtain n file blocks, {bi}i∈[1,n], and invokes
Encrypt to get the ciphertextCi = Encki (bi), where ki is the
convergent key of the ciphertext block, ki = h(bi). Thirdly,
U1 sends the authorized request with {token, n, roleu1} to
MC. Upon receiving the request, MC searches the node from
RAT to obtain the corresponding two-tuple R[u1], and calls
rkeyGen to generate the role key rkey. In order to obtain the
role key shares, MC invokes Decomp, where inputs the role
key rkey and the key share number n and returns a set of key
shares {rkeyi}i∈[1,n]. Then,MC sends the result toU1.U1 calls
ReEncrypt to obtain the re-encryption ciphertext C ′, C ′i =
Ci + rkeyi, i ∈ [1, n]. Finally, U1 uploads {token,C ′, idu1}
to CSP.

Upon receiving the data package, CSP establishes an asso-
ciative array = that maps a string with finite size to 3-tuples:

VOLUME 7, 2019 75095

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

FIGURE 5. Authorized deduplication: the process of uploading and downloading a file.

=[token].ENC , =[token].ID and =[token].DCF , where token
is the index of 3-tuples. Specifically, =[token].ENC stores
the re-encryption ciphertext C ′, =[token].ID contains a list of
identifiers for users, =[token].DCF keeps a bits of dynamic
count filters to check ownership.

The establishment of DCF is described as follows:
Step.1: CSP initializes DCF with the file block number n.
Step.2: CSP calculates the index[i], that is the hash value

of each block C ′[i], index[i] = h(C ′[i]).
Step.3: CSP takes the index[i] and the index i as inputs, runs

PRF to get the inserted element em, em← PRF(index[i], i).
Step.4: An element em as the outputs of PRF is inserted

into DCF, InseDCF(em, γ).
CSP repeats from the Step.2 to the Step.4 until i = n,

the encrypted blocks are inserted into DCF.
U2 wants to store the same file at the CSP, as shown

in Figure 5. U2 computes a token of file, token = h(h(f)),
and sends the upload request with {token, idu2} to CSP. Upon
receiving the token, CSP checks if the token has been stored,
then checks if idu2 ∈ =[token].ID is true. If the result is true,
CSP informs U2 that the file has been stored. If not, CSP
implements PoW protocol to check the ownership of U2, and
returns the corresponding result to U2 (PoW protocol refers
to Sect.4.4).
U2 wants to download the file stored in the CSP, as shown

in Figure 5.U2 sends the download request with {token, idu2}
to CSP, CSP checks if idu2 ∈ =[token].ID is true. If the
identifier of U2 exists in the user list, CSP retrieves the
associative array based on the index value of token and returns
the re-encryption ciphertext C ′.U2 sends the role key request
to MC, and calls ReDecrypt using the role key to decrypt

the re-encryption ciphertext C ′. Finally, U2 calls Decrypt
using the convergent key k to obtain the original file f .

D. PROOF OF OWNERSHIP
In order to solve the problem that an adversary can explore
some sensitive data simply by supplying the hash values of
a file, CSP implements PoW protocol when one of users
uploads file that has been stored. We define U3 is one of the
users who owns the file f , and f has been stored in the CSP,
meanwhile, the identifier of U3 has not been stored in the list
of owner identifier, as shown in Figure 6.
U3 computes a token of f , token = h(h(f)), and sends

the upload request with {token, idu3} to CSP. Upon receiving
the token, CSP checks whether the token has been stored
or not, then checks whether idu3 ∈ =[token].ID is true or
not. After verification, the token has been stored at CSP and
idu3 does not belong to the identifier list. Therefore, CSP
generates an array pos of J randomly and independently
chosen block indexes based on =[token].ENC . Finally, CSP
sends pos toU3, where pos is a challenge to verify a user who
indeed owns f .
Upon receiving the challenge, U3 calls Divided to

get n file blocks, {bi}i∈[1,n], and invokes Encrypt to get
the ciphertext Ci = Ench(bi)(bi), and interacts with MC
to obtain re-encryption ciphertext C ′. Then, U3 calculates
the corresponding responses res according to the pos and
returns the result to CSP. Finally, CSP takes res and pos
as inputs, calls PRF to get a retrieved element em, and
checks whether the em belongs to =[token].DCF or not,
if RetrBF(em,=[token].DCF) is true, CSP returns OK to U3
and adds the idu3 to =[token].ID. Otherwise, U3 fails to PoW

75096 VOLUME 7, 2019

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

FIGURE 6. Proof of ownership.

Algorithm 2 Proof of Ownership
input: token, id
output: the result of verification
1: (@User): token = h(h(f));
2: uploads {token, id} to CSP;
3: (@CSP): checks id ? ∈ =[token].ID;
4: if id ∈ =[token].ID then

return >;
5: else
6: generates the challenge;
7: sends pos and J to the user;
8: (@User): calculates the response;
9: Divided(f , n)→ {bi}i∈[1,n];
10: Encrypt({bi}i∈[1,n])→ {Ci}i∈[1,n];
11: ReDecrypt
12: ({C ′i }i∈[1,n], {rkeyi}i∈[1,n])→ {Ci}i∈[1,n];
13: for j← 1 to J do
14: res[j]← h(C ′[pos[j]]);
15: end for
16: sends res to CSP;
17: (@CSP): verifies the response;
18: for j← 1 to J do
19: em← PRF(res[j], pos[j]);
20: if ¬RetrDCF(em,=[token].DCF) then

return ⊥;
21: end if
22: end for
23: =[token].ID← =[token].ID ∪ id ;

return >;
24: end if

protocol. The description of the above procedure is shown in
Algorithm 2.

