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ABSTRACT Multi-rotor unmanned aerial vehicles (UAVs) have been recently recognized as one of the
top emerging technologies to be utilized in various smart city domains such as intelligent transportation sys-
tems (ITS). They represent an innovative mean to complement existing technologies to surveil transportation
network, control traffic, and monitor incidents. The UAVs usually operate for time-limited missions due to
their limited battery capacity. Hence, they need to frequently return to their docking stations to recharge
their batteries, which handicaps their mission coverage and performance. When designing a UAV-based
ITS infrastructure, it is crucial to leverage the UAV fleet effectively. In this paper, a generic management
framework of UAVs for ITS applications is developed. The problem of docking/charging station placement
is first investigated to find optimized locations for a given number of stations to be installed by the ITS
operator. To this end, two fundamental criteria are taken into account: i) the flying time required by the UAV
to reach the mission/incident location and ii) the risk of battery failure during the UAV operation. The two
algorithms, namely a penalized weighted k-means algorithm and the particle swarm optimization algorithm,
are designed for this purpose. Once the docking stations are placed, a UAV scheduling program is formulated
to optimally cover the pre-known missions while minimizing the total energy consumption of the fleet and
respecting a coverage efficiency targeted by the ITS operator. The proposed proactive scheduling approach
employs multiple UAVs in sequential and parallel ways to cover spatially and temporally distributed events
in the geographical area of interest over a long period.

INDEX TERMS Intelligent transportation system, planning, scheduling, unmanned aerial vehicles.

I. INTRODUCTION
The usage of unmanned aerial vehicles (UAVs), aka drones,
has drastically increased over the last decade, not only in
military but also in public and civil domains. The constant
increase in demand in the market for UAVs is due to their
decreasing cost and the flexibility and dynamic capabilities
they offer. Another trait includes the mounting of various
devices such as cameras, sensors, and communication inter-
faces. UAVs is being utilized in a variety of different domains
including agriculture, security and surveillance, delivery of
goods and services, and telecommunications [2]. In the com-
ing years, the multi-rotor UAVs market will witness unprece-
dented growth. According to the PwC report, the emerging
global market for business using UAVs is estimated at over
$127 billion where infrastructure monitoring and transport
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are expected to sharemore than 45%of the total market. As an
example, we can cite the Uber Air, which is developing a
shared air transportation solution that is expected to be tested
by 2020 and will present a stride in UAV technology [3].

The intelligent transportation systems (ITSs) community
has also shown particular interest in the potential employment
of such flying units to support existing technologies and
address various ITS challenges [4]. The three-dimensional
mobility of UAVs gives an additional degree of freedom,
in comparison to the fixed road side units (RSUs), for differ-
ent applications such as incident reporting and traffic moni-
toring. Indeed, the RSU, a ground device that functions as a
communication mean to support transportation infrastructure
and smart vehicles, can only detect incidents in areas within
its specific range and is subject to placement restriction con-
straints. In contrast, UAVs have potentials to mitigate such
challenges of area coverage size and road network restrictions
and have the ability to fly at different altitudes which helps
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in ameliorating their wireless channel qualities and increas-
ing their communication ranges. UAVs would significantly
enhance the signal strength and system throughput which
enables multiple bandwidth-hungry applications such as the
transmission of high-resolution images and videos [5]. More-
over, the adoption of UAVs would help operate ITS at a lower
cost compared to RSUs, known to have high deployment and
installation costs. Finally, UAVs could adequately function
in real-time based on needs which allow for lower energy use
and maintenance cost.

Nonetheless, UAVs face some challenges in the context of
ITS which substantially limits its active operations [6]. For
example, its limited battery capacity hinders its constant use.
Admittedly, they have to continuously retreat to their docking
station to recharge their batteries and be able to pursue their
trips or missions. Hence, recurring to-and-fro trips transpire
continuously, and an optimization approach is needed toman-
age the UAV energy power more efficiently. The UAV energy
management needs to consider two main components. The
first component is due to the primary hardware unit and its
mobility, while the second component is related to any other
component installed on the UAV such as sensors, camera,
and/or the communication interfaces. Separately optimizing
both energy components may lead to suboptimal results since
they are correlated in many situations. For instance, reduc-
ing the traveled distance (i.e, flying energy) may require
the positioning of the UAV at a location quite far from the
target. This will lead to a longer transmission time to send
packets which will consequently increase the communication
energy. Therefore, a UAV scheduling management scheme
must consider the different aspects related to the operation
of the fleet.

Another challenge that might be confronted by UAVs is
the mitigation of emergency conditions. Response time in
such situations is crucial since the UAV must reach the inci-
dent location in the shortest time — for example, UAV is
required to cover an accident and monitor evacuations by
sending periodic photos or videos to operators to analyze
the situation. Another example would be the monitoring of
a jammed intersection and the quick deployment of flying
traffic lights to decrease the delay of emergency vehicles,
such as ambulances [4].

A. RELATED WORK
Most of the studies existing in the literature investi-
gating the use of UAVs in ITS applications focus on
either improving their operation efficiency in perform-
ing missions such as monitoring, tracking, and detection
using UAV videos/imagery [7]–[9] or enhancing the data
exchange through UAV-assisted vehicular ad hoc networks
(VANets) [10], [11]. Other studies propose UAV deployment
and trajectory optimization schemes but applied in other
fields such as cellular networks [12]–[16]. However, these
work completely or partially ignore the energy and time
travel constraints in their models and focus rather on the
UAV missions by itself. The aforementioned constraints are

very essential to ensure the successful operation of UAVs in
ITS and they closely depend on the following factors: i) the
characteristics/specifications of the UAVs, e.g., maximum
UAV speed, power consumption levels, battery capacity etc.,
ii) the followed trajectory and UAV stops if any, e.g., the tra-
jectory and optimized 3D locations, and iii) the locations
of the UAV docking stations where the UAV will need to
go to refill its battery and where it will land during idle
periods. Therefore, the optimization of the docking stations’
locations in large geographical areas is the first step that
should be pursued in designing efficient UAV systems for ITS
applications. Then, other research activities can be conducted
to improve the UAV operation such as positioning and path
planning of UAVs. Once the docking station locations are
determined, it becomes very important to optimize the UAV
scheduling over a long period of time in order to select and
determine which UAVs should be sent to execute a given task
in a certain location of the area of interest. The UAV schedul-
ing optimization is not a trivial task. It has to guarantee the
smooth execution of the tasks without leading to redundant
exploitation of the resources, e.g., energy and UAVs, espe-
cially for applications that may require the handoff of multi-
ple UAVs. The scheduling decision requires the consideration
of multiple input parameters influencing the whole system
including the current positions of the UAVs, the amount of
stored energy, the battery capacity, the spatial and temporal
information about the missions to be executed, and the loca-
tions of the docking stations, etc. Most of the studies existing
in the literature investigating the use of UAVs in ITS appli-
cations focus on either improving their operation efficiency
in performing missions such as monitoring, tracking, and
detection using UAV videos/imagery [7]–[9] or enhancing
the data exchange through UAV-assisted vehicular ad hoc
networks (VANets) [10], [11]. Other studies propose UAV
deployment and trajectory optimization schemes but applied
in other fields such as cellular networks [13]–[16]. However,
these work completely or partially ignore the energy and time
travel constraints in their models and focus rather on the
UAV missions by itself. The aforementioned constraints are
very essential to ensure the successful operation of UAVs in
ITS and they closely depend on the following factors: i) the
characteristics/specifications of the UAVs, e.g., maximum
UAV speed, power consumption levels, battery capacity etc.,
ii) the followed trajectory and UAV stops if any, e.g., the tra-
jectory and optimized 3D locations, and iii) the locations
of the UAV docking stations where the UAV will need to
go to refill its battery and where it will land during idle
periods. Therefore, the optimization of the docking stations’
locations in large geographical areas is the first step that
should be pursued in designing efficient UAV systems for ITS
applications. Then, other research activities can be conducted
to improve the UAV operation such as positioning and path
planning of UAVs. Once the docking station locations are
determined, it becomes very important to optimize the UAV
scheduling over a long period of time in order to select
and determine which UAVs should be sent to execute a
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given task in a certain location of the area of interest. The
UAV scheduling optimization is not a trivial task. It has to
guarantee the smooth execution of the tasks without leading
to redundant exploitation of the resources, e.g., energy and
UAVs, especially for applications that may require the hand-
off of multiple UAVs. The scheduling decision requires the
consideration of multiple input parameters influencing the
whole system including the current positions of the UAVs,
the amount of stored energy, the battery capacity, the spatial
and temporal information about the missions to be executed,
and the locations of the docking stations, etc.

