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ABSTRACT Elastography is of great interest in biomechanics and medical imaging due to its nondestructive
capability of mapping elasticity of tissues. The elastography framework relies on external excitations which
actuate deformation inside an object. The internal response is then acquired and analyzed to map the
distribution of elastic moduli. In this paper, with no need of measuring any internal responses, an integrated
elastography method is developed which only requires the transmitted responses of applied sound waves.
During the process, the tomography image (e.g., CT or MRI) and the applied waves are integrated into a
computational model. Following a procedure of inverse analysis, the elasticity of all phases in the object
is reconstructed when the computational transmission of waves matches with the measured transmission.
The numerical simulation on brain tissues and a demonstration on silicon rubber phantom are conducted to
validate the proposed method. Both cases demonstrate that the integrated method successfully predicts the
real elasticity of samples. The verification measurements on the phantom further show that the predicted
elastic moduli agree well with the experimental results of uniaxial compression testing.

INDEX TERMS Elastography, elastic modulus, finite element method, sound wave, transmission.

I. INTRODUCTION
Elastography, as an emerging image modality, has drawn
great attention due to its application prospect in charac-
tering biomechanical properties, which also is expected to
strengthen the diagnosis of pathological changes and pre-
dict elasticity with the nondestructive mode [1]–[6]. It is
well known that most cancerous or tumorous tissues are
locally stiffer than their surroundings [7]. For example, most
breast tumors confined to the ducts themselves are des-
ignated ductal carcinomas in situ (DCIS), which are the
initial stage of malignant tumors. Pathological changes of
these DCIS are known to be correlated with changes in
tissue stiffness (modulus), resulting in extremely hard nod-
ules. Masses form and grow because of inflammation and
desmoplasia, a dense cellular reaction specific to malignant
lesions with highly cross-linked collagenous fibers. In fact,
the shear moduli of tissues vary over five orders of magni-
tude whereas other imaging modalities, CT, MRI and Ultra-
sound only detect tissues within two orders of magnitude
as shown in Figure 1 of [8]. From this point of view, elas-
tography is more promising in detecting cancerous tissues.
Therefore, modulus-directed elastography has become an
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FIGURE 1. Imaging modality contrast mechanisms [8]. By comparison,
elastography identifies the largest variation in resolving tissues.

attractive tool to investigate the mechanical properties of
tissues. Those mechanical parameters related to elasticity,
including Young’s modulus, shear modulus, strain, wave
speed, and wave length, can be used to reconstruct elastogra-
phy. To this end, an external excitation on tissues/phantoms,
most commonly the sound wave including continuous and
transient waves, is applied to measure these parameters inside
tissues.
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A great deal of research efforts working on elastography
with sound waves and the commercial exploration for clin-
ical application have been reported [9]–[16]. While a few
anisotropic modeling works have been explored [4], [5],
current efforts in the literature are dominantly in the
assumption of isotropic elasticity, considering the tedious,
time-consuming inverse computation and the focus on aver-
aged identification of pathological changes. In the frame of
linear elasticity some algorithms have been developed to map
the elastography inversely, which are rooted in the governing
equations of wave propagation in homogeneous isotropic
elastic solid without the body force,

(λ+ µ) uj,ji + µui,jj = ρüi (1)

where λ and µ are Lamé constants (µ is also called the shear
modulus), i and j are the coordinate indices (i, j = 1, 2, 3) in
Cartesian tensor notation, uj is the displacement vector, and ρ
is the density of solid [17], [18]. By considering that the shear
wave does not change volume, i.e., ui,i = 0, the velocity of
shear wave Vs can be derived as,

Vs =
√
µ/ρ (2)