E. ROLE KEY UPDATE
MC manages RAT to update the role key. Through role
re-encryption key updating and revoking, our system is able

to achieve the dynamic updating of the authorized user’s
privilege.

The update operations contain themodification of role keys
and the updating of RAT. For a RAT, the elements of leaf node
are corresponding to the role information. Based on the prop-
erties of B+ tree, the modification of role keys only affects
the nodes along the path from a wanted element of a leaf node
to the root node on the RAT. Therefore, the modification of
role keys is equal to search for a wanted element of the leaf
node. The update operations include Modification, Deletion
and Insertion, which mostly conform to the procedures of a
standard B+ tree [25], [31].

MC wants to update the role key rkey, it firstly calls
rkeyUp to obtain the updated role key rkey′, and sends
the update request with a set of {tokeni}i∈[1,l] to CSP.
CSP retrieves the associative array based on the set of
token, and returns the corresponding re-encryption cipher-
text {C ′tokeni}i∈[1,l] to MC. Upon receiving this information,
MC calls ReDecrypt used rkey to decrypt C ′, Ctokeni =
C ′tokeni−rkey, then, callsReEncrypt used rkey′ to obtain the
updated re-encryption ciphertextC ′′,C ′′tokeni = Ctokeni+rkey

′.
Finally, MC uploads a set of {C ′′tokeni}i∈[1,l] to CSP. Upon
receiving the updated ciphertext, CSP retrieves the corre-
sponding =[token].DCF , runs DeleDCF and InseDCF to
update the DCF. All the processes are shown in Algorithm 3.

V. SECURITY ANALYSIS
In this section, we analyze the security of the proposed SRRS
under the adversary model (defined in Section III.B) based on
the standard model [29].

A. SECURITY OF AUTHORIZED DEDUPLICATION
In the standard model, we propose a security formulation for
the authorized deduplication scheme.
Theorem 1: Suppose the expression: ε1 > ε2 = 2λ+�(λ)

is satisfied. We define that h represents a collision-resistant

VOLUME 7, 2019 75097

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

Algorithm 3 Role Key Update
input: roleui , rkey

′

output: {=′[tokeni].ENC}i∈[1,l],{=′[tokeni].DCF}i∈[1,l]
1: (@MC): searches the RAT to obtain R[ui].rolekey and
R[i].filelist;

2: updates role key rkey to rkey′;
3: sends the file list index {tokeni}i∈[1,l] to CSP;
4: (@CSP): retrieves =;
5: sends the {=[tokeni].ENC}i∈[1,l] to MC;
6: (@MC): updates the ciphertext;
7: for k← 1 to l do
8: ReDecrypt (C ′k , rkey)→ Ck ;
9: ReEncrypt (Ck , rkey′)→ C ′′k ;
10: =

′[tokenk].ENC ← C ′′;
11: end for

return {=′[tokeni].ENC}i∈[1,l];
12: sends the {=′[tokeni].ENC}i∈[1,l] to CSP;
13: (@CSP): updates the DCF;
14: for k← 1 to l do
15: for v← 1 to n do
16: em← PRF(h(C ′v), v);
17: DeleDCF : CBF ← {emht }t∈[1,γ];
18: em′← PRF(h(C ′′v), v);
19: InseDCF : CBF ← {em′ht }t∈[1,γ];
20: end for
21: =

′[tokenk].DCF ← DCF ′;
22: end for

return {=′[tokeni].DCF}i∈[1,l];

hash function, and E is an encryption scheme with semantic
secure. The proposed authorized deduplication scheme is
(ε1, ε2)-secure.

Proof: Any PPT adversary who attempts to attack our
proposed scheme is defined as ASRRS , we define that A1
is a PPT adversary, who attempts to attack the encryption
scheme E . A1 has obtained a re-encryption ciphertext C ′ =
E .ReEncrypt(rkey,C), C = E .Encrypt(h(f), f), without any
information about the role key rkey and the input message f .
We define ε1 > ε2 ≥ λ, and the min-entropy of the message
C is at least ε1 bits, meanwhile, the adversary A1 is allowed
to learn at most (ε1 − ε2) bits information of message f from
the challenger. Though querying the oracleOf , the adversary
A1 can learn any output of Func(f), where the PPT function
Func(f) is selected by A1.

Based on the above definitions, the adversaryA1 simulates
a security game GSim, which is described as follows:

Setup. A1 obtains the index value token = h(h(f)) and
sends it to ASRRS .

Learning-I.A1 queries to the oracleOf with Func(f), and
obtains the corresponding response q = Func(f), where the
bit-length of output q is required to be small than (ε1 − ε2).
Upon receiving q, A1 forwards the response to ASRRS .

Commit. Denote a subset of {xi}i∈[1,y], y ∈ [1, |f |] and y+
|q| ≤ ε1 − ε2. Though querying the oracle Of , A1 learns the

value of the challenged subsequence β = f [x1]‖ · · · ‖f [xy],
and sets β0 ← β, β1 ← {0, 1}y. Then, the challenger A1
integrates the above result and sends (β0, β1) to the adversary
ASRRS .
Guess-I. Define bSimA∗SRRS

∈ {0, 1} as the output of the
extractor A∗SRRS .
Learning-II. In order to answer the queries made by

ASRRS , A1 selects ˆrkey ← rkeyGen(1λ) randomly and inde-
pendently, sets Ĉ ′ = ReEncrypt(C, ˆrkey) and sends Ĉ ′ to
ASRRS .
Guess-II. ASRRS outputs a guess bSimA∗SRRS

∈ {0, 1} of b.
Finally, the PPT adversary A1 outputs βbSimA∗SRRS

∈ {β0, β1}

and wins the game GSim if βbSimA∗SRRS
= β = f [x1]‖ · · · ‖f [xy].