The scheduling and management of UAV fleet have
attracted a lot of research attention in the recent years.
Several approaches based on different techniques such
as traveling salesman problem [14], [17], bio-inspired
algorithms [18], [19], and consensus-based grouping algo-
rithm [20] have been developed. Such problems are classified
as unmanned aerial vehicle routing problems (VRPs) and
are generally designed to find optimized routes for UAVs
to execute a list of missions. For instance, two multitrip
VRPs dealing with the energy consumption issue are pro-
posed in [21] for UAV-delivery applications. The first prob-
lem minimizes the total delivery cost under a certain delivery
time limit, while the second problem focuses on the dual
version to minimize the total delivery time with respect to
a budget constraint. The problems are modeled as Mixed
integer linear programs (MILP). Another VRP problem has
been formulated using a graph-basedMILP [22] to determine
the minimum coverage time of ground areas using a fleet of
fixed-wing UAVs equipped with imagers. The model consid-
ers the time needed to launch the UAVs but ignore the battery
management of the flying vehicles.

Few work have focused on optimizing the UAV scheduling
in its generic form or adapted for applications other than ITS.
Most of the studies imposed certain assumptions to relax
the problem formulation and simplify its resolvability. For
example, in [23], the authors designed a centralized UAV
management method for intelligent surveillance and recon-
naissance missions. A MILP is formulated to determine the
path followed by the UAVs to collect data from spatially
distributed nodes and deliver them to a sink. The collection
time is minimized given cycle length constraints. A dynamic
programming approach for UAV delivery systems is provided
in [24] where an optimization problem looking for the min-
imization of the service delivery delay is developed. Both
of the earlier studies focus on the management of multi-
ple UAVs. However, the adopted approaches do not consider
temporal characteristics of the missions (starting time or
duration) and/or do not take into account the limited battery
capacity issue.

The studies presented in [25], [26] dealt with the limited
energy challenge. The authors have formulated a MILP prob-
lem to model the UAV scheduling process. Each UAV is
assumed to be associated to a specific mission characterized
by a pre-known trajectory. Along the way, multiple charging
stations are made available to reload the UAVs’ batteries.

When needed, UAVs can substitute each other to complete
the missions. The problem is simplified by decomposing
each mission into multiple sub-missions such that the instants
of updating the statuses of the UAVs is based on the job
split choice of the UAV operator. Tthe genetic algorithm is
then employed to achieve a suboptimal solution of the prob-
lem. Similar formulation is developed in [27] but, heuristic
approaches are employed to reduce the problem solving com-
plexity while assuming random initial locations of the UAVs.
Supposing pre-known trajectories and splitting them into
multiple sub-missions simplify the problem formulation and
leads to suboptimal solutions since the instants of decision
making are neither time flexible nor optimized. In our previ-
ous work [28], we have designed a scheduling framework for
UAVs where only one docking station is used to reload all the
flying units.

B. CONTRIBUTIONS
The present paper develops a generalized framework optimiz-
ing the UAV operations for ITS applications. It first focuses
on solving a planning problem to determine optimized perma-
nent locations for docking stations to which UAVs need to go
to recharge their batteries. Afterwards, the paper proposes a
proactive UAV scheduling framework that optimizes the UAV
operation and assign UAVs to multiple events identified by
different spatial and temporal characteristics over long period
of time.

The goal of the first phase is to determine where to place
the docking stations in a given geographical area in order to
maximize a coverage efficiency metric. The docking stations
must be located near the areas that interest the ITS opera-
tor, e.g., traffic accident hot spots. The coverage efficiency
metric is measured according to the historical accidents and
traffic jam statistics of the road segments and intersections.
The docking station planning problem is performed while
considering i) the UAV travel time to reduce delayed deploy-
ment of the flying units during emergency situations and
ii) the energy constraint to avoid battery depletion during
the UAV operation. The proposed planning approach can
be applied for UAVs mounting cameras or communication
interfaces, e.g, for UAV-assisted VANets and is solved using
the following two proposed algorithms: a penalized and
weighted k-means clustering algorithm (PWkMeans) and
an algorithm based on swarm intelligence, namely particle
swarm optimization (PSO). The performances of both algo-
rithms are provided by comparing the achievable coverage
efficiency. Unlike similar studies investigating the deploy-
ment of RSUs [29], [30] where uniform grid maps are used,
the proposed approach can be applied to any realistic map
and does not necessary require pre-defined possible stations’
locations (i.e., discrete optimization). The proposed approach
can also consider the existence of already deployed RSUs

The second phase uses the outputs of the first phase to
manage the operation of a fleet of UAV. It aims to assign
them to multiple events/missions identified by their spatially
distributed locations and time characteristics, i.e., starting
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instants and duration. The objective is to minimize the total
energy consumption while ensuring the completion of all
events and missions. In addition to the locations of the dock-
ing stations, the scheduling process will also need to consider
the flying time required tomove theUAV from one location to
another as well as the charging time. Indeed, a UAV will not
be available to execute a mission or cover an event unless it
has sufficient energy to ensure at least the round trip from and
to the docking station. Therefore, the proposed scheduling
framework allows parallel execution of disjoint events and
the sequential UAV operation while covering events and exe-
cuting missions. The sequential coverage allows the substitu-
tion of one UAV by another when covering the same event.
Moreover, the framework enables the transfer of UAVs from a
docking station to another according to the future pre-planned
missions. Hence, if an area surrounding docking station A
is free of events, the UAVs will take off and fly to another
docking station close to more important hot spots. A mixed
integer nonlinear programming (MINLP) problem incorpo-
rating all these characteristics and properties is formulated
and optimally solved. Four possible actions can be taken by
the UAVs: covering an event, waiting at an event, flying,
and charging battery. As outputs, the optimizer provides the
starting times of each of these actions, their corresponding
time duration for each UAV, and the locations of the UAVs at
each instant. It is worth to note that UAVs can be used more
than once during the time horizon and can successively serve
multiple events according to the energy availability. In case
of energy depletion, UAVs will return to one of the docking
stations to recharge their batteries.

C. PAPER OUTLINE
The paper is organized as follows. Section II presents the
system model. The problem of docking station placement
is investigated in Section III. In Section IV, the MINLP
problem for UAV scheduling and the steps to solve it are pre-
sented. Selected simulation results are provided in Section V.
Section VI discusses the perspective and open challenges of
the use of UAV in ITS. Finally, concluding remarks are drawn
in Section VII.

II. SYSTEM MODEL
We consider to deploy a UAV-based trafficmonitoring system
for a road network in a given geographical area characterized
by N points of interest (PoI) that can represent intersections,
streets, or segments of road. Each PoI n, where n = 1, . . . ,N
is defined by the latitude and longitude coordinates, denoted
by (φn, ψn). We suppose that a UAV will leave a docking
station to fly towards a sub-area to cover a certain number of
these N PoIs characterized by a certain coverage efficiency
level of a UAV depends on its characteristics, its final loca-
tion, and the locations of its docking station. We consider that
the ITS operator aims to install S docking stations at locations
(φs, ψs) to be determined where s = 1, . . . , S. For simplicity
and without loss of generality, we assume that the altitudes
hn of the N PoIs and hS of the S docking stations are set

to zero hn = hu = 0,∀s, n. In the following, we introduce
the power model as well as the coverage of a UAV d , with
d = 1, . . . ,D and D is the total number of UAVs used
by the operator, located at a position u defined by the 3D
geographical coordinates (φu, ψu, hu).

A. UAV POWER MODEL
The power model of a UAV is composed by two compo-
nents: hovering and hardware power and power related to
the mounted devices. We assume that the operator is using
UAVs having similar characteristics except the average speed,
denoted byVd . The hover and hardware power levels, denoted
by Phov and Phar, can be expressed, respectively, as [31]1:

Phov =

√
(mtotg)3

2πr2pnpρ
, and Phard =

Pfull − Ps

vmax Vd + Ps, (1)

where mtot, g, and ρ are the UAV mass in (Kg), earth gravity
in (m/s2), and air density in (Kg/m3), respectively. The
parameters rp and np denote the radius and the number of the
UAV’s propellers, respectively. The maximum UAV speed is
denoted by vmax while Pfull and Ps are the hardware power
levels when the UAV is moving at full speed and when the
UAV is in static mode, respectively. Finally, the motion power
of a UAV can be calculated as:

Pmot
d = Phov + Phard . (2)

Accordingly, the total flying energy required by a UAV to fly
from a docking station s to a specific location u is expressed
as follows:

Emot
d (s, u) = Pmot

d T fly
d (s, u),

where T fly
d (s, u) =

√
Dist(s, u)2 + h2u

Vd
, (3)

where Dist(s, u) is the distance separating s and u and com-
puted using the haversine formula as follows:

a = sin2
(
1φs,u

2

)
+ cos(φs) cos(φu) sin2

(
1ψs,u

2

)
,

c = 2 atan2(
√
a,
√
1− a),

d(s, u) = R c, [km] (4)

where 1Fi,j = Fi − Fj with F ∈ {φ,ψ} and i, j ∈ {s, u},
atan2 is the inverse tangent function with two arguments, and
R is the earth Radius (R = 6371 km). In (3), the term T fly

d (s, u)
indicates the time needed for UAV d to fly from location s to
location u.
On the other hand, the UAV consumes extra energy related

to themounted device. For instance, the communication inter-
face power can be linearly modeled as follows [33]:

Pcom = γPtxu + δ, (5)

1Other UAV power models existing in literature such as [32] can be used
with this framework. Indeed, the developed framework can work with any
power model and does not require a specific formulation as long as the
average UAV speed is considered.
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where γ is a scaling parameter for the radiated power Ptxu and
δ models a constant power due to signal processing hardware
independent. The value of Ptxu depends on the location u of
the UAV as it will be shown in the sequel.