As for continuous waves, after low-frequency shear waves are
emitted into tissues by external sources, the local wavelengths
are measured through either the color Doppler image or
phase-contrast magnetic resonance image fromwhich veloci-
ties are estimated and shearmoduli are finally predicted based
on (2) [1], [3], [19]. However, direct measurement is chal-
lenging because of irregular shapes and internal reflections
of tissues. Therefore, by using (1), the model-based schemes,
direct inversion and iterative inversion such as the elasticity
tensor based reconstruction, the sub-zone based reconstruc-
tion, and the dynamic cardiac elastography, have been devel-
oped for continuous wave elastography [5], [17], [20], [21].
In addition, efforts coming from signal process and correla-
tion analysis such as the reverberant shear-wave fields frame
and the time reversal based reconstruction have been made
to map continuous wave elastography [15], [22], [23]. As for
transient waves, pulse shear waves are generated by external
sources and deform tissues locally, which makes wavelengths
or wave velocities measurable by tracking wave propaga-
tion such as shear wave elasticity imaging, supersonic shear
imaging and shear wave speed imaging [24]–[26]. Overall,
current elastography methods heavily rely on the internal
mechanical responses to the external wave excitation. For
example, the wavelength or the wave speed of the tissue needs
to be detected to predict the elasticity distribution, in which
critical problems remain to be solved, including overcoming
wave attenuation in tissues, considering the reflection and
refraction of wave at interfaces, random noise effect and
sophisticated image processing [9]–[11], [14], [15], [17].
In elastodynamics, these mechanical responses are governed
by the partial differential equation (1). In most of cases,
however, tissues are of multiple phases and irregular shapes,
which leads to difficulty finding analytical solutions to (1).
Resultantly, computational methods as an effective means,

most commonly, the finite element method (FEM), have been
employed to solve (1).[5], [17], [21], [27]–[30].

In the article, an integrated method under the framework
of isotropic elasticity, referred to as the sound transmission-
based elastography, is proposed, using the tomography
images (e.g., CT and MRI) and transmitted wave signals at
surface locations. It is remarkable that only transmitted sig-
nals through the sample, not the internal responses inside the
sample, are needed for the elastography reconstruction. The
image and the wave incidence are integrated into a computa-
tional model. Following a procedure of inverse analysis, elas-
ticity distribution of all phases in the object is reconstructed
when the computational transmission converges to the mea-
sured transmission. The numerical simulation on brain tis-
sues and the experiment on the silicon rubber phantom are
conducted to validate the proposed method. Both cases illus-
trate that the integrated method successfully predicts the real
elasticity of samples. The verification measurements on the
phantom show the predicted elastic properties agree well with
the experimental results of uniaxial compression testing.

The method and the corresponding validation and discus-
sion are introduced in Sections II and III. The conclusions are
in Section IV.

II. METHOD
Wave motion inside tissue media carries the information of
the mechanical properties and so does its transmission carry
the same information filtered by internal structures, which is
completely controlled by the governing equations (1). The
tomography image resolved by CT, MRI or Ultrasound con-
tains the tissue structure information and can identify the
position and size of suspicious lesions such as cancerous or
tumorous tissues. They can be integrated and simulated in a
computational model with FEM in which the wave incidence
of sound test serves as the external load and the image is used
to generate finite-element mesh. As for the elastic modulus
of each phase in FEM, it is the goal that needs to be analyzed
inversely and mapped. Thus, a computational model is built,
and the elastography image is reconstructed following a pro-
cedure of inverse analysis when the FEM transmission output
matches with the measured transmission signals at surface
locations of object.

Specifically, the first step is to obtain the object tomog-
raphy to characterize the internal structure. All tissues are
segmented under CT/MRI resolution. The segmented tomog-
raphy serves as the two-dimensional or three-dimensional
geometry input of the inverse analysis as shown in Figure 2.
The second step is to conduct the sound-wave test on the
same object used in the first step. Sound transducers are laid
out on the surface of the object, some of which serve as the
emitters that fire the incident wave and others as the receivers
that collect the transmitted signals. Depending on phases of
a tissue that need to be mapped, the number of transducers
should be enough for exciting each phase and receiving the
transmission and reflection through each phase. The third step
is to build a computational model based on the tomography
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FIGURE 2. Flowchart of elastography based on tomography image and sound wave integration. The pulser and receiver
are the sound-wave transducers. The cycle starts with image acquisition on the sample and ends with the match
between the computational output and the objective value collected by the receiver.