Though querying and learning from the oracle Of ,
the adversaryA1 can obtain at most (λ+ε1−ε2) bits message
about the unknown f . Therefore, the unknown f has at least
(ε2 − λ) = λ+�(λ) bits min-entropy.
Theorem 1 is proved, our proposed SRRS is

(ε1, ε2)-secure.

B. SECURITY OF PROOF OF OWNERSHIP
Theorem 2: Let Smin is the least byte exchanging with a

colliding user, a PPT adversary succeeds in a PoW for file f
with negligible probability, our proposed proof of ownership
is (Smin)-secure.

Proof: We construct a PPT adversary A2 against the
PoW protocol, who does not possess the entire file. p is the
probability of A2 knowing a byte of the file f at a randomly
chosen position, and g is the probability of A2 guessing
correct when he doesn’t possess the given byte.

We define that the event bli is A2 passing the protocol
when he is given a token, the result happens in either of the
following two cases: 1© A2 gets a correct token; 2© When
DCF checks the element, a false positive occurs. We define
the false positive of DCF is pf . Through the above analysis,
the probability of the event bli can be described as:

P(bli) = P(bli ∩ (tokeni ∪ tokeni))

= P(bli | tokeni)P(tokeni)+ P(bli | tokeni)P(tokeni)

= P(tokeni)+ pf P(tokeni). (1)

The cloud server uses the token as a seed to generate the
index with PRF . Therefore, we define that an event tokeni
is A2 generating the bits of the i-th token, the event ϕi is
A2 knowing the i-th block . According to the mathematics
knowledge, the probability of A2 obtaining the correct block
is gB, and guessing the l-bit output of H5 is 0.5l . Obviously,
the size of token is shorter than block , guessing the token is
easier for A2. That is, gB � 0.5l . Therefore, the probability
of the event tokeni can be described as:

P(tokeni) = P(tokeni ∩ (ϕi ∪ ϕi))

= P(tokeni | ϕi)P(ϕi)+ P(tokeni | ϕi)P(ϕi)

= p+ (1− p)0.5l . (2)

75098 VOLUME 7, 2019

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

TABLE 2. Comparison with other schemes for efficiency.

TABLE 3. Comparison with other schemes for computational cost.

Then, we can obtain:

P(bli) = p+ (1− p)0.5l + pf (1− (p+ (1− p)0.5l))

= p+ (1− p)(0.5l + pf (1− 0.5l)). (3)

The challenge contains J independent block positions,
the probability of A2 passing the challenge is described as:

P(success) = P(bli)J . (4)

We set up a security parameter κ to derive a lower bound
for J , that is P(success) ≤ 2κ , as:

J ≥ κln2/(1− p)(1− (0.5l + pf (1− 0.5l))). (5)

Therefore, the probability ofA2 running a successful PoW
protocol should be negligible under the security parameter κ ,
and the privacy information of users cannot be acknowledged
by the CSP in the process of authorized deduplication.

We ensure that the adversaryA2 obtains at least Smin bytes
of the privacy information from the legitimate user, which
can run a successful RSE-PoW protocol. According to the
definitions of token and block , we know that token is shorter
than block , therefore, we set the token length as:

l ≥ Smin
B
F
. (6)

For the performance goals, the communication bandwidth
of our proposed scheme is related to the security parameters,
we use the small exchanged file between user and CSP to
achieve the security goal of authorized deduplication. Fur-
thermore, the server memory overhead is also related to the
security parameters and is independent of the uploaded file
size, which achieves the goal of reducing server memory
overhead. The role key is assigned byMC, the key size stored
in client is independent of the file size, which achieves the
goal of reducing the client storage overhead.

VI. PERFORMANCE EVALUATION
In this section, we give the performance analysis and evalua-
tion of our SRRS.

A. COMPLEXITY ANALYSIS
We compare our proposed SRRS system with the related
schemes in terms of the efficiency and computational com-
plexity, and the result is summarized in Table 2 and Table 3.

For the comparison of the efficiency, we give the commu-
nication overhead and storage overhead of the related works.
Uploadmessage size refers to the communication overhead of
the file upload phase between the users and CSP, download
message size refers to the communication overhead of the file
download phase and proof of ownership phase between the
users and CSP, rekeying message size refers to the commu-
nication overhead of the key updating phase and ciphertext
updating phase between the user (or MC) and CSP, key size
and token size refer to the storage overhead that the user
required to store respectively.

In the upload phase, both Xu’s scheme [29] and Hur’s
scheme [32] exploit the randomized convergent encryption
to obtain the ciphertext. In order to realize the decryption,
the randomized key needs to be uploaded. In our SRRS
system, the key is related to the role that managed by the MC,
and it does not need to upload. In the download phase, our
system performs proof of ownership to realize the authorized
access, SPoW is the size of exchanged information in our
proposed PoW protocol. In the key updating and ciphertext
updating phase, Hur’s and our SRRS system support the
rekeying, the communication overheads of the rekeying are
(x − y)log x

x−ySk and SK + y ∗ SC respectively. In terms
of the storage overhead, the user is required to store logn
additional KEKs in Hur’s scheme. In Xu’s and our SRRS
system, the user only needs to store the SK . For the token
size, the above schemes have the same storage overhead.