B. UAV COVERAGE
We consider that a UAV can successfully execute a mission if
a PoI is within its maximum range. For example, if the UAV
is charged to collect images or videos, its maximum range or
coverage is directly related to the see-ability/visibility of the
UAV’s camera which depends on the quality of the camera
and the UAV location [34]. In this paper, we are interested in
UAVs equippedwith communication interface. The coverage,
in this case, is represented by a surface πr2u where ru is the
radius of a circle centered at the UAV projection onto the 2D
earth surface, i.e., (φu, ψu). Within this range, all smart vehi-
cles and RSUs can successfully decode the UAV signal and
vice versa. The detection efficiency is subject to the wireless
channel quality between the flying and the ground terminals
which is, on average, depending on the path loss (PL) effect.
The PL of the air-to-ground link is a weighted combination of
two PL links: LoS and non-LoS (NLoS) links. It is shown that
obtaining a LoS is not always possible even for flying UAV
Indeed, there is a probability to obtain a LoS link between
the UAV and a ground terminal which is based on the UAV’s
altitude, the distance separating the two transceivers, and the
environment [35]. The average PL, in dB, between the UAV
positioned at a position (φu, ψu, hu) and a ground terminal
located at a position (φv, ψv) in urban environments is given
as [35]:

PLu,v = pLoSu,v PL
LoS
u,v + (1− pLoSu,v )PL

NLoS
u,v . (6)

where pLoSu,v is the LoS probability given by:

pLoSu,v =
1

1+ α exp(−β[θu,v − α])
, (7)

where θu,v is the elevation angle between the UAV u and
the ground terminal v in degree and is evaluated as θu,v =
atan

(
hu

d(u,v)

)
. The parameters α and β are two constant values

that depend on the environment. The NLoS probability is,
then, equal to 1−pLoSu,v . PL

LoS
u,v and PLNLoSu,v are the PL for LoS

and NLoS links and are, respectively, given in dB as follows:

PLLoSu,v = 10ν log10

(
4π
√
Dist(u, v)2 + h2u

λ

)
+ ξLoS, (8)

PLNLoSu,v = 10ν log10

(
4π
√
Dist(u, v)2 + h2u

λ

)
+ξNLoS, (9)

where ν is the PL exponent, λ is the carrier wavelength, and
ξLoS and ξNLoS are additional average losses for the LoS and
NLoS links, respectively. Note here that higher UAV altitudes
increase the chance of establishing a LoS link. However,
it results in a larger distance between the transceiver. An ade-
quate choice of hu would reduce the PL effect and improve of
the communication channel quality.

To ensure successful UAV operation, we consider that the
received signal’s power must be equal to or greater than the
minimum required received signal strength denoted by Pthr .
Hence, the UAV has to be located at the range r∗u such that the
received power at a node placed at a distance r∗u from (φu, ψu)
is equal to Pthr . In other words, for a given UAV altitude hu,
the following equation has to be solved: Ptxu√

PLu,v


|d(u,v)=r∗u

= Pthr . (10)

Using the above equation, we ensure that all the nodes located
inside the disk centered in (φu, ψu) with the radius r∗u detect
the signal successfully when the UAV hovers at a 3D position
(φu, ψu, hu). Since the docking station is based on average
statistics, the UAV operator should choose an UAV altitude
hu sufficiently high to guarantee a LoS probability close
to 1 and avoid/minimize the mis-classification risk of PoIs.
If equation (10) is not mathematically tractable, the range ru
can be determined via numerical methods such as the Newton
method.

III. DOCKING STATION PLACEMENT
Before optimizing the scheduling procedure of the UAVs,
we propose to determine permanent locations for the docking
stations. This will represent a starting point for our next study
in Section IV aiming at optimizing the UAV operations for
ITS systems.

As the docking station will be permanently deployed,
we propose to determine their locations based on the average
statistics of the traffic in the geographical area and the min-
imum technical specifications of the UAVs. In other words,
if the operator possesses UAVs with different battery capaci-
ties, denoted by B̄d and speeds Vd , the worst case scenario
will be considered. Hence, in the remaining part of this
section, the index d related to the UAVs will be omitted.

A. PROBLEM FORMULATION
We associate to each PoI n, n = 1 . . . ,N , representing an
intersection, a street, or a segment of road, a fitness value,
denoted by fn, measuring a metric evaluating the vehicle
density, the event/incident frequency, or the vehicle speed,
etc. The fitness can also be a weighted function of all these
parameters. In Fig. 1, we present a realistic road network map
of Qatar 2018 where major roads in the North West of Doha
are illustrated. In the figure, each point has a different fitness
value depending on the average traffic statistics. Some roads
and intersections are characterized by higher fitness values
due to, for example, high traffic jam or accident rates.

The objective of this section is to develop an optimiza-
tion problem aiming at locating the docking stations in opti-
mized positions such that the corresponding UAVs can cover
the maximum number of PoIs with the highest fitness lev-
els. Hence, the coverage efficiency (%) can be expressed
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FIGURE 1. The traffic road network of the North West of Doha,
Qatar (2018). The color bar indicates a metric representing certain
statistics of the traffic in different intersections and road segments.

as follows:

C1e =
∑N

n=1 εnfn∑N
n=1 fn

, (11)

where εn is a binary parameter indicating whether a point n
can be covered by a UAV associated to one of the docking
stations or not. If it is the case, εn = 1. Otherwise, εn = 0.
The placement of docking stations is not a straightforward

task and depends on many factors. For instance, the docking
stations must be installed in locations close enough to the
N PoIs to ensure rapid deployment of UAVs in the case of
emergency situations. We denote this time response related to
a PoI n by T e(n), n = 1, . . . ,N . Hence, if the UAV requires
a time less than or equal to T e(n) to reach a location (φu, ψu)
distanced from (φn, ψn) by at maximum r∗u then, the PoI n
is assumed to be covered in a reasonable time. This time
can differ from a PoI n to another according to the choice of
the operator. Hence, the distance between a docking station s
and a PoI n, Dist(s, n), should not exceed the distance de∗(n)
defined as follows:

de∗(n) = Te(n)V + r∗u . (12)

Moreover, the placement of docking stations should con-
sider the UAV’s battery level, which has not to be drained
during the UAV mission to guarantee its safe execution.
Hence, if the UAV’smission takes T cov(n) seconds for a given
PoI n, then, the energy consumption of the UAV has to be less
than the battery capacity as expressed in the following:

2PmotT fly(s, u)+
(
Phov + Ps + Pcom

)
T cov(n) ≤ B̄, (13)

where the first term in (13) accounts for the energy needed
to guarantee a round trip flight between the docking sta-
tion and a specific location (φu, ψu, hu). The second term
accounts for the energy consumption needed to cover the
mission during T cov(n) seconds. Note that we consider that
the UAV is fully loaded when it leaves the docking station.

Consequently, the distance between a docking station s and
the point n, Dist(s, n) = Dist(s, u) + r∗u , has to respect the
following condition:

Dist(s, n)

≤


√√√√(V (B̄−(Phov+Ps+Pcom)Tmot(n)

)
2Pmot

)2
−h2u+r

∗
u


+

︸ ︷︷ ︸
db∗(n)

,

(14)

where [.]+ indicates the max(., 0) function. In the sequel,
we denote the right hand side of equation (14) by db∗(n).2

It is worth to note that, for a fixed number of docking
stations S, it will not be possible to cover all N PoIs mainly
for large geographical area. Therefore, the UAV-ITS planner
should target the PoIs with high fitness values fn. To do so,
we formulate the following optimization problem aiming at
locating S docking stations in order to maximize the coverage
efficiency of the UAV-based ITS:

maximize
(φs,ψs),∀s=1,...,S

C2e =
∑N

n=1
∑S

s=1 εsnfsn∑N
n=1 fn

, (15)

with fsn =
{
fn, if Dist(s, n) ≤ min(de∗(n), db∗(n)),
0, otherwise.

subject to:
S∑
s=1

εsn ≤ 1, ∀n = 1, . . . ,N . (16)

Constraint (16) is added to guarantee that the fitness fn is only
computed once, if a PoI n is simultaneously covered by more
than one docking station. The value εsn is directly deduced
from the locations of the docking stations. Hence, the selected
docking station among the possible candidates is the closest
one to the PoI n. In other words,

εs∗n = 1, if s∗ = argmin
s=1,...,S /Dist(s,n)≤min(de∗(n),db∗(n))

Dist(s, n).