image and the incident sound wave acted on the object. Image
process may be necessary to convert image into a specific
format acceptable for FEM meshing. The meshed regions
are completely identical with segmented tissues in the first
step. In this step, for the sake of ensuring accurate simulation,
it is noted that there are at least 10 nodes representing each
wavelength for whatever the element type (e.g., four-node
quadrilateral elements, three-node triangular elements and
4-node tetrahedral elements) and the interpolation functions
(e.g., second order shape functions) are adopted [31]. The
displacement boundaries are set in terms of real conditions or
without disturbing the real wave propagation when applying
FEM. The fourth step is to conduct FEM simulation and
inverse analysis until its output converges to measured trans-
mission signals within the preset error as shown in Figure 2.
As for the error, there is no general threshold available
because the accuracy of inverse analysis is influenced by
many factors such as signal noise, image noise, algorithms,
numerical error, computation time, and so on. In practice,
it could be determined empirically and be helpful to test
the noise level in advance. The third and the fourth steps
form a calculating loop in which the fourth one provides the
parameter update for the third step.

Inversely mapping elastography is an optimization prob-
lem to find a set of variables making the objective function
maximum or minimum. However, it is difficult to establish
an explicit relationship between the transmitted signal and
the elastic modulus. In physics, they are interrelated. In the
study, the factorial design including the full factorial design
and the orthogonal array design are employed to perform the
inverse analysis [32], [33]. The design assembles all or part of
possible combinations of optimization variables into an array

of which the optimum values will be selected out, especially
suitable for problems without explicit relationships between
the objective value and corresponding optimization variables.
Factorial design allows evaluating all variables’ effect on the
objective value in a single experiment (simulation). Currently,
the variable and the objective function are bridged in the
FEM simulations, following the factorial design. Based on the
results of all simulations, the optimum values can be found.
The full factorial design needs at least two factors (namely
optimization variables), assigns possible values (also called
levels) for each factor and, thereafter, executes calculations
on all possible combinations of all levels across all factors.
After those calculations are finished, the favorable levels can
be optimized out by comparing with the objective value.
If the number of calculations is so huge that the computation
time is unacceptable, the orthogonal array design is another
choice that doesn’t need to exhaust every possibility across
all factors and their levels, only considering selected possible
combinations listed in an orthogonal array. These combina-
tions of an orthogonal array are not assigned randomly, but
following a strict rule so they can represent and cover all
ones of every possibility [33]. It is noted that the value range
(the upper and lower limits) of each factor needs to be preset,
and otherwise the array cannot be designed for the factorial
design. Fortunately, the reasonable elastic modulus ranges for
most of biomaterials and tissues are predictive throughout the
published literation and books.

III. VALIDATION
A. NUMERICAL VALIDATION
In this part, the integrated method is firstly demonstrated
on a brain slice. The slice is an approximately 1-mm-
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FIGURE 3. (a) The brain-tissue slice photograph and (b) the four regions meshed for FEM simulation, including the cortex (C), corona radiata
(CR), corpus callosum (CC) and basal ganglia (BG). The four arrows show the incidence positions and the 12 black solid dots show the signal
detection locations. The ‘Fixation’ boundaries marked by red curves mean that displacement is constrained to be zero during FEM simulation.

thick corona and cut off from a cadaver as photographed
in Figure 3 (a) [34]. The photograph is formatted to TIFF
files and imported into Simpleware ScanIP (Synopsys, Inc.)
for segmentation. With the pixel intensity-based segmenta-
tion, the interfaces among different functional tissues are
identified. It is then transformed into two-dimensional FEM
meshes with four regions. Following the names and positions
of tissues [34], the four regions are the cortex (C), corona
radiata (CR), corpus callosum (CC) and basal ganglia (BG)
as shown in Figure 3 (b). Brain ventricles are currently treated
as CC.