VOLUME 7, 2019 75099

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

FIGURE 7. Performance analysis of our system. (a) The computational cost of generating file token. (b) The computational cost of encryption and
decryption. (c) The computational cost of role re-encryption (|rkey | = 256bit). (d) The computational cost of role re-encryption (|rkey | = 512bit).
(e) The computational cost of role re-encryption (|rkey | = 1024bit). (f) The computational cost of re-decryption. (g) The computational cost of RAT
initialization. (h) The computational cost of RAT retrieval.

For the comparison of the computational complexity,
we give the computational cost of different algorithms
with the related works. Both Xu’s scheme [29] and Hur’s
scheme [32] exploit the randomized convergent encryption,
the key is selected by the file creator randomly, therefore,
the computational cost of KeyGen are λ and y ∗ log2x, and
the computational cost of Enc are SE + hash + XOR and
2 ∗ hash + SE + XOR respectively. In Ding’s scheme [33],
the key is generated andmanaged by the third party, therefore,
the computational cost of Setup is 1 ∗ Exp, and KeyGen is
1 ∗BP. Our SRRS system exploits the convergent encryption
and role re-encryption to obtain the re-encryption ciphertext,
therefore, the computation cost of KeyGen is lognm, and Enc
is 2 ∗ hash + CE . With regard to the computational cost
of ReEnc and KeyUp, Ding’s scheme [33] uses the asym-
metric encryption to generate the re-encryption ciphertext,
Hur’s scheme [32] uses symmetric encryption to generate
the re-encryption ciphertext and key, our SRRS system uses
the concatenation operation to generate the re-encryption
ciphertext. Therefore, the computation costs ofReEnc in three
schemes are 1 ∗ BP, 2 ∗ SE and Con, the computation cost of
KeyUp are 1 ∗Exp+ 1 ∗BP, (x− y)log x

x−y , lognm+ y ∗Con,
respectively.

B. PERFORMANCE MEASUREMENTS
In this section, we conduct a serial of simulation experi-
ments to evaluate the performance of the proposed scheme,
the experiments are implemented on a PC with the fol-
lowing configurations: CPU: Intel(R) Core(TM) i7-6700 @
3.40GHz 3.41GHz; RAM: 16.0GB; System type: 64-bit oper-
ating system, X64-based processor; OS: Ubuntu 12.04.4 LTS.

We invoke OpenSSL library for cryptographic operations,
and use Java language with Eclipse application program
on Linux. Specifically, we employ AES-256 and SHA-256
for the symmetric encryption and all hash algorithms,
respectively.

We measure the computational cost of the basic algorithms
and protocols of our proposed scheme. We run 200 times for
each algorithm and protocol to obtain the average value, and
use nine files with different sizes from 2MB to 512MB.

The token is the unique identifier of a file, and the compu-
tational cost of the number of token is related to the file size.
We test the performance of token generation with different
file sizes from 2MB to 512MB, as shown in Figure 7 (a).
We use the AES-256 to test the performance Encrypt
and Decrypt algorithms with different file sizes, as shown
in Figure 7 (b).

With the file size increasing, the computational cost of
generating file token, symmetric encryption and decryption
has significantly increased. When the file size is 512MB,
the computational cost of generating token requires about
2.04s,Encrypt algorithm requires 4.11s to encrypt the orig-
inal file into a ciphertext, and Decrypt algorithm requires
3.93s to decrypt the ciphertext to the original file.

We set the role key rkey as {256, 512, 1024} bits, set
the block size as {1024, 256, 64, 16} bits and test the
computational cost of ReEncrypt and ReDecrypt algo-
rithmswith different file sizes from 2MB to 512MB, as shown
in Figure 7 (c) to Figure 7 (e).

The main computational cost of ReEncrypt algorithm is
the runtime of concatenating the ciphertext blocks with the
role key shares. When rkey is 1024 bits and the block size is

75100 VOLUME 7, 2019

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

FIGURE 8. Performance analysis of our system. (a) The computational cost of DCF initialization (|token| = 16bit). (b) The computational cost of
DCF initialization (|token| = 64bit). (c) The computational cost of DCF initialization (|token| = 256bit). (d) The computational cost of DCF
initialization (|token| = 1024bit). (e) The computational cost of PoW challenge generation. (f) The computational cost of PoW verification.

1024 bits, the computational cost reaches maximum. When
rkey is 16 bits and the block size is 256 bits, the computational
cost uncertain reachesminimum, which is also affected by the
number of blocks. When rkey is 1024 bits, the block size is
1024 bits, with file size of 512 MB, ReEncrypt algorithm
requires 8.05s to re-encrypt the ciphertext. When rkey is
16 bits, the block size is 256 bits, with file size of 512 MB,
ReEncrypt algorithm requires 5.71s to re-encrypt the
ciphertext.

The main computational cost of ReDecrypt algorithm
is the runtime of splitting the ciphertext blocks with the
role key shares, where the size of role key has little
effect on the runtime. Therefore, we test the performance
of re-decryption with different block sizes and file sizes,
as shown in Figure 7 (f). When rkey is 1024 bits, with file
size of 512 MB, ReDecrypt algorithm requires 7.47s to
re-decrypt the re-encryption ciphertext.

We set the order of RAT with the set of {3, 5, 10}, we test
the computational cost of RAT initialization and search with
different number of elements, as shown in Figure 7 (g) and
Figure 7 (h). With the number of elements increasing, the dif-
ferent orders of RAThave an increasing impact on the runtime
of RAT initialization and search. When the order of RAT is 3
and the number of elements is 105, the computational cost of
RAT initialization and search is about 0.126s and 0.045s.