(17)

Note that this optimization problem is developed to find the
best locations (φs, ψs) for S UAV docking stations. Hence,
it is designed for the case where a budget allowing the
deployment of, at maximum, S docking stations in the area
of interest is guaranteed. Another formulation might search
for deploying the minimum number of docking stations to
ensure a certain level of coverage efficiency. In this paper,
we essentially focus our analysis on the optimization problem
formulated in in (15). The algorithms that will be presented
in the following section can be easily adapted to the other
formulation.

2In the planning phase, it is assumed that each docking station has its own
fleet and each UAV leaving that docking station is guaranteed to be able to
return to it as indicated equation (14). This assumption is made to guarantee
safe operation of the fleet in the case of isolated docking stations. Moreover,
the planning phase is designed for the high-level operation of the system.
Special cases and instantaneous operations of the system are taken into
consideration in the scheduling process where, for each scenario, an activity
plan for each UAV is determined. It indicates whether the UAV needs to go
to another docking station or not according to the system requirements and
event schedules.
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B. PROPOSED ALGORITHMS FOR UAV
DOCKING STATION PLACEMENT
In this section, we develop two algorithms determining per-
manent locations of the UAV docking stations in a geo-
graphical map given N PoIs defined by the ITS operator.
The algorithms are designed using different conceptional
constructions. In the first algorithm, we propose a modified
version of the K-means clustering method which originally
partitions all the N PoIs into K clusters [36]. In the second
algorithm, we utilize the bio-inspired PSO algorithm [37].

1) PENALIZED AND WEIGHTED K-MEANS ALGORITHM
The PWkMeans is a modified version of the traditional
K-means algorithm, which designed to assign the points
(or data) to the closest centroid. In the modified version,
we propose to penalize the assignment since we do not aim to
associate all the PoIs to the docking stations as the clustering
operation is conditioned by the distance given in (15). Indeed,
some PoIs may not be assigned to any docking station. More-
over, the modified version of the algorithm, we add a weight
to each PoI n reflecting its fitness value fn which differs from
the ones of the other PoIs. Hence, higher weights are given to
PoIswith higher fitness values so that the clustering algorithm
gives priority to those PoIs during the assignment process
and thus, ensure the maximization of the coverage efficiency.
In this context, we proceed with observation weights rather
than feature weights.

The first step of the PWkMeans is to initialize the locations
of the S docking stations. The initial locations can be random-
ized or pre-defined by the operator. This initialization step has
an important impact on the final algorithm results. Therefore,
we opt to adopt the initialization step of the K-means++
approach presented in [36] to select the initial centroids
and hence, enhance the convergence efficiency. Afterwards,
the algorithm associates the N PoIs to the centroids based on
the distances Dist(s, n) by assigning high weights to the PoIs
with high fitnesses fn and vice versa. This can be done by
replicating the PoIs according to their fitness values following
a particular scale. For instance, a PoI with a fitness close to
1 will be replicated 10 times in the data set while a PoI with a
fitness close to 0 will not be replicated. Then, new centroids
can be obtained by averaging over the coordinates of the
PoIs associated to each old centroid that respects the distance
condition given in (15). These steps are repeated until no
changes are made, i.e., no further change in the centroid
locations. The PWkMeans algorithm is given in Algorithm 1.
At each execution, the PWkMeans may converge to a differ-
ent local optimum. Hence, it is recommended to execute it
multiple times to select the combination providing the highest
coverage efficiency.

2) PARTICLE SWARM OPTIMIZATION
Evolutionary algorithms can be also employed to optimize
the UAV docking station placement. In this paper, we propose
to use PSO, which is characterized by the following advan-
tages compared to other evolutionary methods: The search

Algorithm 1 PWkMeans for Docking Station Placement
t = 0.
Generate initial random locations (φs(t), ψs(t)) for S dock-
ing stations using the k-means++ method.
Generate Ñ points from the N PoIs by replicating them
according to a given scale.
while Not converged do
For each centroid (φs(t), ψs(t)), find the closest points
from Ñ .
t = t + 1.
Find the new locations of (φs(t), ψs(t)) by averaging
over the coordinates of the associated points that respect
the distance condition.

end while
Return (φ∗s , ψ

∗
s ) = (φs(t), ψs(t)).

process in PSO is simple easy to implement, it requires the
manipulation of few numerical parameters (e.g., the number
of particles and acceleration factors), and it needs a low
computational cost when executed with a small number of
particles [38].

Let us denote by C the matrix of size 2× S containing the
coordinates of S docking station as follows:

C =
[
φ1 φ2 . . . φS
ψ1 ψ2 . . . ψS

]
. (18)

The goal is to find the best combination of C such that
the coverage efficiency is maximized. The first step in PSO
is to create B particles composed of randomly generated
docking station coordinates C(0, b), b = 1, . . . ,B to form
an initial population. Then, at each iteration i and for each
particle b, it associates to each docking station located at
(φs(i, b), ψs(i, b)) the PoIs that respect the distance condi-
tion given in (15). Then, it computes the coverage efficien-
cies C2e (i, b) associated to each particle b. Among all these
particles, it records the one providing the highest coverage
efficiency, which is named the global particle for this iter-
ation and denoted by CG. In addition, for each particle b,
it maintains a record of its best performance through the iter-
ations known as the local position of particle b and denoted
by CL(b). Afterwards, it computes a velocity term V (i, b) as
follows:

V (i, b) = ξV (i− 1, b)+9 i

(
CL(b)− C(i, b)

)
+8i

(
CG
− C(i, b)

)
, (19)

where ξ is the inertia weight and 9 i and 8i are two matrices
whose elements are uniformly generated in [0, 2] at each
iteration i. The velocity term is used to shift the locations of
each particle b based on its best local position as well as the
global particle. Finally, PSO updates each particle C(i, b) as
follows:

C(i, b) = C(i, b)+ v(i, b). (20)
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Algorithm 2 PSO for Docking Station Placement
i = 0.
Generate an initial population composed of B random par-
ticles C(i, b).
while Not converged do
for b = 1, · · · ,B do

Associate to each docking station s of particle b
the closest PoIs that respect the distance condition
given (15).
Compute the coverage efficiency of particle b:
C2e (i, b).

end for
Find the global particle CG and the local position CL(b)
for each particle b.
Adjust the velocities and positions of all particles using
equations (19) and (20).
i = i+ 1.

end while

This process is repeated until reaching convergence either
by attaining themaximumnumber of iterations or by stopping
the algorithm when the achieved coverage efficiency remains
constant after a certain number of iterations. Algorithm 2
provides a pseudo-code of the placement of UAV docking
stations using PSO.

It is worth to note that, in the case where RSUs are already
installed in the area of interest, the placement of docking sta-
tions in locations close to RSUswill be automatically avoided
by the algorithms to maximize the coverage efficiency as the
surrounding PoIs are already covered by RSUs and hence,
their corresponding εn are already set to 1.

IV. UAV SCHEDULING
In this section, we develop a scheduling framework tomanage
a fleet of UAVs. We assume that D UAVs are initially placed
at the docking stations deployed using the approach presented
in Section III. The objective is to exploit these UAVs to cover
spatially and temporally distributed events occurring in the
area of interest over a long period of time. The proactive
approach aims to employ these UAVs in sequential and par-
allel manners such that the events are effectively covered and
the handoffs between UAVs are smoothly performed while
respecting the energy availability at each UAV. The UAVs
can be used to successively cover multiple events and must
guarantee sufficient energy to return to the docking station so
they can replenish their batteries. The investigated framework
presents some resemblance to the parallel machine schedul-
ing problem where machines are assigned to execute multiple
jobs [39], [40]. However, in our framework, we are taking
into account more complex features related to the machines,
i.e., in our case the UAVs, that have limited battery lifetime
and require to regularly return to the one of the docking
stations to recharge their batteries. Moreover, the delay due
to the motion of the UAVs need to be considered to ensure
effective coverage. This makes the optimization of the UAV

management more challenging and must be designed to guar-
antee the smooth operations of the UAVs.