Numerical model creation and simulation are conducted on
the commercial FEM package, Marc Mentat 2018.0.0 (MSC
Software Corporation), with the assist of a Python script
performing the factorial design, the parameter update and
mathematical process. The model is meshed into 11261 four-
node quadrilateral elements. The incident wave is the 50 Hz
sine signal applied at four positions on the outer boundary
denoted by arrows in Figure 3 (b). As denoted by the black
sold dots in Figure 3 (b), twelve locations are chosen to
detect the transmission with the sample rate of 400/s. The
acquisition duration is 0.2 s. All tissues in this study are
treated as linear elasticity for demonstrating the integrated
method first on linear materials. The set of shear moduli,
[C= 1.43, CR= 0.66, CC= 0.35, BG= 0.70] kPa, reported
by Budday et al. (2017) is used as the objective values and the
corresponding output at 12 locations as the objective signals.
Accordingly, the elastic moduli are [4.26, 1.97, 1.04, 2.09]
kPa if Poisson’s ratio of 0.49 is assumed for all tissues. The
density is assumed 1000 kg/m3. In this case, full factorial
design is employed to recognize the optimality for all levels
of factors. So, there are four factors corresponding to elastic
moduli of C, CR, CC and BG. In terms of the reasonable
ranges of their moduli, 3.0 kPa ∼ 6.0 kPa for region C and
0.1 kPa ∼ 3.0 kPa for other three regions, each factor is
assigned eight levels at first, [3.0, 3.4, 3.8, 4.2, 4.6, 5.0, 5.4,
6.0] kPa for C and [0.1, 0.5, 0.9, 1.3, 1.7, 2.1, 2.5, 3.0] for
others. Totally, it is 84 (4096) trials for possible combinations

of all levels. Running on a PC with Intel(R) Core(TM)
i7-3770 CPU @ 3.40GHz and 16.0 GB RAM, each trial
takes 21 seconds. From this point of view, the computation of
current inverse analysis is acceptable and effective. Because
cross-correlation can be used to observe the similarity of
two signals [35], the objective function will be established
based on the cross-correlation of the objective signals and
each trial ones. The maximum of cross-correlation is at the
zero lag time if two signals are identical, which is so-called
auto-correlation. For this case, the objective function of the
optimization problem is defined as

min f (E) =

√√√√ 12∑
i=1

(
1−

DiC |t=0
DiA |t=0

)2

Subject to : min f (E) ≤ 1.0% (3)

where E = (EC ,ECR,ECC ,EBG), standing for the elastic
moduli attempt in each level, DiA|t=0 is the auto-correlation
of the measured signals of point i at the zero lag time, and
DiC |t=0 is the cross-correlation of the trial signals and the
measured signals of point i at the zero lag time. The effect of
E on DiC |t=0 is implicit in (3). But, they are bridged in FEM
in which E are the material parameter input and DiC |t=0 is
determined according to FEM output. The measured signals
that are the objective signals come from the FEM simulation
with the objective elastic moduli of [4.26, 1.97, 1.04, 2.09]
kPa. Applying (3) to 4096 trials, min f (E) is reached at [4.2,
2.1, 0.9, 2.1] kPa of the 2732nd trial, meaning that the 2732nd
one is the closest to real values among all trials. However,
the error of the trial is 4.3%, larger than 1.0%. In practice,
4.3% could be enough for mapping elasticity. As an illus-
tration for three surface locations, the objective signals of
the displacement amplitude and the corresponding simulation
signals of the best trial 2732 are plotted in Figure 4 (a).
By contrast, there is discrepancy for some locations between
two set of signals, which causes the 4.3% error. For presenting
the more accurate solution, the inverse analysis is continued
until meeting min f (E) ≤ 1.0%.
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FIGURE 4. (a) The comparison of the target signals and the best trial ones in the first round and (b) the comparison of the target
signals and the best trial ones in the fourth round. ‘Ob’ stands for the target signals and ‘Tr’ for the output ones from the best trial.

The first-round design helps to compress the value ranges
for the further design. As a result, based on each value in
[4.2, 2.1, 0.9, 2.1] kPa of the first-round, next round factorial
design, with the smaller step, sets [3.90, 4.05, 4.20, 4.35,
4.50] for C, [1.80, 1.95, 2.10, 2.25, 2.40] for CR, [0.60,
0.75, 0.90, 1.05, 1.20] for CC and [1.80, 1.95, 2.10, 2.25,
2.40] for BG, which introduces 625 trials. This round ends
up with [4.20, 2.10, 1.05, 2.10]. Because the result is almost
same as that of the first-round, the step of levels is needed
to be furtherly decreased. Levels of the third round are set
to [4.10, 4.15, 4.20, 4.25, 4.30] for C, [2.00, 2.05, 2.10,C
2.15, 2.20] for CR, [0.80, 0.85, 0.90, 0.95, 1.00] for CC
and [1.85, 1.90, 1.95, 2.00, 2.05] for BG. After all trials
are completed, the third round gives [4.25, 2.00, 1.00, 2.05]
with 4.1%. Once more, the level range of the fourth round
is narrowed down with the much smaller step, [4.23, 4.25,
4.27] for C, [1.98, 2.00, 2.02] for CR, [0.98, 1.00, 1.02] for
CC and [2.03, 2.05, 2.07] for BG. Eventually, [4.27, 1.98,
1.02, 2.07] is finalized as the optimum trial with 1.0%. The
comparison of the objective signals and the corresponding
ones of the best trial is plotted in Figure 4 (b) for the same
locations as in Figure 4 (a). The two set of signals are almost
overlapping, which illustrates again [4.27, 1.98, 1.02, 2.07]
are the optimum values, consistent with real elastic moduli
of [4.26, 1.97, 1.04, 2.09] with errors 0.2%, 0.5%, 1.9%
and 1.0%, respectively. In the whole course, any internal
information is not detected and processed to map the moduli.