We set the security parameter κ as 66, Smin as 64MB,
the size of token l as in the set of {16, 64, 256, 1024} bits, the
probability p as in the set of {0.5, 0.75, 0.9, 0.95} and the false
positive rate of the DCF pf as {0.001, 0.01, 0.1}. According
to Equation (9), the PoW challenges J is set to {102, 204, 509,
1017} based on the above values. And the size of blocks b is

obtained, according to the values of l, Smin, the size of input
files and Equation (10).

The main computational cost of DCF initialization is the
runtime of InitDCF and InseDCF , which is related to the size
of token and the false positive rate. When the file size reaches
64 MB, the inserted elements to the DCF reaches a fixed
value, resulting in a decrease in curve growth. We test the
computational cost of DCF initialization with different sizes
of token and the false positive rates, as shown in Figure 8 (a)
to Figure 8 (d). When the false positive rate pf is 0.001 and
token size is 16 bits, for file size of 512 MB, DCF ini-
tialization requires 9.89s. When the false positive rate pf is
0.1 and token size is 1024 bits, for file size of 512 MB, DCF
initialization requires 0.09s.

The generation of PoW challenge is affected by the value
of J , therefore, we test the computational cost of challenge
generation with different value J based on the above analysis,
as shown in Figure 8 (e). When value of J is 1017 and file
size is 512 MB, the generation of PoW challenge requires
3.07s. After receiving the response, CSP verifies the correct
of the responses res with different J challenges using the
DCF retrieval. Finally, we test the computational cost of
PoW verification with the different value of J , as shown in
Figure 8 (f). when J is 1017, the PoW verification is about
0.074s, which is highly efficient.

VII. RELATED WORKS
In order to tackle the problem that the unauthorized users can
access the user information only by supplying the hash value
of the file. Halevi et al. [34] proposed the proof of ownership
(PoW), which is an interaction protocol between client side

VOLUME 7, 2019 75101

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

TABLE 4. Comparison with other schemes.

and server side to verify the ownership of that client. In [34],
the client and server create a Merkle Hash Tree (MHT)
based on the source file, and use a challenge-response model
to verify the correct of MHT path provided by the client.
Ng et al. [38] proposed a private data deduplication in data
storage, where a client held a private data proves to a
server stored a summary string of the data that he/she is
the owner of that data without revealing further informa-
tion to the server. Xu et al. [29] proposed a cryptographic
primitive to enhance the security of client-side deduplication
in the bounded leakage setting where a certain amount of
efficiently-extractable information about file F is leaked.
In order to reduce the computational cost and improve
the efficiency, Pietro and Sorniotti [39] proposed a s-PoW
scheme, which requests some particular random bits of the
file from the verified client. Blasco et al. [40] proposed a
bf-PoW scheme based on the bloom filter, which requires the
certain tokens from the verified client to achieve the proof of
ownership efficiently. Through the security analysis, a wide
range of benchmark tests and comparison of the existing
schemes, the proposed scheme greatly reduces the cost of
both the client and the cloud server. Gonzalez-Manzano and
Orfila [35] proposed a ce-PoW scheme based on the con-
vergent encryption (CE) [13], which requires neither trusted
third party nor the complex key management. The cloud
server stores a four-tuples containing the encrypted blocks,
challenge, response, and a list of client identifiers. The exper-
imental evaluation shows the efficiency and feasibility of the
proposed scheme.

In order to solve the unauthorized access in data dedu-
plication, Puzio et al. [41] proposed a secure and efficient
storage system called ClouDedup, which is based on the
CE algorithm and access control mechanism, and achieves
block-level data deduplication. Li et al. [42] proposed a
CDStore scheme, which is based on the CE algorithm and
convergent dispersal mechanism to achieve secure data dedu-
plication, and saves nearly 70% of the storage overhead.
Tang et al. [36] proposed a secure data deduplication scheme
based on CP-ABE algorithm [43] in cloud. With a recur-
sive algorithm and an additional randomness adding method,
it can achieve the duplication check and secure deduplication.
Li et al. [18] proposed a novel data deduplication scheme and

gave a concept of hybrid cloud environment, where the gener-
ation of encryption keys is related to the corresponding priv-
ilege, the private cloud server is responsible for management
and storage of the user’s keys, and the public cloud server
stores the ciphertext and performs the data deduplication.
Xiong et al. [4] proposed a role symmetric encryption (RSE)
algorithm, and constructed a role symmetric encryption PoW
(RSE-PoW) scheme, which establishes a hierarchical role
tree and utilizes the role access control mechanism to achieve
authorized deduplication. Gonzalez-Manzano et al. [37] pro-
posed an ase-PoW scheme in hierarchical environment,
which uses a lightweight access control procedure to resist
against the content guessing attack, where the encryption
key is linked to the owner’s attributes and calculated by the
symmetric recursive encryption.

However, the above data deduplication schemes do not
take into account the key updating and user revocation.
Kwon et al. [44] proposed a new deduplication scheme with
multimedia data, which is based on randomized conver-
gent encryption and privilege-based encryption to achieve
authorized deduplication and user revocation. Li et al. [45]
and Qin et al. [46] proposed a rekeying-aware encrypted
deduplication (REED) system to achieve data deduplica-
tion and dynamic access control. Hur et al. [32] proposed a
novel data deduplication scheme for the server-side, which
uses the randomized convergent encryption algorithm and
ownership group key distribution technique to achieve the
authorized access and support security deduplication with
ownership changes dynamically. Ding et al. [33] proposed a
secure encrypted data deduplication scheme, which exploits
the homomorphic encryption algorithm to achieve security
data deduplication [47], and supports ownership check and
user revocation. However, the above schemes exploit the
homomorphic encryption and proxy re-encryption with high
computation cost.

To present the novelties of our system, a comparison of
related works is depicted in Table 4.