A. EVENTS AND UAV ACTIONS
We assume that the time horizon T is divided intoK time slots
of length Tk and the E events are pre-scheduled in the area
of interest. Each event is defined by its geographical location
(φe, ψe, he), its starting time τe, and its duration1e where e =
1, . . . ,E . These events are pre-planned by the operator. They
can correspond to various ITS applications involving UAVs
such as regularmonitoring of intersections and important rods
during peak hours, periodic data collection missions from
RSUs, or acting as flying speed cameras, etc.

Initially, theDUAVs are placed in docking stations located
at the optimized locations (φs, ψs, 0) where they can charge
their batteries with a charging power denoted by Pch. Hence,
in total, there are E + S possible locations for UAVs’ deploy-
ment. In the sequel, we identify the docking station s as
event E + s.
In the UAV scheduling framework, we aim to manage the

UAV fleet by determining what is the action that is performed
by a UAV at each instant. Four actions are possible:
• Covering an event: The UAV is located at one of the
events e, where e = 1, . . . ,E to execute a particular mission.
When executing this mission, it is assumed that the UAV is
hovering at a static location and consuming, in total, the fol-
lowing power levelPhov+Ps+Pcome . Notice that the index u is
replaced by the index e in Pcome since the power level related
to the communication service depends on the location of the
event chosen by the operator.
• Charging its battery: The UAV is located at one of the
docking stations e = E + 1, . . . ,E + S to charge its battery
with a charging power Pch.
• Flying from an event to another: The UAV will fly from
an event e′ to another event e where e′, e ∈ {1, . . . ,E + S}.
During its motion, a UAV d consumes an amount of power
equal to Pmot

d = Phov + Phard . This also includes the UAV trip
from a docking station to another.
• Waiting at an event: The UAV is located at an event e
waiting to do an action. This case can happen when the UAV
is waiting at a docking station without charging its battery
because its full, in this case, the UAV does not consume any
power, or waiting at one of the events, e = 1, . . . ,E until it
starts to cover it and in this case, it consumes Phov + Ps.

The UAVs will need to switch between these different
actions that have different time duration depending on the
spatio-temporal distributions of the events as well as the
locations of the docking stations.

B. DECISION VARIABLES AND CONSTRAINTS
The goal of this section is to define the different decision
variables and formulate the necessary constraints to ensure
parallel and sequential scheduling of the fleet of UAVs with
minimum energy consumption while guaranteeing sustained
coverage of the events.
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TABLE 1. List of decision variables.

In Table 1, we list the primary decision variables of the
problem. Note that:
• When c(d, e, k) = 1 where e > E it means that UAV d
is charging its battery during time slot k at docking station s
(i.e., s = E − e). The charging period is determined by the
decision variable 1c(d, e, k).
• It is possible that a UAV is located at the docking station s
but not charging its battery, in this case, c(d,E+s, k) = 0 and
w(d,E + s, k) = 1. The waiting time of the UAV is defined
by 1w(d, e, k).
• The size of 1f (e′, e, d, k) is reduced as we eliminate the
cases when e′ = e.
• The decision variable i(d, d ′, e, k) is introduced to indicate
whether two UAVs are sequentially covering the same event
during the same time slot or not and hence, redundant use
of UAVs and collision are avoided. Its size is reduced since
i(d, d ′, e, k) = i(d ′, d, e, k) for d 6= d ′ and the case d = d ′

is ignored.
In the following, we present all constraints required for safe

operation of the UAVs.

1) EVENT COVERAGE CONSTRAINT
The following constraint are related to the binary variable
c(d, e, k):

sd,e,k ≤ δe,k , ∀d = 1, . . . ,D,∀e = 1, . . . ,E,

∀k = 1, . . . ,K , (21)
E+S∑
e=1

sd,e,k ≤ 1, ∀d = 1, . . . ,D,∀k = 1, . . . ,K . (22)

Constraint (21) prohibits the optimizer to assign a UAV d to
an event e during time slot k if the event does not occurs
during that time slot. The parameter δe,k is introduced to
indicate whether an event e is occurring during time slot k
or not; ((δe,k = 1 if it is the case). Constraint (22) avoids
the parallel use of one UAV to cover multiple events. Hence,
a UAV can cover only one event during each time slot k .
Notice that it is not mandatory that a UAVwill cover an event
e during the whole period Tk . Indeed, the UAV may spend
some of the time to cover the event e while, during the rest
of the time slot, it may be in motion to another event, for
instance, to the docking station due to a lack of energy.

Multiple UAVs can be sequentially used to cover a single
event. Hence, their total coverage time should not exceed the
duration of the event. It may not be possible to completely
cover all the events and some events might be missed due
to limited number of UAVs and/or lack of energy. Hence,
the operator can define a certain target to be achieved for

each event or for all events together. This depends on the
available resources provided by the operator. For the case of
local tolerance, i.e., associated to each event, the constraint
can be written as follows:

κe1e ≤

D∑
d=1

K∑
k=1

c(d, e, k)1c(d, e, k) ≤ 1e,

∀e = 1, . . . ,E . (23)

where κe is the tolerance parameter associated to each event e,
(0 ≤ κe ≤ 1). If it is about a global tolerance then, the cover-
age efficiency constraint can be written as:

D∑
d=1

K∑
k=1

c(d, e, k)1c(d, e, k) ≤ 1e, ∀e = 1, . . . ,E,

(24a)

and
K∑
k=1

E∑
e=1

D∑
d=1

c(d, e, k)1c(d, e, k) ≥ C̄, (24b)

where C is the minimum target coverage of the operator. Note
that staying at any of the docking stations is not limited in
time. Therefore, constraints (23) and (24) are not imposed for
the events E + s, where s = 1, . . . , S.

2) WAITING CONSTRAINTS
It might be possible that a UAV will need to statically hover
at a single location to wait for an event to start. In this work,
we assume that, if they need to wait, UAVs must first move
to the upcoming event and wait at its location. It is redundant
that a UAV d remains waiting at an event which has already
expired. Hence the following constraints are imposed:

w(d, e, k) ≤
K∑

k ′=k+1

δe,k , ∀e = 1, . . . ,E,

∀d = 1, . . . ,D, ∀k = 1, . . . ,K (25)
E+S∑
e=1

w(d, e, k)≤ 1, ∀d=1, . . . ,D, ∀k=1, . . . ,K . (26)

Constraint (26) ensures that a UAV can wait at maximum at
one event during each time slot. Recall that UAVs have the
freedom to wait at the docking stations.

3) FLYING CONSTRAINT
If a UAV d decides to fly from event e′ to event e, its trip time,
which might be summed over multiple time slots, has to be
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exactly equal to T fly
d (e′, e) defined in (3). Given the fact that

one UAV can be only located at one event during a time slot
and assuming that a UAV d leaves event e′ during time slot
k ′ and reaches event e during time slot k then, the following
constraint has to be maintained:

k∑
j=k ′

1f (e′, e, d, j) =

T
fly
d (e′, e) if UAV d is flying

from e′ to e,
0 otherwise,

∀d = 1, . . . ,D, ∀e′, e ∈ {1, . . . ,E + S} where e′ 6= e,

∀k ′, k ∈ {1, . . . ,K } where k ′ ≤ k. (27)

4) SEQUENTIAL COVERAGE CONSTRAINT
To avoid the possibility that two or more UAVs simulta-
neously cover the same event, we propose to introduce the
sequential coverage constraint interlinking the decision vari-
ables c(d, e, k) and i(d, d ′, e, k). However, let first introduce
a variable denoted by1L(d, e, k) that represents the duration
limited between the instant at which time slot k starts and the
instant at which UAV d starts covering event e. For instance,
if the UAV d starts covering the event e at the beginning
of time slot k then, 1L(d, e, k) = 0. If the UAV starts
covering the event e after a certain delay due to its travel
and/or waiting times then, 1L(d, e, k) = 1f (e′, e, d, k) +
w(d, e, k)1w(d, e, k) assuming that e′ is the previous loca-
tion of UAV d . Finally, if a UAV d is not covering the event
e at all during time slot k , 1L(d, e, k) = Tk . A general
expression of 1Ld,e,k is given as follows:

1L(d, e, k)

= δe,k

(
E+S∑
e′=1

1f (e′, e, d, k)+ w(d, e, k)1w(d, e, k)

)
+ (1− c(d, e, k))Tk , ∀d = 1, . . . ,D,

∀e = 1, . . . ,E,∀k = 1, . . . ,K . (28)

Notice that the variables 1L(d, e, k) are not considered as
decision variables as they can be expressed as a function of
the other primary decision variables.