FIGURE 5. 1.3% of CR, colored by green, is segmented into C and all
corresponding properties are also set as same as those of C.

All information for the mapping is based on signals on the
12 surface locations.

The current study maps stiffness on segmented tomogra-
phy image. For demonstrating the sensitivity to segmentation,
1.3% of CR assumed as the segmentation error is artificially
merged into C as shown in Figure 5. After analysis, the merg-
ing will introduce the 4.1% error by using (3), showing that
this study has the good sensitivity to segmentation.

In real case, the brain is enclosed by a skull that may
make the wave transmission too weak to be caught. However,
the skull is not completely closed, having outlets such as nose,
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FIGURE 6. A typical output under the 100 Hz sine incidence: Without
noise and with the SNR of 55 dB.

mouth, eye, ear, and neck regions. The receivers can be placed
around these regions to collect transmission.

It is noticed that the sound incidence is compressional
waves. But, current study also applies to shear waves for it
does not need to track and measure any internal signal, but
its transmission. One of main reasons making shear wave
elastography the most popular method is that speeds of com-
pressional waves are so high that they are difficult to be
tracked [36]. For the current study, there are no frequency
limits because it does not need to adjust frequencies to make
the wavelength measurable and trackable. However, specific
frequency should be selected tomake sure that the transmitted
signals can be detected. For example, if the incident wave
is changed to 100 Hz, following the same process of the
50 Hz analysis, it still ends at [4.27, 1.98, 1.02, 2.07] with
0.7% error. In order to basically understand the effect of
signal-to-noise ratio (SNR), the measured signals that are the
output under the real set of moduli are added artificially with
white Gaussian noise. Figure 6 shows a typical output of
one location without noise and its corresponding signals with
55 dB SNR.Different SNR values are tried and analyzed from
50 dB to 110 dB. With the SNR increase, the error decreases
quickly and approaches 0.7% as shown in Figure 7. It can
be seen that the SNR be at least up to 55 dB for having
a reasonable estimation. Therefore, in practice, frequency
needs to be chosen for having an enough SNR. Furthermore,
the 1.0% error in (3) could be too strict because of noise in
reality. For this case, if the noise level is at the SNR of 60 dB,
the error is about 5%.

B. EXPERIMENTAL VALIDATION
1) PHANTOM PREPARATION
The phantom consists of the silicone rubber being the matrix
and a piece of vinyl polymer being the inclusion. There
are five procedures in manufacturing the phantom. First,
the required amount of silicone base is poured into a plastic
beaker. Second, the curing agent is added. Third, the com-
ponents are thoroughly mixed by a CaframoTM mechanical
stirrer for 20 minutes at a rotation speed of 280 rpm. The

FIGURE 7. Errors with different SNR values and the dash line showing the
0.7% position.

viscous media is further degassed in a vacuum for 30 minutes
in order to eliminate the air bubbles trapped in the mixture.
Finally, as soon as no air bubbles puff from the top surface,
the polymer inclusion is dropped in. The sample in shape of
the conical frustum is made after curing at room temperature
for 6 days as shown in Figure 8.