VIII. CONCLUSION
To process the massive cloud data efficiently, the cloud
service providers widely perform data deduplication
to reduce the occupation of storage space and the

75102 VOLUME 7, 2019

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

bandwidth consumption. In order to prevent privacy data
leakage, achieve authorized deduplication and satisfy
dynamic privilege updating and revoking, we proposed a
novel secure role re-encryption system with authorized dedu-
plication in cloud environment. In our proposed system,
we firstly exploited the convergent encryption algorithm to
prevent privacy data leakage and used the role re-encryption
algorithm to achieve authorized deduplication efficiently.
Specifically, we created the role authorized tree to manage
the user’s roles and the corresponding role keys, and intro-
duced the management center to reduce the computation
cost and management overhead of the client, and implement
the dynamic updating of the authorized user’s privilege.
Furthermore, We exploit the dynamic count filters (DCF)
to achieve the data updating and improve the retrieval of
ownership verifying efficiency. Finally, the security analysis
demonstrates the security of our proposed scheme, and the
performance evaluation makes it clear that the proposed
scheme is effective and efficient.

REFERENCES
[1] X. Liu, R. H. Deng, K.-K. R. Choo, and J. Weng, ‘‘An efficient privacy-

preserving outsourced calculation toolkit with multiple keys,’’ IEEE Trans.
Inf. Forensics Security, vol. 11, no. 11, pp. 2401–2414, Nov. 2016.

[2] H. Xiong, H. Zhang, and J. Sun, ‘‘Attribute-based privacy-preserving data
sharing for dynamic groups in cloud computing,’’ IEEE Syst. J., to be
published.

[3] D. Wu, H. Shi, H. Wang, R. Wang, and H. Fang, ‘‘A feature-based learning
system for Internet of Things applications,’’ IEEE Internet Things J., vol. 6,
no. 2, pp. 1928–1937, Apr. 2019.

[4] J. Xiong, Y. Zhang, X. Li, M. Lin, Z. Yao, and G. Liu, ‘‘RSE-PoW:
A role symmetric encryption pow scheme with authorized deduplication
for multimedia data,’’ Mobile Netw. Appl., vol. 23, no. 3, pp. 650–663,
2018.

[5] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, ‘‘A comprehensive study of the past, present, and
future of data deduplication,’’ Proc. IEEE, vol. 104, no. 9, pp. 1681–1710,
Sep. 2016.

[6] J. Li, C. Qin, P. P. C. Lee, and X. Zhang, ‘‘Information leakage in encrypted
deduplication via frequency analysis,’’ in Proc. 47th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., Jun. 2017, pp. 1–12.

[7] J. Li, X. Chen, S. S. M. Chow, Q. Huang, D. S. Wong, and Z. Liu, ‘‘Multi-
authority fine-grained access control with accountability and its applica-
tion in cloud,’’ J. Netw. Comput. Appl., vol. 112, pp. 89–96, Jun. 2018.

[8] D. Wu, Q. Liu, H. Wang, Q. Yang, and R. Wang, ‘‘Cache less for more:
Exploiting cooperative video caching and delivery in D2D communica-
tions,’’ IEEE Trans. Multimedia, to be published.

[9] H. Xiong, Q. Mei, and Y. Zhao, ‘‘Efficient and provably secure certifi-
cateless parallel key-insulated signature without pairing for IIoT environ-
ments,’’ IEEE Syst. J., to be published.

[10] D. Harnik, B. Pinkas, and A. Shulman-Peleg, ‘‘Side channels in cloud
services: Deduplication in cloud storage,’’ IEEE Security Privacy, vol. 8,
no. 6, pp. 40–47, Nov./Dec. 2010.

[11] J. Paulo and J. Pereira, ‘‘A survey and classification of storage deduplica-
tion systems,’’ ACM Comput. Surv., vol. 47, no. 1, pp. 1–30, 2014.

[12] J. Xiong, Y. Zhang, L. Lin, J. Shen, X. Li, andM. Lin, ‘‘ms-PoSW:Amulti-
server aided proof of shared ownership scheme for secure deduplication
in cloud,’’ Concurrency Comput., Pract. Exper., Aug. 2017. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4252. doi:
10.1002/cpe.4252.

[13] M. W. Storer, K. Greenan, D. D. E. Long, and E. L. Miller, ‘‘Secure data
deduplication,’’ in Proc. 4th ACM Int. Workshop Storage Secur. Survivabil-
ity, 2008, pp. 1–10.

[14] M. Bellare, S. Keelveedhi, and T. Ristenpart, ‘‘Message-locked encryption
and secure deduplication,’’ in Advances in Cryptology—EUROCRYPT.
Berlin, Germany: Springer, 2013, pp. 296–312.

[15] Y. Shin and K. Kim, ‘‘Differentially private client-side data deduplication
protocol for cloud storage services,’’ Secur. Commun. Netw., vol. 8, no. 12,
pp. 2114–2123, 2015.

[16] J. Liu, N. Asokan, and B. Pinkas, ‘‘Secure deduplication of encrypted
data without additional independent servers,’’ in Proc. 22nd ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2015, pp. 874–885.

[17] D. T. Meyer andW. J. Bolosky, ‘‘A study of practical deduplication,’’ ACM
Trans. Storage, vol. 7, no. 4, 2012, Art. no. 14.

[18] J. Li, Y. K. Li, X. Chen, P. P. C. Lee, andW. Lou, ‘‘A hybrid cloud approach
for secure authorized deduplication,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 5, pp. 1206–1216, May 2015.

[19] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. S. Shen, ‘‘Providing task allocation
and secure deduplication for mobile crowdsensing via fog computing,’’
IEEE Trans. Dependable Secure Comput., to be published.