The following condition is applied for two UAVs covering
the same event to guarantee its sequential coverage:

If 1L(d, e, k) ≥ 1L(d ′, e, k)+ c(d ′, e, k)1c(d ′, e, k)

or 1L(d ′, e, k) ≥ 1L(d, e, k)+c(d, e, k)1c(d, e, k) then,

i(d, d ′, e, k) = 1, ∀d, d ′ ∈ {1, . . . ,D},∀e = 1, . . . ,E,

∀k = 1, . . . ,K . (29)

Therefore, a UAV d can serve an event e during a time slot k
only if it is able to satisfy constraint (29) with all the other
UAVs. Hence, the binary variable c(d, e, k) is conditioned
upon the values of i(d, d ′, e, k) as follows:

c(d, e, k) ≤
D∑
d=1

D∑
d ′=d+1

i(d, d ′, e, k)−
(
D(D− 1)

2
− 1

)
,

∀d = 1, . . . ,D,∀e = 1, . . . ,E,∀k = 1, . . . ,K . (30)

Hence, all events will be covered in a sequential manner.
Indeed, a UAV will be sent to an event only if it is ensured
that it will not overlap with other UAVs. Notice that con-
straint (30) is not applicable for event E + s, s = 1, . . . , S
as the UAVs can be co-located in the docking stations.

5) ENERGY CONSUMPTION CONDITION
We first define the following amounts of energy consumed or
charged by each UAV d until time slot k:
- Total energy consumption to cover events denoted by Eser

d,k :

Eser
d,k =

k∑
j=1

(
Phovd + P

ser
d

) E∑
e=1

s(d, e, j)1s(d, e, j),

∀d = 1, . . . ,D, ∀k = 1, . . . ,K . (31)

- Total energy consumption due to waiting denoted by Ewait
d,k :

Ewait
d,k =

k∑
j=1

Phovd

E∑
e=1

w(d, e, j)1w(d, e, j) ,

∀d = 1, . . . ,D, ∀k = 1, . . . ,K . (32)

- Total energy consumption due to motion denoted by Efly
d,k :

Efly
d,k =

k∑
j=1

(
Phovd + P

tr
d

) E+S∑
e=1
e6=e′

E+S∑
e′=1

1f (e′, e, d, j) ,

∀d = 1, . . . ,D, ∀k = 1, . . . ,K . (33)

- Total energy charged denoted by Echar
d,k :

Echar
d,k =

k∑
j=1

Pch
S∑
s=1

s(d,E + s, j)1s(d,E + s, j) ,

∀d = 1, . . . ,D, ∀k = 1, . . . ,K . (34)

Hence, in terms of energy consumption and at each time
slot k , a UAV d cannot consume an amount of energy higher
than the amount of energy stored in its battery as given below:

Eser
d,k + E

wait
d,k + E

fly
d,k ≤ B

0
d + E

char
d,k−1,

∀d = 1, . . . ,D, ∀k = 1, . . . ,K , (35)

where B0d is the initial amount of energy stored at the battery
of UAV d . Constraints (35) guarantee that the amounts of
consumed energy by UAV d until time slot k cannot exceed
the amount of energy stored before that period, i.e., the initial
battery level plus the amounts of energy acquired from the
docking station source during the previous time slots. Notice
that, for k = 1, we consider thatEchar

d,0 = 0. Finally, we denote
byEd the total energy consumption of a UAV d which is equal
to the sum of the energies consumed over all time slots and
expressed as:

Ed = Eser
d,K + E

wait
d,K + E

fly
d,K , ∀d = 1, . . . ,D. (36)
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6) BATTERY CAPACITY CONSTRAINT
On the other hand, we need to ensure that, when recharging,
the UAV battery capacity limit B̄d is not violated and this
during each time slot:

B0d + E
char
d,k −

(
Eser
d,k + E

wait
d,k + E

fly
d,k

)
≤ B̄d ,

∀d = 1, . . . ,D,∀k = 1, . . . ,K . (37)

In order to not exceed the battery capacity, a UAV can land
on one ofthe docking stations without necessary charging its
battery, i.e., w(d,E + s, k) = 1 and s(d,E + s, k) = 0.

7) TIME INTERVAL CONSTRAINT
This constraint guarantees the cohesion of the time schedul-
ing such that the total spent by a UAV d to move from an
event to another and/or to cover and wait at an event must be
equal to the time slot length as follows:

E+S∑
e=1

c(d, e, k)1c(d, e, k)+
E+S∑
e=1

w(d, e, k)1w(d, e, k)

+

E+S∑
e=1
e6=e′

E+S∑
e′=1

1f (e′, e, d, k) = Tk ,

∀d = 1, . . . ,D, ∀k = 1, . . . ,K . (38)

C. OBJECTIVE FUNCTION AND OPTIMIZATION PROBLEM
The objective of the framework is tominimize the total energy
consumption while meeting the coverage efficiency targeted
by the operator. The objective function corresponds then to
the sum of the energy consumption over all UAVs. The UAV
management optimization problem is written as follows:

minimize
c,1c,w,1w

1f ,i

F =
D∑
d=1

Ed , (39)

subject to (21), (22), (23) or (24), (25), (26), (27), (29),

(30), (35), (37), and (38),

Initialization of the UAVs’ locations constraints. (40)

The parameters c, 1c, w, 1w, 1f , and i are the set contain-
ing the decision variables c(d, e, k), 1c(d, e, k), w(d, e, k),
1w(d, e, k), 1f (e′, e, d, k), and i(d, d ′, e, k), respectively.
It should be noted that, in addition to the already discussed
constraints, the initial locations of each UAV must initialized
(i.e., (40)). Usually, the UAVs are initially located at the
docking stations. Each can be waiting and/or charging at one
of the docking stations. The operator of the UAVs decides
where to deploy each UAV at the beginning of the time
horizon. During their operations, it is possible that the UAVs
will go to different docking stations to charge their batteries as
long it is needed and possible. The problem formulation does
not impose that each UAV is associated to a unique docking
station. However, thanks to the flexibility of the UAVs, even
if they are initially located at a central docking station, they
can easily adjust their locations according to the system need
especially if we consider continuous operation of the system.

For instance, at the beginning of each cycle, theUAVwill start
at the central docking station and according to the scheduled
missions, the optimizer will automatically determine where
each UAV needs to land and recharge its battery, and the end
of the cycle, the UAVs return to the central docking station.
Optimizing the initial number of UAVs per docking stations
would help in minimizing the energy consumption.

The outputs of the problem include the starting times of
each of the UAV actions presented earlier and their corre-
sponding durations for each UAV in addition to the location
of each UAV at each time slot k where k = 1, . . . ,K .
Notice that the above optimization problem is non-linear

due to the non-linearity of the objective function and some
of the constraints, e.g., products of decision variables, and
existing logical conditions, e.g., logical OR. Hence, it is
formulated a MINLP problem that cannot optimally solved.
However, it is possible to convert it to a linear one by adopting
some linearization techniques such as the use of multiple
linear constraints to model the products of decision variables,
the big-M linearization technique, and the introduction of
some slack variables to linearize some of the constraints.
More details about the linearize techniques that are adopted
can be found in [28].

Once the problem is converted to aMILP problem, its opti-
mal solution can be determined usingwell-known techniques,
namely the branch-and-bound algorithm implemented in off-
the-shelf software, e.g., CPLEX, CVX/Gurobi [41]–[43].
However, the MILP is a non-deterministic polynomial time
(NP-Hard) problem requiring a high computational time
to converge especially for large scale problem. Traditional
heuristic approaches such as evolutionary algorithms may be
used to achieve sub-optimal solutions after certain problem
relaxation. Nevertheless, it is worth to note that the opti-
mization problem is designed for a proactive scheduling and
will be solved once for each period of time. For large scale
scenarios, the UAV operator can divide the time horizon into
multiple sub-periods following the temporal distribution of
the events. As an example, the events can be divided into
multiple groups of events as they are sufficiently spaced from
each others. In case where the docking stations are suffi-
ciently far from each other, the scheduling problem could be
applied based on their locations. For example, the schedules
of the UAVs associated to docking station A is determined
independently of the schedules of the UAVs associated to
docking stations B and C, located near each other.

In this paper, we have focused on the event category where
a MILP is solved to jointly find the schedules of all UAVs
during the whole timespan. In case of emergency situations
requiring rapid deployment of the UAVs, real-time decision-
making approaches are needed. Nevertheless, theoretically,
the proposed optimal solution can still be implemented with
for real-time situations where the MILP is re-executed when
an unexpected event occur. The MILP will be then executed
for the remaining timespan while considering the new unex-
pected event. At that moment, the starting time and the loca-
tion of the unexpected event are known and a fixed duration

75688 VOLUME 7, 2019



H. Ghazzai et al.: Future UAV-Based ITS: Comprehensive Scheduling Framework

can be given to the event, e.g. 20minutes so the UAV can have
sufficient time to gather necessary information. However, this
case is not really practical because of the high complexity
of the MILP, which makes it inefficient to determine a new
schedule for the fleet to take prompt actions. In our future
work, we will focus on designing rapid solutions to deal with
unexpected events and emergency situations.