2) APPLICATION OF THE INTEGRATED METHOD
The achievement of the integrated method resides in the
sample spatial structure, sound-wave test, FEMmodeling and
inverse analysis as stated in Section II. Because of irregularity
of the inclusion geometry, its 3D image is imaged by an X-ray
CT scanner, Xradia 410 Versa (Carl Zeiss X-ray Microscopy,
Inc.) as shown in Figure 8. The 0.4X lens with the voxel size
of 25 micrometers is used to scan the inclusion. With the
sample rotation step of 0.225◦, 1600 projections are acquired
to reconstruct the 3D image. After scanning, the commercial
image process software, Simpleware ScanIP (Synopsys, Inc.),
steps in to segment based on each pixel intensity and convert
X-ray CT image to a compatible format that can be imported
into Marc Mentat.

Next is to have the sound-wave tested on the sample to
acquire the transmitted signals. The sound testing system is
two R3α transducers and one FieldCal AE Signal Generator
(MISTRAS Group, Inc.). The operation frequency range of
R3α is 25 kHz ∼ 70 kHz. One of transducers functions
as the pulser while another one as the receiver. In the test,
the incident wave is a 30 kHz sine tone burst with the peak
value of 4467 Pa and 1 ms duration which is emitted by
the Generator. A silicon-based lubricant is coated on sample
areas on which transducers are placed. Two transducers are
positioned coaxially, making waves passing through both
matrix and inclusion, as shown in Figure 9. During the test,
the transmitted peak acquired by the receiver is 22.4 Pa that
will be used later as the objective value of the inverse analysis.

The third step is to build the computational model with
Marc Mentat. The inclusion image scanned by Nano CT is
imported intoMarcMentat. Because thematrix is regular, it is
drawn directly byMarcMentat. Bothmatrix and inclusion are
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FIGURE 8. Left: The phantom of silicone matrix and polymeric inclusion, Middle: Main dimensions, and right: 3D inclusion image resolved by
X-ray CT.

FIGURE 9. Sound test on the sample. One transducer serves as the pulser
and the other serves as the receiver. The incidence of a 30 kHz sine tone
burst is generated by the signal generator.

treated as elastic materials. The loading condition is set on
the position in which the incident wave is emitted by the R3α
transducer. The whole 3D model is meshed into 89585 four-
node tetrahedral elements. During the simulation, a point
on the intersection of the bigger top surface and the side
surface is fixed as the displacement boundary during FEM
simulation.

In fact, there should be wave reflection at interface
between the sample and the lubricant due to impedance mis-
match. Wave undergoes two times reflection before it passes
through the sample. One is on the incident interface and
another on the emergent interface. The final transmission is
affected by the two reflection and has a connection with the
signal amplitude and material properties. At this point, FEM
simulation needs to take reflection into account as following,

Pt = TP0 (4)

T =
2Z2

Z1 + Z2
(5)

where P0 is the incident pressure emitted directly from the
transducer, Pt is the transmitted pressure, T is the trans-
mission coefficient defined as the fraction of the incident
pressure, Z is the acoustic impedance that is the product of
density and sound wave speed, and the subscripts 1 and 2
represent media proximal and distal to the interface [37].

The last step is to conduct inverse analysis. In the case, six
factors are designed: moduli, Poisson’s ratio and density of
both matrix and inclusion. If five levels are associated with
each factor, the full factorial design needs totally 56 (15625)
trials, which is time-consuming in computation. In order to
reduce the number of trials, an orthogonal array is specifically
designed to investigate this inverse analysis. As for the six
5-level factors, there are 25 trials according to the principle of
the orthogonal array design [33].Mathematically, the 25 trials
can represent 15625 ones of the full factorial design. It must
be kept in mind that the transmission coefficient of every
trial should be updated with (5). The amplitude of incident
wave into the sample keeps updating with (4) as well for each
trial during FEM simulating. In the 3D simulation, each trial
takes 4minutes, meaning 100minutes for total 25 trials. From
this point of view, the computation of current inverse analysis
is acceptable and effective. Likewise, the orthogonal design
needs the possible range of each factor value that will be nar-
rowed down since the initial rough estimation. The finalized
levels of each factor are listed in TABLE 1. In the column
‘Factors’, 1, 2 and 3 denote the modulus, the Poisson’s and
the density of matrix, respectively, and 4, 5 and 6 denote the
modulus, the Poisson’s and the density of inclusion, respec-
tively. After the 25 trials are finished, the difference between
the peak pressure of FEM output and the experimental peak
(22.4 Pa) is calculated for each trial. Then, the difference
is classified by levels for each factor and averaged over the
number of levels as shown in Figure 10 from which the
optimum levels corresponding to the minimum average can
be read out directly: modulus of 2.0 MPa, Poisson’s ratio
of 0.30 and density of 1050∼1150 kg/m3 for matrix, and
2.6 MPa, 0.39 and 1600∼1700 kg/m3 for inclusion. The
density is given in a range, illustrating that the objective
value is not sensitive to density variation in contrast with
other factors. Figure 11 shows the computational output of
the optimum levels which gives the peak of 21.5 Pa, matching
well with the measured value of 22.4 Pa with the 4.0% error.