[20] Y. Zhang, X. Chen, J. Li, D. S. Wong, H. Li, and I. You, ‘‘Ensuring
attribute privacy protection and fast decryption for outsourced data security
in mobile cloud computing,’’ Inf. Sci., vol. 379, pp. 42–61, Feb. 2017.

[21] J. Xiong, J. Ren, L. Chen, Z. Yao, M. Lin, D. Wu, and B. Niu, ‘‘Enhancing
privacy and availability for data clustering in intelligent electrical service
of IoT,’’ IEEE Internet Things J., vol. 6, no. 2, pp. 1530–1540, Apr. 2019.

[22] K.-H. Yeh, ‘‘A secure transaction schemewith certificateless cryptographic
primitives for IoT-based mobile payments,’’ IEEE Syst. J., vol. 12, no. 2,
pp. 2027–2038, Jun. 2018.

[23] C.-M. Chen, B. Xiang, Y. Liu, and K.-H. Wang, ‘‘A secure authentication
protocol for Internet of vehicles,’’ IEEE Access, vol. 7, pp. 12047–12057,
2019.

[24] Y. Zhang, R. H. Deng, G. Han, and D. Zheng, ‘‘Secure smart health with
privacy-aware aggregate authentication and access control in Internet of
Things,’’ J. Netw. Comput. Appl., vol. 123, no. 12, pp. 89–100, Dec. 2018.

[25] Z. Mo, Y. Zhou, and S. Chen, ‘‘A dynamic Proof of Retrievability
(PoR) scheme with O(logn) complexity,’’ in Proc. IEEE Int. Conf. Com-
mun. (ICC), Jun. 2012, pp. 912–916.

[26] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,
‘‘Reclaiming space from duplicate files in a serverless distributed file
system,’’ in Proc. 22nd Int. Conf. Distrib. Comput. Syst., Jul. 2002,
pp. 617–624.

[27] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J.-L. Larriba-Pey,
‘‘Dynamic count filters,’’ ACM SIGMOD Rec., vol. 35, no. 1, pp. 26–32,
2006.

[28] J. Li, X. Chen, M. Li, J. Li, P. P. C. Lee, andW. Lou, ‘‘Secure deduplication
with efficient and reliable convergent key management,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 6, pp. 1615–1625, Jun. 2014.

[29] J. Xu, E.-C. Chang, and J. Zhou, ‘‘Weak leakage-resilient client-side dedu-
plication of encrypted data in cloud storage,’’ in Proc. 8th ACM SIGSAC
Symp. Inf., Comput. Commun. Secur., 2013, pp. 195–206.

[30] J. Xu and J. Zhou, ‘‘Leakage resilient proofs of ownership in cloud
storage, revisited,’’ in Proc. Int. Conf. Appl. Cryptogr. Netw. Secur. Cham,
Switzerland: Springer, 2014, pp. 97–115.

[31] C. Guan, K. Ren, F. Zhang, F. Kerschbaum, and J. Yu, ‘‘Symmetric-key
based proofs of retrievability supporting public verification,’’ in Proc.
Eur. Symp. Res. Comput. Secur. Cham, Switzerland: Springer, 2015,
pp. 203–223.

[32] J. Hur, D. Koo, Y. Shin, and K. Kang, ‘‘Secure data deduplication with
dynamic ownership management in cloud storage,’’ IEEE Trans. Knowl.
Data Eng., vol. 28, no. 11, pp. 3113–3125, Nov. 2016.

[33] W. Ding, Z. Yan, and R. H. Deng, ‘‘Secure encrypted data deduplication
with ownership proof and user revocation,’’ in Proc. Int. Conf. Algorithms
Archit. Parallel Process. Cham, Switzerland: Springer, 2017, pp. 297–312.

[34] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, ‘‘Proofs of own-
ership in remote storage systems,’’ in Proc. 18th ACM SIGSAC Conf.
Comput. Commun. Secur., 2011, pp. 491–500.

[35] L. González-Manzano and A. Orfila, ‘‘An efficient confidentiality-
preserving proof of ownership for deduplication,’’ J. Netw. Comput. Appl.,
vol. 50, pp. 49–59, Apr. 2015.

[36] H. Tang, Y. Cui, C. Guan, J.Wu, J.Weng, andK. Ren, ‘‘Enabling ciphertext
deduplication for secure cloud storage and access control,’’ in Proc. 11th
ACM Asia Conf. Comput. Commun. Secur., 2016, pp. 59–70.

[37] L. González-Manzano, J. M. de Fuentes, and K. K. R. Choo, ‘‘ase-PoW:
A proof of ownership mechanism for cloud deduplication in hierarchical
environments,’’ in Proc. 12th EAI Int. Conf. Secur. Privacy Commun.
Netw., 2016, pp. 412–428.

[38] W. K. Ng, Y. Wen, and H. Zhu, ‘‘Private data deduplication protocols in
cloud storage,’’ in Proc. 27th Annu. ACM Symp. Appl. Comput., 2012,
pp. 441–446.

VOLUME 7, 2019 75103

http://dx.doi.org/10.1002/cpe.4252

J. Xiong et al.: Secure Encrypted Data With Authorized Deduplication in Cloud

[39] R. Di Pietro and A. Sorniotti, ‘‘Boosting efficiency and security in proof
of ownership for deduplication,’’ in Proc. 7th ACM Symp. Inf., Comput.
Commun. Secur., 2012, pp. 81–82.