Another remark regarding the optimization problem is that
it is feasible if many parameters such as the battery capac-
ity B̄d , the duration of the events pe as well as their spatial and
temporal occurrence, the different power levels of the UAVs
Phov, Phar, and Pcomd , and the charging power level of the
docking stations are selected in a reasonable and homogenous
manner. For example, the used UAVs are chosen such that
their batteries are designed for sufficiently long travel time so
they can be employed in large geographical areas. Moreover,
the number of deployedUAVsD and the tolerance parameters
κe or C̄ must be well-chosen.

It is worth to note that the proposed formulation can be
implemented with any type of discretization of the time
horizon. In other words, the time horizon can be into K
time slots with uniform lengths or with different/dynamic
lengths. In fact, the proposed approach enables continuous
decision making where the statuses of the UAVs can be
exactly updated at the beginning, at the end, or between these
two limits of each time slot. Hence, unlike the traditional
time-indexed formulations, which impose that the status of
the UAV must be the same during the duration of the time
slot, the proposed formulation tolerates the change of the
UAV statuses during the time slot. As it will be shown in the
simulation result section, during the same time slot, a UAV
can sequentially fly, wait, and then cover an event.

V. SELECTED NUMERICAL RESULTS
In this section, we provide some numerical results for the
docking station placement and the UAV scheduling methods
for different scenarios applied to the map of Doha city, Qatar
given in Fig. 1.We start by introducing the system parameters
used in our simulations then, investigates the outputs of the
PSO and PWkMeans algorithms. Afterwards, we study the
optimal scheduling of UAVs and their behaviors for different
scenarios.

A. SIMULATION PARAMETERS
We use the free editable map provided by the OpenStreetMap
project to obtain the road network data of the city of Doha,
Qatar [44]. We focus our analysis on the ‘‘trunk’’, ‘‘motor-
way’’, ‘‘primary’’, ‘‘secondary’’ and ‘‘tertiary’’ road types as
well as their associated links and we ignore the special road
types such as ‘‘footway’’, ‘‘residential’’, and ‘‘living_street’’,
etc. We use as UAV battery the zippy flight max lithium
polymer battery3 with a storage capacity of 27 Wh. The
remaining UAV and system parameters are given in Table 2.
Based on these parameters, the UAV range is computed to

3http://UAVsarefun.com/BatteriesForUAV.html

TABLE 2. UAV and system parameters.

be approximately equal to r∗u ≈ 121 m for a UAV altitude
hu = 60 m. The fitness metric used in the simulations is
obtained from [45] where fn is given as:

fn = η1ρACn + η2ρ
AV
n + η3ρ

VH
n , (41)

where ρACn , ρAVn , and ρVHn are metrics reflecting the accident
frequency, average flow speed, and density of vehicles at the
PoI n. The factors η,i, i = 1, 2, 3 are coefficients associated
to each metric. For simplification, in Fig. 1, the fitness level
are represented by colors where dark colors indicate high
fitness level. Finally, PSO and PWkMeans are executed for
20 times in order to find the best placement of docking
stations. The PSO is run for B = 12 particles and interrupted
if the coverage efficiency is unchanged for 20 consecutive
iterations.

Since placing docking stations is permanent, we have used
average statistics of the road network for this task. How-
ever, to deal with the varied behavior of the road network,
the scheduling is performed according to the traffic varia-
tion and the zones to monitor which can vary during the
day/makespan. As it will be shown in the following results,
the UAVwill move from a docking station to another depend-
ing on the needs of the sub-areas.

B. RESULTS FOR THE UAV DOCKING STATION PLACEMENT
In Figs. 2(a)-2(d), we depict the locations of the docking sta-
tions using the PWkMeans and PSO algorithms for different
number of stations (S = 4 and S = 8). In Figs. 2(a)-2(b),
four docking stations are deployed. Both algorithms cover
almost the same regions characterized with high fitness levels
as indicated in Fig. 1 (Red regions). The obtained docking
station locations are very near to each other which results
in a very close coverage efficiency levels (66.2% and 64.2%
for PSO and PWkMeans, respectively). Deploying a higher
number of docking stations (S = 8) as given in Figs. 2(c)-2(d)
increases the coverage efficiency levels to 86.54% and 84%,
respectively. However, the obtained locations are different for
some of the docking stations. This is due to the fact that the
number of docking stations is not enough to cover all of the
PoIs and hence, different local solutions can be obtained.

In Fig. 3, we plot the achieved coverage efficiency with
respect to the minimum required received signal strength Pthr
in order to enable safe communication by the UAV and a
ground node for S = 2 and S = 4. This scenario can
corresponds to the case of a UAV acting as a flying RSU
communicating with ground vehicles. In this figure, we have
compared the performance of our algorithms with the ones of
a deterministic greedy approach. The greedy algorithm places
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FIGURE 2. Placement of docking stations (a) PSO S = 4, (b) PSO S = 8, (c) PWkMeans S = 4, and (d) PWkMeans S = 8.

a docking station at each iteration. It scans the map to test
pre-defined locations forming a grid. The docking station is
placed at the location providing the highest coverage effi-
ciency. The corresponding covered PoIs are then eliminated
for the next iteration, where the algorithm looks for placing
the next docking station. The algorithm converges when all
the docking stations are placed.

In general, the figure shows that as the Pthr increases,
the coverage efficiency decreases. This is due to the fact that
the UAV’s range is shrunk and hence, the docking stations
need to be installed in locations closer to important PoIs.
This results in reducing the chance of covering other nearby
PoIs, which confirms that the required QoS level constitutes
an important parameter in the docking station placement
decision. It is also important to note that maximizing the
coverage efficiency is not equivalent to the maximization of

the number of covered PoIs. The proposed algorithms target
the PoIs having higher fitness first. Then, remaining docking
stations are deployed to cover other less important regions
having lower fitness values, in other words, regions with less
incidents and accidents rate. Finally, Fig. 3 shows that the
PSO algorithm always outperforms the PWkMeans clustering
algorithm and the greedy one with a gap not exceeding 10%.
The PWkmeans and greedy algorithms achieve close perfor-
mance; the former algorithm efficiency is very dependent on
its initialization step, while the greedy algorithm depends on
its browsing grid size.

Fig. 4 depicts the case of placing four (S = 4) UAV
docking station placement in the presence of deployed RSUs.
The RSUs are assumed to be installed along a road segment
located at the south of the map (green-colored). The PSO
algorithm places three docking stations at the same locations
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FIGURE 3. Coverage efficiency versus minimum required received signal
strength using PSO, PWkMeans, and a greedy algorithm with (a) S = 2
and (b) S = 4.

FIGURE 4. Placement of S = 4 docking stations in the presence of RSUs
using PSO algorithm.

obtained with the case without RSUs as given in Fig. 2(a).
However, PSO deploys the remaining docking station to
another region in order increase the total coverage efficiency
by avoiding redundant placement with other docking stations
and RSUs.

C. RESULTS FOR THE UAV SCHEDULING
In Fig. 5, we illustrate the optimal scheduling solution applied
for a scenario involving E = 4 events and M = 4 UAVs.
We assume that S = 3 docking stations are active to replenish
the UAVs batteries. Their locations are obtained using the
PSO algorithm. The locations of the docking stations and the
events are given in Fig. 5a while their temporal parameters are
provided in Fig 5b. We denote this scenario by ‘‘Scenario 1’’.
Event e = 3 starts at τ3 = 800 seconds and remains about
12 minutes while the other events e = 1, 2, 4 occur starting
from 3400 seconds, have different durations, and overlap
during some of the time slots (from k = 12 to k = 15).
Notice the time horizon is divided into multiple time slots
following a dynamic discretization method that takes into
account the temporal and spatial characteristics of the events.
More details about the dynamic discretization method can be
found in [28]. The road network operator is using D = 4
UAVs assumed to be initially placed at docking station 1
(s = 1) and have completely discharged batteries. We assume
that the charging power at all the docking stations are the
same and are equal to Pch = 40 W. Recall that the battery
capacity is B̄d = 27 Wh, ∀d .