VOLUME 7, 2019 74389



D. Liu et al.: Sound Transmission-Based Elastography Imaging

FIGURE 10. The FEM output average of each level of every factor: x-coordinate is the level number for each factor,
and y-coordinate is the output average corresponding to each level. The level holding the minimum average is
optimum.

FIGURE 11. The FEM pressure output with optimum values: Modulus of
2.0 MPa, Poisson’s ratio of 0.30 and density of 1050 kg/m3 for matrix,
and 2.6 MPa, 0.39 and 1600 kg/m3 for inclusion.

With numerical errors and measurement noises, 4.0%may be
considered good match.

Although the integrated method has completely been
applied to the phantom and those unknown properties

obtained, there still is a doubt whether those optimum val-
ues are real. For further verifying the method and the opti-
mization, in next part, some of properties are measured
experimentally.

3) VERIFICATION OF THE OPTIMIZATION
The density and moduli of matrix and inclusion are mea-
sured for the verification. The mass is tested directly by a
balance and the volume by a graduated cylinder and water.
The volume is the difference of the two readouts of water sur-
face positions before and after the matrix or inclusion is put
in the cylinder. At last, the density of matrix is 1050 kg/m3,
and the density of inclusion is 1690 kg/m3. Both values are
all in the optimization range of density, meaning that their
optimum values agree with measurements.

The modulus is measured through the uniaxial com-
pression by the tester, BOSE ElectroForce R©3200. The
sample for matrix is a cylinder of 9.7 mm × 9.6 mm,
and the sample for the polymer inclusion is a cuboid of
11 mm × 9.4 mm × 5.7 mm. The compression speed is
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FIGURE 12. Compression stress-strain curves and their linear fits: the slopes are the moduli. All of five tests on each sample show good
repeats.

TABLE 1. Levels for six factors.

0.01 mm/s under the displacement control. Five tests are
conducted for each sample, and then followed by the linear
fit on stress-strain curves as shown in Figure 12. The slopes
are the moduli: 2.1MPa for matrix and 2.6MPa for inclusion.
By comparison, the optimum values of 2.0 MPa and 2.6 MPa
are consistent with the measured moduli for matrix and inclu-
sion, respectively.

Overall, as demonstrated on the 2D case and the 3D phan-
tom, the integrated method can predict the accurate elasticity.
Because the objective value is not built as the explicit function
of variables, factorial design provides a way making the
inverse analysis effective and controllable. It is also noted that
the current investigation is limited under the assumption of
isotropic elasticity of tissues. Future work is needed to extend
the method for general anisotropic elastography.

IV. CONCLUSION
A sound transmission-based elastography method is devel-
oped, which is validated on 2D and 3D cases with different
waveform input and frequencies. This method can potentially
be an effective tool in both fields of charactering elasticity
of biomaterials/tissues and engineering materials. While the
experimental validation of the method uses X-ray tomogra-
phy image, other imaging modalities may work as long as
they can provide the geometric delineation. One of the unique
features of the current study is that no interior responses
within objects, such as displacement, strain, or wave speed,
need to be measured in advance for mapping elastography.
At this standpoint, samples act as a ‘‘black-box’’ which also
makes the experimental measurement free of considering the

reflection and the refraction inside the object. Another fea-
ture is that the tomography image containing the geometric
structures and soundwave carrying thematerial properties are
integrated into FEM in which sound wave test is simulated
and analyzed inversely to map the mechanical properties.
Fundamentally, the current method is free of the frequency
effect because it doesn’t need to adjust the frequency to make
internal responses trackable and measurable. Simulations and
phantom experiments have been conducted to validate the
proposed integrated method. The optimum results of density
and moduli have been verified with the experimental mea-
surements.
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