[40] J. Blasco, R. Di Pietro, A. Orfila, and A. Sorniotti, ‘‘A tunable proof of
ownership scheme for deduplication using bloom filters,’’ in Proc. IEEE
Conf. Commun. Netw. Secur. (CNS), Oct. 2014, pp. 481–489.

[41] P. Puzio, R.Molva,M. Öen, and S. Loureiro, ‘‘ClouDedup: Secure dedupli-
cation with encrypted data for cloud storage,’’ in Proc. IEEE 5th Int. Conf.
Cloud Comput. Technol. Sci. (CloudCom), vol. 1, Dec. 2013, pp. 363–370.

[42] M. Li, C. Qin, and P. P. C. Lee, ‘‘CDStore: Toward reliable, secure, and
cost-efficient cloud storage via convergent dispersal,’’ in Proc. USENIX
Tech. Conf., 2015, pp. 111–124.

[43] Q. Li, J. Ma, R. Li, X. Liu, J. Xiong, and D. Chen, ‘‘Secure, efficient and
revocablemulti-authority access control system in cloud storage,’’Comput.
Secur., vol. 59, pp. 45–59, Jun. 2016.

[44] H. Kwon, C. Hahn, D. Kim, and J. Hur, ‘‘Secure deduplication for multi-
media data with user revocation in cloud storage,’’Multimedia Tools Appl.,
vol. 76, no. 4, pp. 5889–5903, 2017.

[45] J. Li, C. Qin, P. P. C. Lee, and J. Li, ‘‘Rekeying for encrypted dedupli-
cation storage,’’ in Proc. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
Jun./Jul. 2016, pp. 618–629.

[46] C. Qin, J. Li, and P. P. C. Lee, ‘‘The design and implementation of
a rekeying-aware encrypted deduplication storage system,’’ ACM Trans.
Storage, vol. 13, no. 1, 2016, Art. no. 9.

[47] X. Liu, R. H. Deng, W. Ding, R. Lu, and B. Qin, ‘‘Privacy-preserving out-
sourced calculation on floating point numbers,’’ IEEE Trans. Inf. Forensics
Security, vol. 11, no. 11, pp. 2513–2527, Nov. 2016.

JINBO XIONG (M’13) received the M.S. degree
in communication and information systems from
the Chongqing University of Posts and Telecom-
munications, China, in 2006, and the Ph.D. degree
in computer system architecture from Xidian Uni-
versity, China, in 2013. He is currently a Visit-
ing Scholar with the University of North Texas,
USA, and an Associate Professor with the Fujian
Provincial Key Laboratory of Network Security
and Cryptology and the College of Mathematics

and Informatics, Fujian Normal University. He has published more than
40 publications and one monograph. He holds eight patents in these fields.
His research interests include cloud data security, privacy protection, and the
mobile Internet security.

YUANYUAN ZHANG received the B.S. and
M.S. degrees in software engineering from Fujian
Normal University, Fujian, China, in 2015 and
2018, respectively. She is currently pursuing the
Ph.D. degree with the School of Computer Sci-
ence and Engineering, South China University
of Technology, Guangzhou, China. She was a
Research Assistant with the School of Infor-
mation System, Singapore Management Univer-
sity, Singapore, from 2017 to 2018. Her current

research interests include mobile crowd sensing, and privacy preserving in
cloud computing and blockchain technology.

SHAOHUA TANG (M’99) received the B.Sc.
and M.Sc. degrees in applied mathematics and
the Ph.D. degree in communication and infor-
mation system from the South China University
of Technology, China, in 1991, 1994, and 1998,
respectively. He was a Visiting Scholar with North
Carolina State University, USA, and a Visiting
Professor with the University of Cincinnati, USA.
He has been a Full Professor with the School of
Computer Science and Engineering, South China

University of Technology, since 2004. He has authored or coauthored over
100 technical papers in journals and conference proceedings. His current
research interests include information security, data security, and privacy
preserving in cloud computing and big data.

XIMENG LIU (S’13–M’16) received the B.Sc.
degree in electronic engineering and the Ph.D.
degree in cryptography from Xidian University,
Xi’an, China, in 2010 and 2015, respectively.
He is currently a Research Fellow with the School
of Information System, Singapore Management
University, Singapore, and a Qishan Scholar with
the College of Mathematics and Computer Sci-
ence, Fuzhou University. His research interests
include cloud security, applied cryptography, and
big data security.

ZHIQIANG YAO received the Ph.D. degree in
computer system architecture fromXidian Univer-
sity, China, in 2014. He is currently a Professor
with Fujian Normal University. He has published
more than 80 research papers. He holds ten patents.
His research interests include security in cloud
computing and multimedia security.

75104 VOLUME 7, 2019

	INTRODUCTION
	PRELIMINARIES
	B+ TREE
	CONVERGENT ENCRYPTION
	DYNAMIC COUNT FILTERS

	PROBLEM DESCRIPTION
	SYSTEM MODEL
	ADVERSARY MODEL
	DESIGN GOAL

	CONSTRUCTION OF THE PROPOSED SYSTEM
	ROLE AUTHORIZED TREE
	ALGORITHMS
	AUTHORIZED DEDUPLICATION
	PROOF OF OWNERSHIP
	ROLE KEY UPDATE

	SECURITY ANALYSIS
	SECURITY OF AUTHORIZED DEDUPLICATION
	SECURITY OF PROOF OF OWNERSHIP

	PERFORMANCE EVALUATION
	COMPLEXITY ANALYSIS
	PERFORMANCE MEASUREMENTS

	RELATED WORKS
	CONCLUSION
	REFERENCES
	Biographies
	JINBO XIONG
	YUANYUAN ZHANG
	SHAOHUA TANG
	XIMENG LIU
	ZHIQIANG YAO