Table 3 is provided to explain the results provided in Fig 5.
It indicates the battery level, the consumed energy, and the
actions taken the UAVs UAV during each time slot. At the
beginning the UAVs do not have sufficient time to reload
their batteries so they cannot cover event 3 solely due to
the low charging power Pch. Therefore, three UAVs, namely
d = 4, d = 3, and d = 1, are successively used. Afterwards,
each of these UAVs is send to one of the docking stations
depending on its future schedule. For instance, UAV 3 is sent
to docking station 3 as it will cover event 4 while UAV 1 is
sent to docking station 2 the closer one to event 3 and then,
it will fly to cover event 2. Flying from event 3 to docking
station 2 and then to event 2 is less energy consuming than
flying from event 3 to docking station 1 and then event 2
due to the distances separating the locations. Finally, UAV 4
is sent back to docking station 2 the closest one and is not
used in the future. UAV 2 is used to cover event 1, an event
close to docking station 1. Table 3 shows that the UAVs are
replenishing their batteries with the necessary energy to their
planned trips. Replenishing extra energy is useless. During
these periods, the UAVs are waiting at the docking stations.
Finally, notice that, during the same time slot, the UAVs may
have two statuses, i.e., UAV 1 is flying from docking station 1
to event 3 to cover it during time slot k = 4. The total
energy consumption of the UAVs during the whole period of
5000 seconds is equal to 58.3 Wh.

In Fig 6, we investigate another scenario denoted by ‘‘sce-
nario 2’’. We keep the same locations of the events while
we change their temporal characteristics as shown in Fig. 6b.
We also reduce the number of docking stations to S = 2.
Two UAVs D = 2 are employed where d = 1 is placed in
docking station 1 and d = 2 is placed in docking station 2.
The charging power level is set to Pch = 60 W. The time
horizon is 6000 seconds. Events 3 and 2 are relatively long
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FIGURE 5. Scenario 1: Optimized scheduling using D = 4 UAVs to cover E = 4 events with S = 3 docking stations. Event and docking station
locations (left), UAV scheduling (right), dashed lines indicate the trips of the UAVs. (a) event and docking station locations, (b) UAV scheduling.

TABLE 3. Scheduling details of scenario 1 (DS: Docking Station, C: Covering, W: Waiting, F: Flying).

FIGURE 6. Scenario 2: Optimized scheduling using D = 2 UAVs to cover E = 4 events with S = 2 docking stations. Event and docking station
locations (Left), UAV scheduling (Right), dashed lines indicate the trips of the UAVs. (a) event and docking station locations, (b) UAV scheduling.

compared to the battery capacity and the charging power
level of the UAVs. Hence, both UAVs are successively used
to cover them. UAV 2 starts covering event 3 as it is the
closest one so it can allow UAV 1 to charge its battery to the
maximum as shown in Table 4 where the battery level reached
25.24 Wh during time slot k = 4. The UAV 2, then, moves
to docking station 1 to reload its battery and starts covering

event 2 during time slot k = 8, 9, 10 for around 675 seconds
and then, returns to docking station 2 as it will serve event 4 in
the future. On the other hand, after completing the coverage
of event 3, UAV 1 completes serving event 2 after passing by
docking station 2. Then, it covers solely event 1 which is the
shortest event. Notice that, during time slot k = 12, UAV 1
has three actions: flying from event 2 to docking station 1,
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TABLE 4. Scheduling details of scenario 2 (DS: Docking Station, C: Covering, W: Waiting, F: Flying).

charging at docking station 1, and then, travel from docking
station 1 to event 1. This shows the efficiency of the proposed
approach in solving the scheduling problem in a continu-
ous manner. In fact, unlike traditional optimization solutions
where, at each time slot, a node/machine/UAV is associated to
only one action/job/event, our proposed approach introduces
a flexibility to the system and make the optimization close to
ideal optimality, i.e., solving the problem in the continuous
domain without discretization. The total energy consumption
in this case is equal to 83.04 Wh which is higher than the one
obtained with scenario 1. This is explained by two reasons.
First, the time horizon is longer. Second, by using a lower
number of UAVs, there is a need to make additional trips
compared to the case where we have 4 UAVs.

VI. PERSPECTIVES AND OPEN CHALLENGES
The use of micro-UAVs has been rapidly expanding over
the last few years. According to online statistics portal [46],
the market for commercial UAVs is expected to reach about
13 billion US dollars by 2025 with a current total production
estimated at 58.4 million US dollars. For instance, Amazon
is expected to deploy around 45 thousands UAVs to rein-
force its delivery fleet by 2020 under its ‘‘Amazon Prime
Air’’ service. PwC report predicts that there are a total of
about 127 billion US dollars addressable market, 60% of
it is dedicated to infrastructure and agricultural applications
industry alone [47]. Transportation industry is expected to be
at 13 billion US dollars representing 10% of the total market.
The taxi UAV is considered as one of the most prominent
ITS applications helping in the reduction of congestion and
traffic. The first tests of air TAXi services will be made by
UBER in Los Angeles in 2020 [3].

The need to address the different challenges related to the
exploitation of UAVs for ITS and smart city applications is
essential to ensure the efficient operation of the flying units.
In addition to the energy and scheduling issues, many other
open challenges can still be confronted by UAVs. Indeed,
several air fleets belonging to different owners will need
to share the space to execute different tasks and missions.
Therefore, it is important to guarantee a safe and collision-
free navigation of the UAVs especially in urban areas. Cen-
tralized or decentralized coordination among the end-users
sharing common geographical areas is required to organize
the schedules of their fleet and better exploit the available
charging stations.

In many applications, UAVs may have the possibility to
be empowered with additional intelligence allowing them
to perform in-situ decision making. Autonomous navigation
might be enabled to allow UAVs determine their trajectories

according to their pre-scheduled plans or to quickly react
for unexpected events such as emergency situations and traf-
fic accidents. In the latter case, the autonomous UAV will
need to update its schedule and navigate towards the des-
tination. In such situations, it is mandatory to design smart
autonomous navigation algorithms guaranteeing the rapid
decision making, minimizing the trip time to reach the inci-
dent location, and taking into account the different environ-
mental factors such as obstacles and other devices, etc.

The performances of UAVs can be enhanced by increasing
their missions coverage. This can be achieved by allowing
the flying units to ride existing land public transport vehicles
such as city buses. This will help the UAVs to increase their
battery lifetime since part of the flying and hovering energy
will be eliminated. Indeed, the UAVs will be carried by a
city bus instead. Amazon has recently showcased the use of
intermodal vehicles to support UAVs in order to accomplish
the last-mile of the good delivery [48]. When they are near
to reach their destination, the UAVs can be launched for last
mile shipment of the goods. To enable such a concept, it is
required to synchronize the operations of UAVs with those of
the land transport vehicles. Hence, the trajectory of UAVs can
be determined in accordance with the bus timetable. In [49],
the authors has suggested such an idea in the context of video
surveillance for smart cities.

In order to enable such features, adequate wireless com-
munication infrastructure should be made available. Indeed,
the level of signalling and messages to be exchanged with
the ground infrastructure and among the UAVs themselves is
expected to significantly grow. Different wireless communi-
cation technologies can be simultaneously deployed for this
purpose such as cellular networks, Wi-Fi, and dedicated short
range communications (DSRC) protocol. The choices of the
used technology, the spectrum management, the data routing,
and the minimization of the signaling overhead are some of
the main challenges to ensure coordinated UAV scheduling
and centralized, decentralized, and autonomous UAV routing
and navigation.

VII. CONCLUSION
In this paper, we proposed a generic framework involving
UAVs in intelligent transportation systems. Two steps for bet-
ter exploitation of the UAVs are provided. The first one deter-
mines optimized emplacement of UAVdocking stations in the
city. Two algorithms with different conceptual constructions,
i.e, PSO and PWkMeans, have been proposed to find the
best locations to deploy the docking stations, that maximize
the UAVs’ coverage area while fulfilling the short interven-
tion time requirement and the battery lifetime constraints.
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The second step consists in a proactive scheduling approach
to manage a fleet of UAVs regularly replenishing their batter-
ies at the deployed docking stations. The scheduling frame-
work takes into account several parameters related to the
specifications of the UAVs, their batteries’ level and capacity,
in addition to the locations and duration of the events to
be covered. An optimization problem incorporating all these
features has been developed to enable parallel and sequential
use of the UAVs while avoiding collisions and redundant
exploitation of the resources.

Selected numerical results involving both above steps have
been provided. The results showed that both algorithms that
are used to calculate the optimal locations for the deployment
of the docking stations achieve similar performances for dif-
ferent scenarios while ensuring a considerable coverage effi-
ciency. On the other hand, we investigated the performance
of the UAV scheduling problem and provided optimal energy
efficient UAV-event association.

In our ongoing work, we will tackle the scenario where
events occur at random locations and time instants. In such a
case, a reactive scheduling approach is suitable to deal with
unexpected emergency situations. The complexity related to
the proposed NP-hard technique will also be mitigated by
designing heuristic solutions adapted to the nature of the
problem.
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